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On the Scooping Property of Measures by Means of Disjoint Balls 

E. RISS 

Sankt Peterburg*) 

Received 15. March 1996 

Let X be a Banach space. The measures in X considered below are assumed to 
be Borel finite measures, and all balls are assumed to be open. 

Definition 1. We say that a collection G of subsets of X has the scooping 
property (G e (s.p.)) if for every measure fi on X and for every e > 0 there exists 
a finite family {Fn)i c G of pairwise disjoint sets such that 

/ N • 

H(X\\JF„ 
\ 1 = 1 / 

This property is related to what is known as the positivity principle (p.p.) 
introduced by Christensen in [1]; the p.p. holds for a family G of subsets of 
a Banach space X if for arbitrary measures p and v on X, the relation p(B) > v(B) 
for all B e G implies p. > v. 

The positivity principle admits an interesting geometric interpretation (see [1]): 
for a family G in a Banach space X the positivity principle is fulfilled if and only 
if for every measure p on X and every Borel set M c I we have 

p(M) = inf {j>(B,): B, EG,P(M\ [JB^j = 0J ; 

this means that the measure of any set M can be "scooped" by means of sets that 
belong to G, are almost pairwise disjoint, and almost lie in M. 

It is known that the positivity principle is not fulfilled in l2 for the family Ir<l of 
balls of radius r e (0,1) (we call such balls "small balls"); the counterexample is 
constructed by D. Preiss in [2]. For more information see [3, 4]. On the other hand, 
the p.p. holds true in C[0,1] for the family Ir=l of balls of radius 1 ([5]). This 
fact allows us to simplify the above-mentioned interpretation of the p.p. in X as 
follows (for simplicity, we consider the family 7r<i): 

*) 32 Avtovskaya Street 13, 198188 Sankt Peterburg, Russia 
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the p.p. is fulfilled in X for Ir<l if and only if for every measure \i on X and 
every r < 1, 8 > 0 there exists a family {Bk} c: Ir<ro such that 

V8*) X\[)Bk) + У>(Д) - fг(X) 
k 

< e, 

i.e., the measure of the entire space X (not of an arbitrary Borel set!) can be almost 
scooped by means of almost disjoint small balls. 

This interpretation is a consequence of the following lemma, which can be 
deduced from the results of [5] by embedding the space X in C[0,1]. 

Lemma. Let p. and v be two measures on a separable Banach space X. If 
p(B) > v(B) for every convex open set B cz X with diam B < 1, then \i > v. 

Thus, we see that the scooping property is not weaker than the positivity principle. 
Here we discuss some results related to the scooping property. 
This Preiss' example mentioned above shows that the family of small balls in 

the Hilbert space does not posess the scooping property. It seems that such 
a situation is typical for "good" spaces. Below we list some properties of the spaces 
that fail to have the scooping property for J r < 1 . 

Property 1. Let X be a Banach space; we assume that Ir<l £(s.p.). There is 
a probability measure p on X such that 

lim sup p([JBn) = 0 . 
e - 0 { ^ } C / r | i < e 

Bfr.By.--0 

In other words, there is a measure that cannot be scooped essentially by means 
of very small disjoint balls. 

Proof. For a measure v on X, we denote 

^ ) = - T ^ sup v([JBn). 
V(X){B,t}c=Ir<s 

BjnBj = Q 

We construct p as the week limit of a sequence of measures {/E.}. This sequence 
{pn} and a sequence of radii {5n} will be chosen in such a way that 

(i) FM<Y„. 

Since the family Ir<l does not possess the scooping property, for some measure 
v we have Fv = / < 1. Let T = 1 — /. There exists a family {^}il cz _r<1 of 
disjoint balls such that 

•((W) 
v(X) > ť 4-

72 



We may assume that v(dB$) = 0 for n = 1, 2,..., IV!. So, for some <5_ > 0 and 

n = 1, 2,..., _V_ we have v ([) [ ( ^ . M ) ^ ^ ] ) < } * v(*)> w h e r e **$(*) = ( x e 

X : dist(x, B) < 5}. 
N_ Ni 

Now we define fi{ as follows: ^ = v on X\ \J B§ and ju_ = 0 on [J Bn
l\ It is 

n = l n = l 

easy to check that F^S^j < •_. 
Repeating the above argument, by induction we construct a sequence {/̂ } of 

measures and a sequence {4} of radii satisfying inequality (1). Namely, if lxn__ and 
<5n_i have already been constructed, then we take a family {E$}Nn <= Ir<sn_x of 
disjoint balls such that 

-s^>^M--#-(i-'„(».-0» 

and find 5n > 0 such that 

Nn N„ 

Now we define fin as follows: fin = fin_l on X\ []B^\ \in = 0 on (Jf*^. Again 
fc=i fc=i 

we have F\in(bn) < _«r. Now we obtain 

W(_)>ft1-,(_)(i--íí-I), 
whence 

*«>'HИ-

lin(X) > ixn_x(X) - —xx > fin_2(X) - — x - — x > . . . > fi3(X) - 1 > J. 

So, /*nvX) > | for every n e N . 
From (1) it follows that the measures jin and fin+k differ only on a set Dnk of 

* IV„+i 

the from II I J B(^+1) satisfying fin(Dn k) —> 0 for all k e N. So, the sequence {u,} , , , \ » / n_>0O ^ > 
/ = 1 m = l 

has a weak limit /x, /i #= 0, and the measures //„, /x differ only on a set Dn of the 
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oo Nn + 1 

form (J I J B^+1^ with pn(Dn)—>0. Also, we can assume that p(X) = 1 taking 
/ = i « - i "-*00 

-fa in place of p. 
The measure p is what we wished to construct, i.e., lim Iv(<5n) = 0. Indeed, if 

n-n•oo 

(2) mFtl(5„) = y>0, 
n—>oo 

then for some n e N we have ^(.D*) < 5, iv;i(<5n) < §. Hence, for every family 
{Bk}k={ a Ir<Sn of disjoint balls we can write 

fi(\jBk) < fin([jBk) + fin(Dn) < FJ5H) + | < y , 

which implies that F^,) < y. This contradicts (2). • 

Corollary 1. Iflr<l$ (s.p.) in X, then there exists a sequence {vn} of probability 
measures on X such that 

lim sup v(jBk) = 0 . 
n-oo {B,v}cz/r<1 

BtnBj = Q 

Proof. We define vn(A) = p{x: nx e A}, where p is any measure having Pro
perty 1. Then 

v„(£(x0, 1)) = fi{x: \\xn - x0\\ < 1} = n (B ( ^ ^ ) . 

and Property 1 implies the required equality. n 

Property 2. Let Ir<l$(s.p.) in X. If v is a measure on X and {Bn}* is 
a sequence of pairwise disjoint balls of class Ir<^for some a > 0, then 

(3) infv(UB„ + *) = 0 . 
xeX 

" U « Л " In other words, if there exists a "bad" measure p on X, then the family Ir<l is 
"bad" for every measure v: each family of pairwise disjoint balls can be moved so 
that to become "almost disjoint" with supp v. 

Proof. We may assume that a = 1. Corollary 1 implies the existence of 
a sequence {vk} of probability measures such that 

(4) lim sup vn(jBk + x) = 0 . 
"-°° xeX 

[f relation (3) is not fulfilled, then . 

(5) inf v( \jBk + x) = T > 0, 
*** \k=i J 
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and we can find an integer n such that 

(6) S»P ^{[JBk + x) < 2 ^ • 

For the convolution v * vn, (5) yeilds 

(v * v„) (\jBk) = $v({jBk + x) dv„(x) > r . 
X 

On the other hand, relations (6) and (5) imply 

(v * v„) {[JBk) = \vn{[JBk + x) dv(x) < Z-, 
x z 

and this contradiction completes the proof. • 

The facts proved above are of negative nature. Next we present some positive 
results concerning the scooping property. 

Proposition 1. The scooping property holds for the family It=l in the real space 
C[0,1]. 

Proof. Fix a probability measure \i on C[0, 1], and let 6 > 0. We wish to con
struct a family {B[xn, i)}n=i of disjoint balls centered at xn and of radius 1 such that 

(7) J\jB(xnl))>l-e. 
\n=l / 

We choose a compact set K satisfying 

(8) »(K) > 1 - | 

and fix numbers M > 0 and n0 e N such that, for every f e K and every 
r„ t2 e [0,1], 

(9) llfll<Af, 

(io) | t , - .2 l<-=> \f(h)-f(h)\<\-

For each i = 0,1, . . . , n0 we can find a family of disjoint intervals (a['\ 0), 
k = 1,..., Nh lying on the segment {̂ } x [—M, M] and such that 

(11a) | jf - c40+1| < l , |«p + M | < 1, |/$, - M| < 1, 

(lib) r{feKl*:f(£ewm}<:^. 
Let 
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I oí Ş-м 
\«o 2 

љ = lLÊ±Éil 
V 2 ,* = 1 , . . . ,N ,-1,Д=-, 

i IЩ + M 

"o 

be the midpoints of the corresponding intervals (see Figure 1). 

Fig. 1 

We look at all polygonal lines with vertices (^, y$), i = 0,..., n0, k = 0,..., 1V, 
(with the natural order of vertices), and denote the corresponding piecewise linear 
functions by cpu ..., cpN. It is not hard to show that 

л(u%ь-))>i-f 

(indeed, by (8) and (1 lb), it suffices to verify that 
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(12) \jB(<pbl)=>G, 
k=l 

where G def - = ife K : / ( - ) * [4\ 0] if k = 1,..., N , i = 0,..., n0J). 

However, the balls of the family {B(<pk, l)}^=1 are not disjoint; we are going to 
remove this difficulty. 

For every n e N, we construct a family of functions {(($}k=\. The construction 
will be one and the same on every segment [^, ^ + 4^] . Every q$ will coincide 
with cpk outside of [^, ^ + 4^] . So, we shall describe the construction of q$ on 
the segment [0,4^]. 

Let (pk(0) = z(k\ z^ being the midpoint of the corresponding segment [ffi\ a j^] . 
Let 2\k be the length of this segment, and let A0 be the smallest length of the 
segments [a» pf\, p = 1,..., Nh i = 0,..., n0. We set Rk = z<*> + 1 - lk - %, 
r, = z« - 1 + fc + £. 

In order to construct the family {(p$\k=h we proceed by induction on k as follows: 

-t-1+s+ff 

*--k г = i-*,4 no -4nr)o 

Fig. 2 
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1. With every function q$ we associate two nonempty disjoint finite subsets of 
[ 0 , 4 ^ ] , namely, Pk — the "set of peak-point", and Hk — the "set of hol
low-points" so that the following conditions be fulfilled: a) for every kx < k2 < IV, 

Hk2 n Pki 4= 0 and Pk2 n JJ*, * 0 ; 

b) every function q$ has at least one peak-point and at least one hollow-point 
which are not among the peak-points or hollow-points of cp^\ m < k. 

2. For pePhheHk we set cp^(p) = Rh cpf(h) = rk; cpW(0) = z«; p ( %^) = 
cpk(j^j. It remains to extend cp$ by linearity to the other points of [ 0 , 4 ^ ] . 

Now for every pair of functions q$l\ cp^ we have \\cp^ — cp^\\ > 2. Indeed, 
<Pp\i) * cp^\i\ for some;, 0 < ; < n0. We may assume that cp^\i) < cp%2\i), 
k2 > k{. Let v H i ) = (Phik) = ti, <P(n2\ty = <Pk2(m) = h\ then tu t2 are the 
midpoints of the corresponding segment [/%, a$1 + 1 ] , [j8^, aJ4+2] of length s{ and 
52, respectively. Taking a point u0 e [ 4 ^ + 4 ^ ] for j < n0 (or [1 - 47^, 1] for 
j = n0) such that u0 is a peak-point of cp^ and a hollow-point of q$l\ we obtain 

dfluo) - #H) = (h +1 - f - f ) - (., -1 +1 - f ) = 

2 + ( t 2 - t 1 ) - ( f + f + A o ) > 2 + ( t 2 - t 1 ) - ( f + f + ^ - ^ + i ) = 2 

(see Figure 3). Thus, we have B(cp^\ 1) n -B((p(„H 1) = 0. It remains to prove that 
for large n 

^(jN(<pt\l))>í-e, 

or by (12), that (J B(cp$, 1) 3 G. To this end, we take a number n e N such that, 

for every fe G, 
k=\ 

\»i - v2\ < 
4nn0 

ifЫ-fЫк^ 
(we use the equicontinuity of the functions in G). For any / e G we can find 
a function cpk that takes the value cpk{fy on the same segment [/?$, o$+ J with 
center t and of length 2s to which f(^) belongs, 7 = 0,..., n0. Then for 
t e [ U + i ] we have 

\f(t) - <p<£Xt)\ < Ki) - *ю + — < max 
4 /ф-И—ł' 

/ ^ ) -
."0/ 

An 1 + s + f , AQ f A0 

+ _ < m a x 1 - - , l - 2 5 - # 
2 И < 1 

(A0 is small); see Figure 2. For t $ [^, ^ + 4^7] the required inequality 
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|f(() - <pW(t)| < 1 follows from (12) (for such t we have <$\t) = <pk(t) by 
definition). • 

ík 
2 

, Ф 
cЛrПi+1 

J , r n -

^ Пo 
Fig.З 

Of course, C[0,1] cannot be viewed as the only example of infinitely 
dimensional separable Banach space with the scooping property (e.g., the space 
c0 obviously has this property). In particular, it would be desirable to find an 
equivalent norm on l2 such that the scooping property be true for Ir=l (the Hilbert 
balls are too "round" for this). We can try "to square" the Hilbert balls adjusting 
them somewhat to each other. To this end we introduce the following construction. 

Let L = {xn} be a lattice in l2 with finite ratio of the covering number and the 
packing number. We recall that L = {xn} is a lattice if x, ± x}eL for every 
ij e N. The covering number of L in X is c(L) = min {R: X = \JnB(xn, R)}, the 
packing number is p(L) = max {r: B(xh r) n B(xj9 r) = 0 for i 4= j}. A lattice 
L with j-jij < oo does exist (this fact follows from a theorem in [6]. We consider 
the following analog of the Voronoy polyhedron: 

Uo = {xє/2: ||x|| < \\x - xn 
for all x„eL\{0}}. 
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Then U0 is a convex set equivalent to the unit ball U of l2. Let || -1| x be the norm 
determined by the unit ball CI0- It is obvious that if xh Xj e L, xt 4= xp then 

(tIo + x) n (CIo + xj) = 0. 

In finite-dimensional spaces, the set (J(t70 + xf) coincides with the entire space, 
but in the infinite-dimensional case this is not true (there are points in X for which 
there is no nearest point in the lattice). 

00 

Let U(^o + *i) = -4, and let p be a probability measure on l2. Is it true that for 

every s > 0 there exist a e (0,1] and xel2 such that 

Ц U \J(U0 + X,) + X 1 > 1 - £ ? 

(If the answer is "yes", then we obtain the scooping property for Ir<l in 
-X" = (-2* II"Hi) and, of course, the positivity principle). 

We do not know the answer. But we can perturb II0 slightly so that the answer 
does become "yes". Moreover, the following assertions hold. 

Proposition 2A. Let H be the real separable Hilbert space. There is an 
equivalent norm on H with unit ball B such that for every probability measure 
p on H and every positive e, 8 there exists a finite family {Dn}n=x of open convex 
sets 

1. A n D , = 0, i 4= j ; 
2. Dt = Dx + Xi for some xt e H, i = 2, 3,..., IV; 

"(УЛ) > 1 — є; 

4. Q(DI — x, B) < S for some xe H (Q is the Hausdorff metric). 
If we want to scoop all the measure p, then we lose the congruence of the D.'s. 

As a substitute, we can use the following statement. 

Proposition 2B. There is an equivalent norm on H with unit ball B such that 
for every probability measure p and every 5 > 0 there exists a family {$n}n=\ of 
open convex sets 

1. <^n<f,. = 0, i±j; 

l. n(\JéH) = l; 

3. yfne\3xneH:^fH - xn,B) < 5. 
Finally, we mention that not only the measure but also an arbitrary compact set 

can be scooped by means of disjoint equal convex sets. 

Proposition 2C. There is an equivalent norm on H with unit ball B such that 
for every compact set K cz H and every s > 0 there exists a finite family {Gn}i of 
convex open sets 
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1. GtnGj = 0, i * ; ; 

2. K c (JGi 
» = 1 

3. G, = Gx + y, for some ^ e H9 i = 1, 2,..., IV; 
4. g(G! — x, B) < £ for some xe H. 
Propositions 2A, 2B, 2C can be generalized. 

Proposition 2A'. Let (X9 \\-\\) be a uniformly convex Banach space with basis. 
Then there is an equivalent pseudonorm \\-\\i on X, ||-|| < ||-1|! < 3||-||, with "unit 
ball" B (a star-shaped open set which is bounded and symmetric) such that for 
every measure \i on X and every positive £, 5 there exists a finite family {Dn}

N of 
star-shaped open bounded sets satisfying conditions 1.—4. of Proposition 2A. 

Propositions 2B and 2C have similar generalizations. 
We prove one of the above propositions (the other statements can be proved 

similarly). 

Proof of Proposition 2A. We consider the Banach space X = U\ ®{ H = 
{(a9xl9 x2,...) : a e R, (xb x2,...) e H} with the norm ||(a, xl9 ...)|| = \a\ + 
||(jcl9 x2,...)||//« We identify H with the hyperplane S a X : S = {(l,xl5 x2,...) : 
(xb x2,...) e H). Let Y denote the subspace {0,xl5...) : (xb ...) e H). We construct 
a lattice L in Y such that span L = Y and r(L) < 3, p(L) = 1 (this is possible; see 
[6]). Consider the subset 

Ě0 = LeB: inf \\x - y\\x > \\x\\\ 

of the hyperplane J?. It is obvious that every set Bz = {xe S: inf>eL ||x — y\\x > 

||x — z||},z e L, can be obtained from B0 by translation by z. The sets Bz are some 
analogs of the Voronoy polyhedrons. They are open and convex, and for the unit 
ball U of H we have U c B0 c 317. 

Now it will be shown that we can take B = B0 (B is the required unit ball 
mentioned in Proposition 2A). Let \x be a measure on H (hence, on R). We fix 
£ > 0 and 8 > 0. Let (p(x) = infaeL ||x — a\\9 xeR. We can find a finite set 
{al9 al9...9 aN} in L such that 

< £ (13) Axett: min II* - «,ll - <p(*) > xf 
I i = l N Z) 

Assume that ax = 0; replacing the set {al9..., aN) in L by the set {bl9..., bN} with 
bi = ax + (<5, 0,...), we obtain Lx in place of L. 

Now we consider the following analogs of the Voronoy polyhedron for L{. 

Cb = {xeR :\\x - b\\ < inf ||x - c||}, b e L,. 
yeL 
y=l-0 
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It is easy to check that we can take Dt = Cb, i = 1, 2,..., N. Indeed, the inequality 
l4\JCb) > 1 — e follows from (13), and the condition g(Cbl, U) < 5 can be 
proved by contradiction. • 
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