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Praha*) 
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1 Introduction 

The aim of this paper is to suggest a direct Parametric method for solving some 
optimization problems on attainable sets of so called max-separable operators. 
Such problems in a less general form connected with the fuzzy set theory were 
considered e.g. in [1], [4]. The problem considered in this paper is presented 
independently of the fuzzy sets context as a non-linear nonconvex optimization 
problem. Parametric approach to its solution suggested is flexible enough to allow 
further extension and generalization, which are briefly discussed in the concluding 
sections. 

2 Notations and Formulation of the Basic Problem 

In this paper, we shall consider the following system of equations and inequalities 
R{x) = max (atj A r^Xj)) = bt 9 Vf: i e S 

jeN 

hj<Xj<Hj9 VjijeN (1) 

where N = {1,2,..., n}9 S = {1,2,..., m}9 x = (xl9...9 xn)eRn
9 b = (bl9...9bm)e Rm

9 

h = (hi9..., hn) eRn
9H = (Hl9..., Hn) e Rn

9 atj A r0(xj = min (aij9 r0{x;)), R(x) = 
(Ri(x)9..., Rm(x))9 let us assume further that rtj: R -• # are given strictly increasing 
continuous functions Vf :ie S9 V; :je N. Using the above vector notation we can 
reformulate the system (1) as follows: 

R(x) = b9 h<x<H (2) 
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Denote the set of all solutions of the system (1) (or (2)) by M(b). Each 
component of R: En -> Em is a function depending on n variables; this function is 
expressed as the maximum n nondecreasing functions of one variable of the form 
atj A r^Xj), so that these functions are separated by a max-operation. By similarity 
with the additive separability, we call this prooperty of the functions Rj(x) 
max-separability and R(x) is called a max-separable operator. 

The vector b in the system (2) can be understood as a vector, which is attained 
by the left hand side R(x) when an appropriate x e M(b) is chosen. Therefore those 
fe's, for which M(b) 4= 0, are called attainable elements and the set 

A = {b\M(b) * 0} (3) 

is called the attainable set. 
If an element be A, then there exists a solution of the system (2) with b = b 

which can be obtained using some of the methods described in the literature (see 
e.g. [2], [3]). If b $ A, we want to find an approximate solution of the system (2) 
with the right hand side 6. For this purpose, we look for an element bopt e A, which 
has in some sense the minimal distance from b and accept the elements of M(bopt) 
as appropriate approximate solutions. 

In this article, we shall use the Tshebyshev distance, i.e. the following distance: 

||b -b\\= max \bi-bi\ (4) 
ieS 

The problem, we are going to solve here is thus in the following form: 

|| & — &|| -> min subject to be A (5) 

Since if b e A, it means that there exists x such that b = R(x) so that we can 
reformulate the problem (5) as follows: 

\\R(x) - b\\ = max \R{x) - bt\ -> min subject to h < x < H (6) 
ieS 

The reformulation (6) shows that we minimize a continuous function of x on 
a compact set, so that there exists always at least one optimal solution xopt of the 
system (6); thus if we set bobt = R(xop% we will obtain an optimal solution of the 
problem (5). 

Let us define the set M(t) for any t: t e [0, oo) as follows: 

M(t) = {x\h<x<H& \\R(x) - h\\ < t}. (7) 

The set M(t) is nonempty if and only if the following system of inequalities: 

Rt(x) <bt + t, ieS& Rt(x) > b - t, ie S &h < x < H, (8) 

is soluble with respect to x; note that the set M(t) is the set of all solutions x of 
(8). We can replace our original problems (5), (6) by the following problem: 

t -• min subject to M(t) + 0. (9) 
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We shall show in the sequel that there exists always the optimal solution topt > 0 
of the problem (9) and also we will derive a direct numerical procedure for 
determining t°pt. If xopt is an any element of M(topt), then \\R(xopt) - h\\ < topt; 
since the strict inequality can't hold, the equality must occur i.e. bopt = R(xopt) e A 
is the optimal solution of the problem (5), and the vector xopt can be accepted as 
an approximate solution of the system (2) in the case the h $ A, since for any 
solution x of the system (2), we have \\R(x) - h\\ > topt. 

In the next section we investigate some properties of the set M(t) where 
t e [0, oo). This will enable us to derive the direct solution method for the 
system (5). 

3 Properties of M(t) 

We shall introduce the following notations Vi: ie S, V/ :ie N, te [0, oo): 

Vij(t) = {XJ | hj < Xj < Hj and atj A r0(x;) < ht + t] 

vfc) = f | v < f c ) & wifc) = &\hJ * XJ * HJ ™d aiJ A rij(xj) * hi ~ *}• 
ieS 

For the illustration of these sets see the Appendix. The following theorem gives 
the necessary and sufficient conditions for M(t) #= 0. 

Theorem 3.1. 

M(t) + v o 1 2) Vi G S 3j(i) e N such that W^t) n Vm(t) + 0.J 

Proof. Define the interval Is = [hs, Hj] and introduce the following notations: 

a\iS = fly - (h( + t), a2i} = aiS - (6, - t) & rliS(xs) = riS(xs) - (6, + t), 

r2iS(xs) = riS(xs) - (b, - t) 

Sufficiency. 
Assume that we have a point x = (xu..., x„) which satisfies the right hand side 

of the o-relation. 

x ; є Vs(t), V/ є ІV -> Xj є П VІS(t), Vj є ЛГ 

-»• (đlџ л rítJ[xj) <, 0, Vi є S; xj є Is), V/ є JV 

^ max (űlџ л ríis(xs) < 0), Vi є 5; Vx. є L, 

jeN 

XJ(Ï) є wîлoíO -* a2m л Г 2 O(X/) ^ 0; щ є 7Л 0 

-> max (fl2i;- л r2i}(xs) > 0; xj(i) є /;(i). 
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Then we can deduce that x e M(t). 

Necessity. 

x e M(t) -> Xj e Ij9 V; e IV & (max al0 A rl0(x;) < 0 Vi e S) 
jeN 

(max a2y A -2</(X,) > 0 Vi e S) 
J6iV 

-• (XJ e Ij9 and al0- A rl0(x;) < 0 Vi 5 s), V; G IV 
& Vi e 5 3j(i) e IV such that a2im A r2m(xj) > 0; xm e Im 

- 1) Vj(t)±Q9VJGN 
2) Vi e S 3j(i) e IV such that W^t) n ^ ( t ) 4= 0. 

Thus the proof of the theorem is complete. • 

4 Properties of V(r) & W(t) 

We shall investigate here the conditions for K;(r) 4= 0, V}{t) 4= 0, W (̂t) 4= 0. 
Define the following variables: 

rf3 = min (max { ;̂ - 6I5 0},max {rv(h^ - hb 0}), ^ = max rjij, 

^ = max ^ and xij = max (0, 5, - aij9 ht - r0(#;)). (10) 

For the illustration of these variables see the appendix. 

Theorem 4.1. For each j e IV, 3rjij > 0 such that V^t) 4= 0 o t > r\ij. 

Proof. 

Vij(t) = 0 o atj A r^Xj) > ht + t; Vx; e Ij 
<=> ht + t < r^Xj) < atj or ht + t < atj < r0(x;); it is further t > 0 
<-> t min (max {fy(fy) — hi9 0},max { ;̂ — 5„ 0}) = rjij 

where 77° is given by (1); this completes the proof of the theorem. • 

Theorem 4.2. For each j e IV, Vj(t) + 0 o t > rf; where rf is given by (10). 

Proof. Vj(t) = 0 equivalent to the fact V^t) = 0 for some i0 e S; since Vijo are 
nested1) sets for fixed j0 e IV; which means that t < rfoj < rf which is the 
maximum of rjlj on 5. • 

Corollary 4.1. For each j e IV, Vj(t) 4= 0 o t > r\; where rj is given by (10). 

1) Since for each j, 1 <j < n, there exists a permutation {i,..., im} such that Vid <z: Vizj cz ... c VinL 

because of the fact that atj A rtj(x^ are nondecreasing in x;. 
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Proof. The proof is obviously derived from theorem 4.2. 

Corollary 4.2. M(t) 4= 0 <=> t > r\. 

Proof. The proof is obviously derived from theorem 3.1, theorem 4.2 and 
corolary 4.1, where r\ is given by (10). 

Theorem 4.3. For each i e SJ e N; 3T° such that Wtj(t) 4= 0 o t > Tij. 

Proof. 

Wij(t) = 0 <-> atj A ri}(xj) < ht - t; Vx, e Ij 

o atj < r^Xj) < hi — t or rtj(xj) < atj < ht — t; it is further t > 0 
<=> t < -min (0, atj - bb r^Hj) - 6,) 
o t < max (0, hi - aij9 bt) r^Hj)) = Tij 

where TiJ is given by (1); this completes the proof of the theorem. • 

Corollary 4.3. For each j e IV, i e S; 3T° > 0 such that 

W: t < max min max (r\, Tij) => M(t) =# 0. 
ieS jeN ieS 

Proof. It is clear from corollary 4.1, 4.2 and theorem 3.1, where TiJ is given 
by (10). 

Let us define the following sets: Pikj(t) = W (̂t) n Vkj(t); Vi,keS, jeN. To 
investigate the necessary and sufficient conditions for Pikj(t) =t= 0, assume that the 
variable r\ikj satisfies the following equation rkj

l(hk + r\ikj) = r ^ 1 ^ — r\ikj) for 
some, i, keSJeN and define the variables £ikj, Cikj and yikj for some i,keS and 
7 G IV as follows: 

' r\ikj if max (T1}\ r\ij) < r\ikj < min (akj - hh ht - r^hj)) 
Zikj = akj - hk if rkj\hk + t)< rrj\h - t) < H} (11) 

max (T1J\ r\ij) otherwise 

f r\ikj if max (T1\ r\ij) < r\ikj < min (rkj(Hj) - hh ht - rtj(hj)) ( , 
^ikj \ max (T^, r\iJ) otherwise *1Z' 

yikj =max(Ti\t\i') (13) 

For the illustration of these variables see also the appendix. 

Concerning the definition of the sets Vkj(t) & Wtj(t)9 if we assume that 

r^hj) < atj < rtj(Hj) for all ieSJeN 

then it is easy to recognize the following remarks: 

Remark 1. 
If the two sets \rkj(h}) - hh akj - hk~] & [ht - aij9 ht - r^hjf] have an empty 

intersection, then we can deduce the following: 
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• if akJ -hk< hi - atj = Tij = max (TIJ, r\% for some keS, then Vkj(t) n WtJ(t) = 0 
if t < ht — aXj, and if t > 6, — ai} the intersection equals Wy(f)-

• if hi - r^hj) < rkj(hj) - hk = rfj = max (T°", r\ij), for some fc e S, then 
Vfc;(t) n Wij(t) = 0 if t < r^fy) — 6fc; and if t > rkj(hj) — hk the intersection 
equals Vkj(t). 

Remark 2. 
If the two sets [rk</(fej) — £*, akj — hk] & [6, — atj, ht — ry(fy)] have a single 

point in their intersection, then we can deduce the following: 

• if the point of intersection is x = ht — ry(fy) = rkJ(hj) — hk = rjlJ = max (T°, rfj), 
for some keS, then J^(t) n ^ ( f ) = 0 if t < x; and if t > x the intersection 
equals Vkj(t). 

• if the point of intersection is x = akj — hk = ht — atj, for some keS, then we 
have the following two cases: 
Vkj(t) n Wij(t) = 0 if t < x, given that r^fa - t) < rkj

l(hk + t) < Hfi and if 
t > x the intersection equals Wtj(t); x = akj — hk. 
Vkj(t) n Wtj(t) = 0 if t < x, given that rkj\hk + t) < r~l(ht - t) < H/, and if 
t > x the intersection equals Vkj(t); x = ht — atj = Tij = max (T°, f/°). 

Remark 3. 
Let 

*i = ->/(*,) - 6k, yi = akj - hk 

z2 = hi- aij, y2 = hi- r^hj). 

Assuming that [z, y] = [zl5 y{\ n [z2, y2] one can find the following cases: 

• if [z, y] = [zl5 y j , then there exists some t0 such that 

Tij < rjij = zl<t0<yl<y2 and rkj\hk + t0) = ^ ( 6 , - to); 

i.e. max (TIJ, rfj) < t0 < min (yb y2), 
then Vkj(t) n WJj(t) = 0 if t > t0 the intersection is nonempty, (similarly the case 

[z, y] = [z2, y2]). 

• if [z, y] = [z0, yi], z0 = Zi = z2 then there exists some t0 such that 

Tv = rjij = z0<t0<yl<y2 and ^ ( 6 * + t0) = r,J'(&, - t0); 

i.e. max (xiJ, rjij) < t0 < min (yu y2), 
then Vkj(t) n WJ;-(r) = 0 if t < t0; and if t > t0 the intersection is nonempty, 
(similarly the case [z, y] = [z0, y2]). 

• if [z, y] = [zl5 y0]> yo = yi = y2 ̂ en there exists some t0 such that 

Tij < rjij = Zi < to < yo and rk^k + £0) = r^(ht - t0); 
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i.e. max(T*;, rfJ) < t0 < min(yi, y2), 
then Vkj(t) n Wtj(t) = 0 if t < t0; and if t =t t0 the intersection is nonempty, 
(similarly the case [z, y] = [z2, y0]). 

• if [z, y] = [z1? y j , then there exists some t0 such that 

ziJ < r\iJ = zx < t0 < y2 < y{ and rk/(hk -F t0) = rijl(ht - t0); 

i.e. max(i/;, rf1) < t0 < min(yi, y2)9 

then T /̂(t) n Wtj(t) = 0 if t < t0; and if t = t0 the intersection is nonempty, 
(similarly the case [z, y] = [z2, yi]). 

Theorem 4.4. Let i, keS. jeN; r0{/z;) = ay = r0(H;) for a// i eS9je N; then 
3£ikj = 0 roc* t/*at Pfly (f) = 0 <=> t = 6k;, 

Proof. The proof is obviously derived from the above remarks and from the 
definition of £ikJ which is given in (11). 

Theorem 4.5. Let i9 keS9jeN; r^fy) = rtJ(Hj) = a(j for all i e S9 j e N; then 
3Cfc; = 0 such that Pijk(t) + 0 <=> t = likj. 

Proof. The proof is obviously derived from the above remarks and from the 
definition of Cikj which is given in (12). 

Theorem 4.6. Let i9 keS9jeN; atj = rtj{hj) = ^(Hj) for all i eS9je N; then 
3yl/y. = 0 such that PiJcj(t) =# 0 <s> t = yilcj. 

Proof. The proof is obviously derived from the above remarks and from the 
definition of yikj which is given in (13). 

To generalize the above three theorems we introduce the following lemmas and 
remarks. 

Lemma 4.1. Let i9 keS9 jeN; then 38ij = 0 such that Vj(t) n W^t) 4= 0 => 
t = SiJ. 

Proof. Let 5ij = max (xiJ
9 rf); assume that for some fixed ie S9j e N (say i09 j0); 

nJo = Tioh; then t < 5ioJO => t < r]jo => Vjo(t) n WhJo(t) = 0 (th. 4.2). Similarly we 
can treat the other case, and then the proof is complete. • 

Lemma 4.2. Let i9 keS9 jeN; then 3/? = 0 such that Vj(t) n Wtj(t) #= 0 => 
t = P-

Proof. Let /? = maxie5 min,^ 8iJ. 
Assume that t < /? => for some fixed ieS9jeN (say i0, j0) we have t < 5™° 

- • t < m a x (T*0-70, t]J0) 

=>Vjo(t)nWiojo(t) = <t)(th.4.l)9 

and then the proof is complete. • 
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Remarks. 
• From lemma 4.1 and lemma 4.2 we have 

Vj(t) 4= 0 and W^t) 4= 0 if t > jS i.e. t e [j3, oo). 

• If t > max (rij, r\% then Vf(t) 4= 0 and WtJ(t) 4= 0. 

• From th. 4.1 and th. 4.2 we have: 
Vj(t) 4= 0 and WtJ(t) 4= 0 if t < ht - r^fy) and t < max (xij, rf) i.e. 
t e [max (zij, r\% bt - ry (fy)). 
If we redefine £ikj9 Cikj and yikj by replacing rfJ by J/7 and then by r\ in (11), (12), 

(13), then from theorems 4.1 & 4.2, lemmas 4.1 & 4.2 and also from the above 
remarks, we can prove again the generalized form of theorems 4.4 & 4.5 & 4.6 
which obtained by the new formulas of £ikj, £ikf and yikj. 

Now let us define the following maximum variables: 

{" = max {fly, Cj = max &iy and yij = max yikj. (14) 
keS keS keS 

The following three theorems give another sufficient and necessary conditions for 

Vj[t)nWifc)±Q. 

Theorem 4.7. Let i eS, je N; r0(fy) < atj < rtj(Hj) for all ieS, j e N; then 
3& > 0 such that Vf(t) n W^t) 4= 0 <*> t > &; & is given by (14). 

Proof. The assertion follows immediately from theorem 4.4 and the definition 
of Vj(t). 

Theorem 4.8. Let ie S, je N; rtj(hj) < r^Hj) < atj for all ie S, jeN; then 
3C° > 0 such that Vf(t) n W^t) + 0 o t > ?>; Cj is given by (14). 

Proof. The assertion follows immediately from theorem 4.5 and the definition 
of Vj(t). 

Theorem 4.9. Let i e S, jeN; ai}- < r0(/i;) < r0(if;) for all ieS, je N; then 
3yij > 0 such that Vf(t) n W^t) # 0 <̂> t > yij; yij is given by (14). 

Proof. The assertion follows immediately from theorem 4.6 and the definition 
of r;(t-). 

From the above results we conclude that there exist some values, say tJ & TiJ 

for which the relations Vj(t) 4= 0 o t > tJ'and W^t) n Vj(t) 4= 0 o t > Tij hold 
Vi: i e S, Vj :j e IV; where Tij is equal to one of the values £y, Cj or yij according 
to which of the conditions from Theorems 4.7, 4.8 and 4.9 are satisfied and V is 
the same as rf which defined in (10). Then the optimal value of t(topt) is calculated 
according to the following formula: 

topt = max (max tj, max min TiJ). (15) 
; e JV ieS jeN 
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Consequently we can deduce that, the optimal value of t(topt) is calculated 
according to the following theorem: 

Theorem 4.10. If t is the solution of problem (9), then t holds one of the 
following relations: 

If r^hj) < atj < rtj(Hj) for all i eSJe IV; then 
t > topt = maxmin^ . (16) 

ieS jeN 

If rtj(hj) < rtj(Hj) < atj for all ieSJe IV; then 
t > fpt = maxminC0. (17) 

ieS jeN 

If atj < r^hj) < r^Hj) for all ieSJeIV; then 
t > t°pt = maxminy';. (18) 

ieS jeN 

Where £ij, Cj and yij are given in (14). 

Proof. In our proof we will concentrate on the first case. Let ^°jo = max min l;lj 

and assume that t < ^°jo, then from theorem 4.7 we can deduce that: ' e ; e 

Wj?)nVJ(t) = Q; V/GIV, 

hence, according to theorem 3.1; M(t) = 0; this complete the proof of the 
theorem. • 

5 Algorithm for Calculating topt 

Step I: 
Find rjlj, if, r\ and zij from relations (10), for each i e S and each j e IV. 

Step 2: 
Calculate Y\ikj from the equation 

rk'AK + rjlkj) = rk~jl(hk - Y\ikj) 

for each i, i e S and each j e IV. 

Step 3: 
Find £lkj, dkj or yikj from relations (11), (12), (13) for each i,keS and each 

jeN. 

Step 4: 
Find £iJ, Cj or yij from relations (14) for each i e S andj e IV. 

Step 5: 
Find topt from relations (16), (17), (18). 
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Example. 
Here we want to solve the following problem 

and 

where 

Ri = max [ai} A r^Xj)) = bt Vi e S 
jeN 

hj <XJ<HJ Vj e N 

N = {1,2,3,4}; S = {1,2,3}; x = [x,x2x3x4]
T; 

b = [5 7 3 ] r ; h = [1 2 0 l ] r ; H = [5 6 4 3] T ; 

•"п(*i) ^iгЫ ř-iз(xз) r14(x4) 

r2i(
xi) r22(x2) r23(x3) r24(x4) 

L^зi^i) r32(x2) r33(x3) r34(x4) 

and 

#11 #12 #13 #14 

#21 #22 #23 #24 = 

#31 #32 #33 #34 . 

4XІ 7x2 6x3 x4 + 1 

2x̂  x2 6x3 + 1 2x4 

X4 + 1 X2 — 1 .ZX3 — 1 X4 — D 

7 15 4 2 

3 4 1 4 

3 3 2 - 1 

Note that this problem has no solution in general. 
It is clear that r^hj) <; atj = r^Hj) Vi e 5, j e N. Using the relations (10) we can 
deduce that 

У 1 ц12 цlъ цl4~ 0 9 0 0 
ц21 ц22 ц2ъ ц24 

= 0 0 0 0 
цЪІ цъг цъъ цм 0 0 0 0 

this gives that 

[ y n2 rf ř/4] = [ 0 9 0 0 ] 

which implies that ^ < 9. 
Also we get from (10), the following 

T П т 1 2 т 1 3 т 14" "0 0 1 з" 
т 2 1 т 2 2 т 2 3 т 2 4 = 4 3 6 3 

т31 т32 т33 т34 0 0 1 4 

From the equeality 
ГцЏk + kj) = rtj \b, - цikj) 

We can calculate ^kj for each keS\ ieS and j e N, then the application of the 
above relation will give us the following three matrices: 
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at k = 1 

at k = 2 

at k = 3 

Ц\\\ Ц\\г Ц\\ъ Ц\\A "0 0 0 o" 

Цг\\ Цг\г Цг\ъ Цг\A = 
-2 11 31 - 1 
^ 2 7 3 

_Цъ\\ Цъ\г Цъ\ъ ЦЪ\A_ 

3 23 7 4 
5 8 4 -- _ 

Ц\г\ Ц\гг Ц\гъ ЦYIA 

Г ъ - 1 1 - 3 1 1" 
— 3 ~ 2 ~ 7 3 

Цгг\ Цггг Цггъ ЦггA = 0 0 0 0 

_Цъг\ Цъгг Цъгъ ЦъгA_ 
4 - 3 - 8 5 

_— 1 — — ъ 

Ц\ъ\ Ц\ъг Ц\ъъ Ц\ЪA 

Г - 3 - 2 3 - 7 4 
"5 8 " ~Г — --

Цгъ\ Цгъг Цгъъ ЦгъA = 1 3 8 5 
1 2 3 3 

_Цъъ\ Цъъг Цъъъ ЦЪЪA_ 0 0 0 0 

Now from equation (11) and the values of the above parameters, we can obtain the 
following matrices 
at k = 1 

£111 Š112 sиз £114 

Š211 £212 £213 £214 

^ŠЗП £зi2 £зiЗ Š314. 

at k = 2 

0 

2 if 0 

3/5 

9 1 3' 
10 if 1 < ř < т Г - l i f 2 < í < ^ „ 2 1 3 rio it 1 < t < T r 

~~ ~~ I 3 otherwise I 6 otherwise 

rlOif 0 < t < f r—1 if 0<t<l 

1 0 otherwise 1 1 otherwise 

at k = 3 

£l31 £l32 ŠlЗЗ <П34 

£231 £232 Š233 Š234 

>331 S332 4зЗЗ S334. 

S121 S122 S123 S124 

S221 S222 S223 S224 

.S321 S322 Í323 S324. 

0 9 

0 if 0 < t < 1 { 

"0 9 13" 
= 4 3 6 3 

0 0 1 4 

0 if 1 < t < § 

3 otherwise 

j - l i f 2 < í < f 
6 otherwise 

.0 0 1 

From the definition of £> given in (14), it is easy to obtain the following 

[ 10 if 1 < t < % £11 £12 £13 £14 

£21 £22 £23 £24 

£31 £32 £33 £34 

0 9 . 1 3" 

L* П 
3 otherwise 

10 if 0 < t < f 

otherwise 

6 3 

1 4 

55 



Hence topt which given by equation (15) will be 

topt = max (9, 3) = 9 

Take any point (say x*) from the set 

M(b) = {x: h < x < H, \\R(x) - b\\ < t, t> 9}, 

then x* will be accepted as an approximate solution of our problem. 
In the original case Vn = 0 {since 15 A 7X2 > 5, x2 e [2, 6]}, 

Vn = 0 -> V2 = 0 -• M = 0 

i.e. there is no solution for the original problem. 
In the modified case, if we take t = 9, then we try to solve the following 

problem 

— 4 < max 7 A 4xl5 15 A 7X2, 4 A 6x3, 2 A (x4 + 1) < 14 
— 2 < max 3 A 2XU 4 A X2, 1 A (X3 + 1), 4 A 2X4 < 16 
- 6 < max 3 A (x! + 1), 3 A (X2 - 1), 2 A (2X3 - 1), - 1 A (X4 - 3) < 12 

Then 

and 

where 

1 < Xi < 5, 2 < x2 '< 6, 0 < x3 < 4, 1 < x4 < 3. 

Yi = [L5] V2 = {2} vз = [0,4] Қ = [ l , 3 ] , 

П n Wu ф 0, V2n W22 Ф 0, V3 n W33 Ф 0 

^ = [1,5] KV22=[2,6] KV33 = [0,4] 

then choose any x such that 
x = (xi, 2, x3, x4j 

where 
X ! G [ 1 , 5 ] x 3 e[0,4] x 4 e [ l , 3] 

will be an approximate solution for the original problem. 
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