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ACTA UNIVERSITATIS CAR0LINAE - MATHEMATICA ET PHYSICA VOL. 37, NO. 2 

On a Conjecture of L. Vesely 

J. SAINT RAYMOND 

Paris*) 

Received 15. March 1996 

The aim of this note is to give a negative answer to a question raised by L. Vesely during the Winter 
School held in Benesova Hora in January 1996. We show that there exists a separable Banach space 
Z such that for any point z in the unit sphere there is some linear functional which strongly exposes 
the unit ball at z, but on which there is a linear functional which exposes the unit ball without exposing 
it strongly. 

We define functions y9 p and q on the convex domain Q = {(u9v) eU2 :u > \v\) 
by letting 

y(u, v) = (u2 - v2f 

2u 
p(u, v) 

q(u, v) = 

3(u2 - v2)2'3 

-2v 
3 ( U 2 _ ^ 2 / 3 

Lemma 1. If (u9 v) and (u + u'9v + v') belong to Q and if max (|M'|, \V'\) < 
i(u — \v\), we have 

(u - \v\W 
y(u + u',v + v') < y(u, v) + p(u, v).u' + q(u, v).v' - 1 2 Q 5/3 ("'2 + V2). 

In particular, y is concave on Q. 
dy dy 

First of all let us remark that p(u, v) = — and q(u, v) = —. We have, by 
Taylor's formula 

y(u + u',v + v') = y(u, v) + p(u, v).v' + q(u, v). v' + I (1 -9) D2(6) d6 
Jo 

where we denote 

D2(6) = u'2r(u + 6u', v + 6v') + 2u'v's(u + 6u', v + 6v') + v'2t(u + 6u', v + 6v') 

*) Equipe d'Analyse, Université Paris VI, 4, Place Jussieu, 75252 — Paris Cedex 05, France 
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and r, s and t are the partial derivatives of order 2 of y. 
It is easily checked that if a, b and c satisfy a > 0, c > 0 and ac > b2, we have, 

for all real £ and r\ 

a? + 2bZn + cf>a-^-(? + r?). 
a + c 

Since 
, , 2 u2 + Зv2 

9 (u2 - v2)5'3 

, . 8 Ml) 
SlU, V) = - 7-5 T̂TT 

1 7 9 (u2 - D2)5/3 

. . 2 3u2 + v2 

t(u,v)= --

one has 
9 (u 2 - 1;2)5/3 

rt- s2 

r + t 
= 1(U2- VT > _L (u_ _ ,-W3 = (1 + N)1/3

 ( t f _ N ) 1 /3 > (1 - MY" 
6 u2 + t;2 -12i/ 2 l W V) 12u2 [U M) ~ 12u5/3 ' 

If \u'\ < \(u - |i;|) < 3 and \v'\ < \(u - |i>|), we have (M + u') - \v + v'\ > 
\(u — |i;|) and u + u' < -%u. Thus we have, for all 9 e [0,1] 

1 /3\ 5 / 3 (u - \v\Y/3 (u - \v\)l/3 

whence we deduce the expected result since J0(l — 9) dO = \. 
From now on, we shall speak about y also on the closure of Q. The function y is 

continuous and concave on Q. 
Let X and Y be two Banach spaces. Assume that q> is a linear functional on 

X with norm equal to 1 which does not attain its maximum on the unit ball of X. 
Let us define in the product Z = X x Y some closed symmetric subset B, by 
letting 

B = {z= {x,y): \\y\\ + \cp(x)\ < 1 and ||x|| + \\y\\ < 1 + y(l - ||y||f <p(x))}. 

Lemma 2. The set B is the unit ball of Z for some equivalent norm \\\.\\[ 
In order to see that B is convex, it is sufficient to show that the mapping: 

(x, y) H-» y(l — ||}>||, (p(x)) is concave on the convex set C = {(x, y): \\y\\ + \cp(x) < 1}. 
If (xl5 yt) and (x2,y2) belong to C, and 0 < t < 1, we have, with (x,y) = 
t(xu )>i) + (1 - t) (x2, y2), 

y(l - ||j;| |, <p(x)) > y(\ - tlly.ll - (1 - t) \\y2\\, <p(tx{ + (1 - t) x2)) 

= y(t(i - Ilttll) + (1 - t)(l - 11*11), tcp(Xl) + (l-t) cp(x2)) 

>. ty(l - | |.v,M*i)) + (1 - t)y(l - \\y2\\, <p(x2)). 
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Hence B is the unit ball for some norm on Z. Moreover, if ||x|| + ||j;|| < 1, we have 

||y|| + \(p(x)\ < ||x|| + \\y\\ < 1 

thus (x, y) e C and 

||x|| + ||y|| < l < l + y ( l - \\y\\Mx)) 

whence (x, y) e B. Conversely, if (x, y) e B, we have \\y\\ < 1 — ||x|| < 1 and 

||x|| + ||y|| < 1 + y(l - ||y||, cp(x)) < 1 + (1 - \\y\\)2/3 < 2 

thus |(| x|| + \\y\\) < |||(x, y)\\\ < \\x\\ + ||y||, and this proves these norms are 
equivalent. 

Definition 3. We will say a Banach space E has property (*) if for every unit 
vector x e E, there exists some linear functional on E which strongly exposes the 
unit ball of E at x. 

Lemma 4. Every L.U.R. space has property (*). 
Let £ be a L.U.R. space and x a unit vector of E. By Hahn-Banach's theorem, 

there is a linear functional / such that 

f{x) = 1 = llfll • 
In order to prove that / strongly exposes the unit ball B of E we have only to prove 
that every sequence (x„) in B such that f(xn) -* 1 converges to x. But we have 

hence 

i > 

X + XÃ 

X + xn íx + xn\ = f(x) + f(x„) ^ 1 

1, and xn -* x since E is L.U.R. 
2 II 

Theorem 5.IfX and Y have property (*), Z has property (*) too. Nevertheless, 
for every unit vector y of 7, there is a linear functional on Z which exposes B at 
(0, y) but does not expose B strongly. 

Let ye Y9 with ||y|| = 1. By hypothesis there is an fye Y* such that ||^.|| = 
iy(y) = 1 and that for every y' in the unit ball of Y ty(y') = 1 => y' = y. We then 
put 

<£(fc, k) = cp(h) + 4(k). 

We have <P(0, y) = ty(y) = 1, and for every (ft, k) e B, 

4>(Kk)<\cp(h)\+ \\k\\ < 1 

thus || $|| = 1. Moreover if (h, k) e B, and <P(h, k) = 1, we have (h, k)eC thus 

1 = <% k) < \cp(h)\ + ||fc|| < 1 

hence 1 - ||fc|| = \<P(h)\ and y(l - ||k||, cp(h)) = 0. It follows that 
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1 = <%k) < cp{h) + \\k\\ < \\h\\ + \\k\\ < 1 + T(l - ||k||, cp{h)) = 1 

thus cp{h) = \\h\\, what implies \\h\\ = 0 since cp does not attain its norm on the 
unit ball of X. Then <P{h, k) = tfy(k) = 1 and \\k\\ = 1, whence k = y. Thus 
$ exposes B at (0, y). 

If (x„) is a sequence in the unit sphere of X, such that lim,,.,^ cp{xn) = ||<p|| = 1, 
we have ^(xn,0) = cp{xn) -> 1 = \\<P\\, \cp{xn)\ < 1, thus (x„,0)e C, and | |x j < 
1 + y(l, <p(x„)), hence|||(xn, 0)||| < 1. Moreover|||(xn, 0) - (0, y)\\\ > %\\xH\\ + ||y||) = 1. 
This shows that 0 does not expose B strongly. 

Finally if |||(x, y)\\\ = 1, there is a linear functional fx (resp. *Q with norm 1 on X 
(resp. Y), which strongly exposes the unit ball of X (resp. Y) at ijfjj if x + 0 (resp. 
nfii if Hyll + 0). We then put 

P = p(l " llyll, <P(*)) 

9 = 9(1 - llyll, <?(*)) 

L(fc, /c) = fx(/i) + 4(/c) + p . 4(fc) - q . cp{h). 

We shall show that L attains its maximum on B at (x, y) and strongly exposes B. 
Suppose that {x + h, y + k) e B. We have 

\\x + h\\ + \\y + k\\-y(l-\\y + k\\,cp(x + h))<\\x\\ + \\y\\-y(l-\\y\\,(p(x))=l. 

Since x = 0 or fx attains its maximum on B at j ^ , we have 

||x + All > fx(x + h) = fx(x) + fx(h) = ||x|| + fx(h) 

and similarly 

\\y + k\\ > ||y|| + 4(7c). 

Finally it follows from Lemma 1 that 

y(l - \\y + k\\, cp(x + h)) < y(l - | | j , | | , cp(x)) + p. (\\y\\ - \\y + k\\) + q. cp(h) 

<y(i-\\y\\,cp(x))-p.4k) + <i-<p{h) 

since p > 0. We deduce from the above inequalities that 

0 > ||x + A|| + \\y + k\\ - 1 - y(l - \\y + k\\, <p(h)) 

> fx(h) + ^k) + p . 4(/c) - q . cp(h) = L(h, k) 

it is L(x + h,y + k) < L(x, y) for (x + h, y + k) e B, what means that L attains 
at (x, y) its maximum on B. 

Now let ((hn, kn))neN be a sequence of points of Z such that |||(x + hn, y + kn)\\\ <, 1 
and L(x + hn, y + kn) -> L(x, y). The above inequalities show that 

0 < ||x + fcj| - ||x|| - fx(hn) < -L(h„, k„) -* 0 

0 < \\y + kn\\ - ||y|| - 4(/c„) < -L(hn, kn) -* 0 
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y(l - ||y + fcj,<p(x + hn)) - y ( l - \\y\\, <p(x)) -pJy(kn) + q.<p(hn) > -L(hn,kn)->0. 

Replacing if necessary the sequence ((hn, kn))neN by ((Shn, Skn))neN, we can and do 
assume that max (\\hn\\, ||fcj < 3(1 — \\y\\ — |<p(x)|). We then have, using Lemma 1, 

y(l - \\y + fcj, <p(x + hn)) < y(l - \\y\\, <p(x)) - p. (̂fc) + q. <p(h) - on 

where 
(1 - llyll - M*)l)1/3 

On = \\y + K\\- \\y\\f + <p{hf). 
120(1 - MY" 

We then have 

-an > y(\ - \\y + fcj, <p(x + hn)) - 7(1 - ||j;||, <p(x)) - p. 4(fc„) + q. <p(hn) 

> -L(hn,K)-+0. 

Since <rn -+ 0, we see that <p(hn) -+ 0 and that \\y + kn\\ - \\y\\ -> 0. Then 
4(y + K) -* 4W a n d \\y + n̂ll -^ IIJII. thus ||fcn|| -> 0, since €y strongly exposes 
the unit ball of Y. We have 

fx(hn) = L(hn, kn) - 4(fc„) - p . 4(fcn) + q . (p(/in) -> 0 

thusfx(x + fcn) ->fx(x) = ||x|| and 

lim sup ||x + K\\ < lim sup (1 - \\y + fcj + y(l - \\y + kn\\, <p(x) + <p(hn))) 
n-+x> n—>oo 

< i - \\y\\ + y ( i - W,^x))= w . 
And this implies that \\hn\\ -* 0, since fx strongly exposes the unit ball of X, thus 
that the sequence ((x + hn, y + kn))neN converges to (x, y). This shows that the linear 
functional L strongly exposes B at (x, y), and completes the proof of the theorem. 

It is well known that every separable Banach space can be equipped with 
a L.U.R. norm (see [1] for instance). If X is the space £x equipped with such 
a norm, X is not reflexive and thus James' theorem proves the existence of a linear 
functional <p on X with norm 1 which does not attain its norm on the unit ball of 
X. Then, taking Y = U, we get by the previous theorem a proof of the following. 

Theorem 6. There is a separable Banach space Z isomorphic to (x such that 
for every point z in the unit sphere there exists a linear functional which strongly 
exposes the unit ball of Z at z and that there exists some linear functional which 
exposes the unit ball without exposing it strongly. 

R e f e r e n c e 

[1] DEVILLE R., GODEFROY G. AND ZIZLER V., Smoothness and Renorming in Banach spaces, Pitman 
Monographs and Surveys Pure Appl. Math. 64, Longman Ed. 1993. 
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