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The aim of the paper is to describe the necessary and sufficient conditions for a Boolean algebra to 
admit the largest possible sequential convergence structure. We present examples of complete algebras, 
known from construction of various generic extensions of set theory, carrying such convergence 
structures. 

1. Introduction 

In this section we review some basic notions and facts concerning sequential 
convergence structures and continuity of submeasures on a Boolean algebra B. The 
motivation for the research described in this paper comes from [Ja] and [Jal], 
where it is shown that the maximal possible convergence structure is attained for 
(cO, 2)-distributive Boolean algebras. We give the necessary and sufficient condi
tions for a Boolean algebra to admit the largest possible sequential convergence 
structure. Furthermore, we prove that for any algebra B and any sequential 
convergence structure s on the algebra, the join s v os in the semilattice of all 
convergence structures on B exists, os is the classical order convergence structure 
on B. Jakubik in [Ja] proved this for the convergence structure induced by D (see 
2.2 below). We would like to thank Zbigniew Lipecki for many valuable 
comments. 
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Throughout this paper we consider only non-degenerate Boolean algebras with 
0=1=1. For a Boolean algebra B, we view infinite sequences of elements of B as 
elements of B03, the product of a> copies of B. Bw is also a Boolean algebra. 

The fundamental reference concerning Boolean algebras is [K] and concerning 
convergence structures on Boolean algebras Vladimirov's book [VI]. Some useful 
information pertaining the topic of convergence structures and submeasures on 
rings and fields of subsets can be found in [De]. 

Let us first introduce the largest possible zero convergence structure on B, ££(B). 
3£(B) = {/: co -+ B : (VJ e [cof) f\{f(n): n e 1} = 0}. Clearly, 0 4= 2{B) .= Bw. 

When clear from the context, we drop the reference to B and use just 3£, 
including other structures defined on Boolean algebras that will be introduced later. 

We shall denote by cp e of3] the fact that cp is a strictly increasing sequence of 
non-negative integers. 

1.1 Definition. Let B be a Boolean algebra and let J be an ideal on Bw. J is 
said to be a zero-convergence structure on B if 

(i) J <^2£, 
(ii) J is closed under subsequences, i.e. whenever feJ and cpe(Dw\, then 

focpej. 
Note that ££ need not be a zero-convergence structure on B. Consider a Cantor 

algebra si, i.e. si « Clop(2OJ), the algebra of clopen subsets of the Cantor space 
2W. Equivalently, si is a free algebra with countably many independent generators, 
say ^Xn'.ne co}. Then / defined by f(n) = xn belongs to 2£(si), and so does 
—/ = ( — Xn'.ne co}. Since / v —/ = 1^*,, 2£(si) cannot be an ideal. 

Therefore, the largest possible zero-convergence structure with respect to 
_= need not be a zero-convergence structure at all, nevertheless the maximality 
principle is applicable, hence each zero-convergence structure on B can be 
extended to a maximal one. 

Conditions under which ££(B) itself is a zero-convergence structure are dis
cussed in section 3. 

1.2 Definition. Let B be a Boolean algebra and let A ^ Bw. Urysohn closure 
of A, W(A), is a subset of B03 with the property that every subsequence of 
a sequence from °U(A) has a subsequence that belongs to A, i.e. tfl(A) = {feBw: 
{Vq> e co"]) (3\j/ e co00]) (fOcpO^e A). 

The following are easy observations. 

1.3 Fact, (i) for any A s Bw, %(W(A)) = W(A), 
(ii) 2£ is Urysohn closed, 

(iii) if J is a zero-convergence structure, then ^(J) is a zero-convergence 
structure, too. 

Let s c Bw x B. If (<x„: n e co}, x) e s, we write xn -* x. x is said to be an 
s-limit of the sequence <x̂  : n e co>. For ae B, ka donotes the constant sequence 
ka(n) = a. Thus k is a natural embedding of B into Bw. 
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If J is a zerp-convergence structure on B, we consider the elements of J as 
sequences converging to 0. We can extend this to a notion of convergence s(J) of 
sequences on B by defining xn - j x whenever < ^ A x : n e co} e J, where 
A denotes the Boolean operation 01 symmetric difference. It is easy to verify that 
the following holds. 

1.4 Fact, (i) every sequence has at most one limit, i.e. if xn -> x and xn - • y, 
then x = y, 

(ii) if xeB, then the constant sequence <x: n e co} has x as its limit, 
(hi) if xn - • x and <yn: n e co} is a subsequence of (Xn'.ne co}, then yn -> x, 
(iv) if xn< yn< znfor every n and xn -^ x and zn ^ x, then yn ^ x, 
(v) the convergence respects Boolean operations, i.e. if xn -> x and yn -+ y, 

then xn v yn ^ x v y and -xn ^ -x. 

The notions of zero convergence and convergence are really identical in the 
sense that a convergence structure s(<f) induced by a zero-convergence structure 
J is a convergence structure on B, i.e. a structure satisfying 1.4 (i) — (v), while for 
a convergence structure s on B, s0 = {fe Bw: f(n) -> 0} is s0 _= ^ and 
a zero-convergence structure on B. 

Let us recall some of the basic notions concerning sequential topologies. 

1.5 Definition. Let (X, T) be a topological space. X is said to be 
(i) sequential if any A <= X is closed whenever it contains all limits of 

T-convergent sequences of elements of A, 
(ii) Frechet if for any A <= X, 

clr(A) = {xe X : (!3<xn: n e co} .= A) xn -» x}. 

It is clear that every Frechet space is sequential. 
A convergence structure s on a Boolen algebra B gives rise to a sequential 

topology on B in the following way: consider all topologies T on B so that 
whenever xn -> x, then xn -> x. There is a largest topology with respect to 
inclusion among all such topologies, and we denote it by T(S) and call it sequential 
topology determined by s. 

Alternatively, the topology T(S) can be described through the closure operation: 
for A c= B, let u(A) = {x: x is the s-limit of a sequence <^,> of elements of A}. 
Then clx(c)(A) = [J &\A), where u^+1\A) = u(d«\A)) and &\A) = [j{u^(A): jS < a} 

a<coi 

for a limit a. 
It follows from 1.4 (ii) that every singleton is a closed set, i.e. T(S) is 

a T t topology. Moreover, (B, T(S)) is a sequential topological space, and it is Frechet 
if and only if clx(s)(A) = u(A) for every A <= B. 

1.6 Fact. A sequence <.x„> converges to x in the topology T(S), xn - • x, if and 
only if any subsequence of <x„> has a subsequence that converges to x in s. 
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Le J be a zero-convergence structure on a Boolean algebra B. In the way 
described above, the convergence structure s(J) determines a sequential topology, 
which we denote by T(J). It follows that the Urysohn closure of J, U(J>), is the 
set of all sequences of elements of B that converge to 0 in the topology T(J). 
Moreover, if J is Urysohn closed, then xn -> x iff xn -> x. 

The following characterisation of continuity of mappings is well known. 

1.7 Fact. Let T(S) be a topology on B determined by a convergence structure 
s and let (Y, T) be an arbitrary topological space. Then a mapping f: B -> Y is 
continuous if and only if xn -» x implies f(xn) -* f(x). 

Let B be a Boolean algebra. A submeasure on B is a function \i: B -> R + with 
the properties 

(i) M°) = °> 
(ii) /i(a) < fi(b) whenever a < b (monotone), 

(iii) \x(a v b) < \i(a) + fl(b) (subadditive). 
A submeasure \i on B is 

(iv) exhaustive if lim /i(an) = 0 for every sequence {a„: n e co} of disjoint 
elements, 

(v) strictly positive if fi(a) = 0 only if a = 0, 
(vi) a (finitely additive) measure if for any disjoint a and b, ja(a v b) = 

li(a) + fi(b). 
Any measure is a (uniformly) exhaustive submeasure, since it has a finite norm; 
for more on submeasures see [Fr]. 

If B is a Boolen algebra, B+ denotes the set of all non-zero elements of B, i.e. 
B+ = B - {0}. 

1.8 Fact, (i) Let J be a zero-convergence structure on B. Then for any sub-
measure \xon B, \i is continuous in T(J>) if and only i/(V/ e J) fi(f(n)) - • 0. 

(ii) Let S be a non-empty set of submeasures on B such that for any ae B+ there 
is some fieS with fi(a) > 0, then [feB03: (V/i e S) lim fi(f(n)) = 0} is 
a Urysohn closed zero-convergence structure. 

1.9 Example. Let B = £P(X) for an infinite set X. A sequence <Xn: n e co}, 
Xn _= X, belongs to 2C if and only if [Xn: n e co) is point-finite family of sets. 
Moreover, 2f is a zero-convergence structure. For this example let s denote the 
convergence structure induced by 2f. When we identify SP{X) with 2X via 
characteristic functions, then the convergence in the topology T(S) is exactly the 
pointwise convergence of sequences on 2X. It is well known that the corresponding 
sequential topology T(S) on 2X is a product topology if and only if X is countable, 
see [Ba]. For an uncountable X, the sequential space (2X, T(S)) is a Hausdorff, but 
not a regular, topological space, see [Gl] or [BGJ]. Moreover, the topology T(S) is 
stronger than the usual product topology T on 2X. If we consider the spaces of 
continuous real-valued functions on 2X with respect to those two topologies, it is 

30 



shown in [BH] that #(2X, T)) £ %(2X, T(S)) iff size of X is at least as large as the 
first submeasurable cardinal. 

2. Exhaustive zero-convergence 

In this section we discuss a hierarchy of (zero) convergence structures on B. We 
define exhaustive convergence structures motivated by exhaustive submeasures 
and their continuity. We introduce and characterize a zero-convergence structure 
$ that is an intersection of all maximal zero-convergence structures. 

In the following we will discuss some examples of zero-convergence structures 
reaching examples when the whole of 2£ is a zero-convergence. 

2.1 Example. For / e B03, the set [n: f(n) #= 0} is a support of f. We shall call 
/ a finite element of B™ if its support is finite. Set 

Fin(B) = {f e B™ : f has a finite support}. 

Fin is the least Urysohn closed zero-convergence and the topology %(Fin) it 
determines is discrete. 

Although the ideal Fin is not very interesting from the convergence point of 
view, it becomes more interesting in the context of quotiens algebras. For any B, 
the quotient algebra B^/Fin is rz-closed, i.e. any descending sequence of non-zero 
elements has a non-zero lower bound. If B has a dense subset of size < 2W, then 
B has a base tree (not necessarily homogeneous in height). For the basic case when 
B = {0,1} and hence BF/Fin = &>(co)/fin, see [BPS]. Let si be the Cantor algebra. 
Under the CH, the algebras of si0"/Fin and ^((oj/fin are the same. Recently Dow 
[Do] solved the long-standing problem and showed that consistently the comple
tions of those two algebras may be different. Moreover, the height of slw/Fin can 
be smaller than that of ^(coij/fin. 

2.2 Example. Let k be a positive integer, d e B03 is called a k-disjoint sequence, 
if for any X cz a> of size k, f\{d(n):ne X} = 0. We use the term disjoint 
sequence for a 2-disjoint sequence. Set 

D(B) = {feB": (3m e co) (VX e |>]m) A {/(0 :ieX} = 0}. 

It is clear that Fin .= D. 

2.3 Proposition. D is a zero-convergence structure generated by all disjoint 
sequences, i.e. for any f e D there are disjoint sequences dh ..., dk so that f < 
dx v ... v dk. 

Proof. When dl5..., dk are disjoint sequences, then for any X _= co, \X\ = k + 1, 
using the usual distributivity and the pigeon hole principle, A^i(0 v ••• v ^(0 = ®* 

iєX 
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We shall argue the opposite direction using induction. Let f e D be an m-disjoint 
sequence. If m = 2, f is disjoint, and so we assume that m > 2. 

Put d(n) = f(n) — \Ji<nf(i) for every neco. Then d is a disjoint sequence. 
We show that g = f — d is (m — l)-disjoint. For every n e co we have g(n) = 
f(n) A \/i<n/(0' *n Particular, g(0) = 0. Let us check that for arbitrary Xi < x2 < 
... < xm_x we get /\j-}g(xj) = 0. 

In case of xx = 0 we are done, so assume that xx > 0. We have 

m-l m - 1 / \ / m-1 \ 

Aefcr) = A / W A V/ (0) = V(/(0A A/fo))-
7=1 / = 1 \ I<X/ / i < x i \ 7=1 / 

Since f is m-disjoint each member of the latter join is 0, hence g is 
a (m — l)-disjoint sequence. • 

2.4 Definition. Let / b e a zero-convergence structure. J is said to be ex
haustive ifD<^J>. The induced convergence structure s(J) and the topology x(J) 
it determines are said to be exhaustive if J is. 

The following fact gives the motivation and justification of the term "exhaustive 
zero-convergence" introduced in 2.4. It follows immediately from the definition of 
exhaustivity and Fact 1.8 (i). 

2.5 Fact. For any submeasure \i on B, \i is exhaustive if and only if it is 
continuous in the T(D) topology. 

We can ask about the description of the largest zero-convergence structure in 
which all exhaustive submeasures are continuous. 

2.6 Example. Put 

L(B) = {feB03: (VX c co, infinite) (37 c X, finite) f\{f(i): i e 7} = 0}. 

The following theorem is a modification of the result of R. Fric, [Fc], who 
proved the theorem for measures. This is one of the situations when the global 
properties of exhaustive submeasures and measures on Boolean algebras are the 
same. 

2.7 Theorem. L is a Uryshon closed zero-convergence structure. Moreover, 
L = {f eBm : for every exhaustive submeasure \i on B, /i(f(n)) -> 0}. 

In the proof of the theorem in addition to Fric's methods we are going to use 
the following folklore concerning exhaustive submeasures. 

2.8 Proposition. Let jibe a submeasure on B. Then \i is exhaustive if and only 
if for any <^, :ne co} e B™ and any s > 0, there is a ke co such that for every 
p > Kii(\fxt - \Jx) < s. 

i<p i<k 

Proof. Assume that /i is exhaustive and further assume that there are <;*„: n e co> 
and £ > 0 violating the proposition. Then we can pick an increasing sequence of 
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integers </q: i G CO> such that for each i, JU( \J xt — \J x}) > e. If we set yt = 
i<ki+\ i<kt 

V x ' "" V x " t ' i e n \"^) *s a disjoint sequence and lim fi(yt) 4= 0, a contradiction. 
i<ki+i i<ki 

The opposite implication is obvious. • 

Proof of Theorem 2.7. An ultrafilter F on B corresponds uniquely to 
a {0, l}-valued measure jiF defined by JHF(X) = 1 iff x e F, and 0 otherwise. 

Given the simple observation that L = {feB™: (VJU{0, \}-valued measure) 
ju(f(n)) -• 0}' and 1.8 (ii), it follows that L is a zero-convergence structure, 
Urysohn closed, and moreover it is exhaustive. 

In the following we will show any exhaustive submeasure pi on B is continuous 
in the topology determined by L. 

Let <.x„> e L and let e. > 0. We want to show that for some n0, fi(xn) < £ 
whenever n > n0. Using 2.8, by induction we can construct a cp e of] with the 
property that /i( \J x( — \J xi) < s/2k. 

k<i<p k<i<cp(k) 

Set ak = \J xt. It follows that xk < ak and xk < J\at v \J(ak — a). 
k<i<<p(k) i<k i<k 

Since for i < k, ak — at = \J x} — \J xp fi(ak — a) < zj2 and thus 
k<j<(p(k) i<j<(p(i) 

fi(\J(ak - a)) < 2E. 
i<k 

Set bk = f\at. <J\) is a descending sequence. If <b̂ > is not it L, then <^> has 
i<k 

a finite intersection property and hence can be extended to an ultrafilter F on B. 
Then for any k there is an i > k so that x, G F, and so there is <y„>, a sub
sequence of <.x„>, with fiF(yn) -> 1, a contradiction with the definition of L. Thus 
<bk> -* L, and, consequently, for some k0, bk = 0 for any k > k0, and therefore 

rip*) -> °-
Since xk < J\at v \J(ak — a), for sufficiently large k, fi(xk) < fi(\J(ak — a]j) 

i<k i<k i<k 

< 2s. • 
The just presented proof motivates the following notion. 

2.9 Definition. A zero-convergence structure J on B is groupwise closed if for 
every <x„ :ne c0> G J and every cp e coco>\, the sequence <a„>, where an = 
J\\J{xi :k < i < cp(k)}, belongs to J. 
k<n 

The following is an example of a class of groupwise closed exhaustive 
zero-convergence structures. 

Each family 3F of ultrafilters on B with the property that [j^ = B — {0},or 
equivalently, ^ is a dense subset of the Stone space of B, induces an exhaustive 
groupwise closed zero-convergence structure 

L(^) (B) = {feB": (VF G P) fiF(f(n)) -+ 0}, 
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where fiF is the usual 2-valued measure determined by the ultrafilter F. Observe 
that L = L(Ult(B)). 

The following generalization is a consequence of the proof of Theorem 2.7. 

2.10 Proposition. For any groupwise closed zero-convergence structure J on 
B, an exhaustive submeasure \i is continuous in x(J) if and only if fi(f(n)) -• Ofor 
every decreasing f e J>. 

2.11 Example. The order zero-convergence structure will be defined in two steps, 
(i) for a ^-complete algebra C, set 

Os(C) = { feC":(3geC% g \ 0c) f < g). 

(ii) for an arbitrary B, set Os(B) = B™ n O8(C), where C is a ^-completion 
of B. 

The convergence structure induced by the order zero-convergence structure on 
B is the most frequently studied one in the context of d-fields of sets or c-complete 
Boolean algebras. 

2.12 Proposition. For any algebra B, Os is an exhaustive groupwise closed 
zero-convergence, not necessarily Urysohn closed. 

Instead of a proof let us recall a few notions. Let C be a cr-completion of B. 
For a sequence < ^ : n e co} on C, we define limes superior, limes inferior, and 

limit as usual, i.e. 

Iimxn = A VX» a i l d UmXn = V A*" ' 
ksco n>k keco n>k 

lim xn = x if limxn = 11mx„ = x. Let us remark that Os(C) = [feC03: 
Ilmf(tt) = 0}. Since lim(x„ v yn) = limxn v limyn for arbitrary <^,>, <yn>, then 
Os(C) is a zero-convergence. Since for any disjoint sequence <^>, lim xn = 0, 
Os(C) is exhaustive. Os(B) has the same property; it follows from the fact that B is 
dense in C. The groupwise closedness follows from the definition of limes 
superior. Order zero-convergence structures for the Cantor algebra s/ and its 
completions are not Urysohn closed. 

2.13 Example. Recall that zero-convergence structures are ordered by inclusion 
and that there are maximal ones. For an arbitrary algebra B, set 

$(B) = Pj [J: J is a maximal zero-convergence structure on B\. 

$ is again a zero-convergence structure, which is Urysohn closed, for it is an 
intersection of Urysohn closed structures. How large is it? In [Jal] it is proven that 
D _= tf, so in our terminology $ is exhaustive. We will prove a little more; first 
we will describe a property determining which sequences belong to S. 

We are going to assign to each sequence f e B™ two elements from C, the 
completion of B. 
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For a complete Boolean algebra C, Cw is again complete. For / e Bw, let Fil(f) 
denote the filter on Bw generated by all subsequences of / and let Idl(f) denote 
the ideal on Bw generated by all subsequences. We allow in this context both, 
Fil(f) and Idl(f), to be improper. Put v+(f) = /\ \/h(n) and v (/) = 

heFil(f) new 

\f /\ h(n), where the joins and meets are taken in C. 
heldl(f) neco 

2.14 Fact, (i) both, v+ and v~ are monotone on Bw, 
(ii) if g is a subsequence of f, then v+(g) > v+(f) and v~(g) < v~(f). 

2.15 Lemma. A sequence f e Bw generates a zero-convergence structure on 
B if and only ifv~(f) = 0. 

Proof. It is evident that for any / e Bw, the ideal Idl(f) ~\ 3£ ii and only if 
v~(f) = 0. • 

Set 
Q(B) = {feBw: (Mg e Idl(f)) v+(g) = 0}. 

The following theorem provides the promised description and estimation of the 
size of S. 

2.16 Theorem. For any algebra B,Os~\S = Q. 

2.17 Corollary. (Jakubfk, [Jal]) Any zero-convergence structure can be extended 
to an exhaustive one. 

The proof of the theorem is devided into the two lemmas below. 

2.18 Lemma. Q ~\ S. 

Proof, (i) We show that for / e Q, Idl(f) <~\ %. If not, then there is g e Idl(f) 
with f\{g(n): neco} > a > 0 for some ae B. Then for every sequence h e Fil(g) 
we have h > ka, therefore v+(g) > 0, which is a contradiction with the definition 
ofQ. 
(ii) Assume / e Q and J is a maximal zero-convergence structure. Our aim is to 
show that f eQ. From the maximality of / we have / e J if and only if for any 
h e J the ideal generated by Idl(f) v {h}is a part of 2£. 

Assume that / £ J and so there is some he J such that the ideal generated by 
Idl(f) v {h}is not a part of 2£. Then there is a g e Idl(f) such that g v h$ £?, i.e. 
there is an a e B+ and a subsequence q of g v h so that q > ka. Since both Idl(f) 
and J are closed under subsequences and downward closed, we can pick g, h such 
that g v h = ka and h = ka — g. Then necessarily v+(g) > a. For any g0,..., gm x 

subsequences of g, we have corresponding subsequences h0,..., hm_l of h and 
\/{(gb A . . . Agm_1)(n):neco} = a- / \{ (^ v. . . v /im_i) (n): neco}. Since he J, 
so are h0,..., hm_i, and therefore /\{(ho v ... v ftm_i) (n): n e co} = 0. We showed 
that v+(g) = ae B+, which is a contradiction. Thus / e J, hence Q _= J. • 
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2.19 Lemma. IffsBw and v+(f) > 0, then f$g. 

Proof, we assume that for a given / , v+(f) > aeB+. Put g = ka - f We 
show that v~(g) = 0, so g is contained in some maximal zero-convergence 
structure which cannot contain / since / v g > ka. Let g0,..., gm_{ be subsequen
ces of g and /0,..., /m_i corresponding subsequences of / Since a — /\{(gb v 
... v gm_x) (n):neco} = \/{(/o A ••• A fm-i) (n):neco}> a, necessarily /\{(& v 
•••v gm_i) (n): n e co} = 0. This proves that v~(g) = 0. • 

Proof of Theorem 2.16. (i) Verify that Q = S. From Lemmas 2.18 and 2.19 
we know that if Idl(f) is a part of any maximal zero-convergence structure, then 
for any g e Idl(f), v+(g) = 0, i.e. f e Q. Since for g e Idl(f), Idl(g) £\ Idl(f), if 
/ e Q, so is Idl(f) ~\ Q. Thus Q = S. 
(ii) Verify that Os ~\ Q. Let C be a completion of B and / e B03 so that lim/ = 0. 
Then Idl(f) ~\ Os and for any g e Idl(f), /\ \J g(n) = 0, and so v+(f) = 0. This 

ksco n>k 

shows that f e Q. ~~ 
Now we can summarize the various zero-convergent structures discussed up to 

now in the following diagram. 
For any Boolean algebra B, and any family 3F of ultrafilters on B, 

Fin = D = L -\ L(&) <~\ Os <~\ £. 

All inclusions follow directly from the definitions of the corresponding 
zero-convergence structures, possibly except L(3F) ~\ Os ~\ S. The latter of these 
two inclusions is proven in the previous theorem, and for the former it suffices to 
realize that L(J^) is groupwise closed and Os is the largest groupwise closed 
zero-convergence structure. 

The following corollary is really a consequence of the notions and techniques 
introduced so far. 

2.20 Corollary. If Conv0(B) denotes the family of all zero-convergence structu
res on a Boolean algebra B, then Conv0(B) with the inclusion is a complete lattice 
if and only if (VI e B°>) (v~(f) = 0 => v+(f) = 0). 

3 . When Jf is a zero-convergence structure 

In this section we answer our main question when is the whole 
2£ a zero-convergence structure? 

3.1 Definition. We say that the Cantor algebra stf is almost regularly embedded 
into a Boolean algebra B if there is s/', a subalgebra of B, so that 

(i) s/f is isomorphic to s/, and 
(ii) there is a set {x„:ne co} of generators of stf' such that for any infinite 

subset X of co, \J'B{xn :neX} = 1 and /\B{xn :neX} = 0. 
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3.2 Theorem. For any B the following are equivalent. 
(i) 2£ is a zero-convergence structure, 

(ii) & = Q, 
(iii) for any ae B+, the Cantor algebra si cannot be almost regularly embed

ded into B [a. 
Recall, that B is (co, 2)-distributive if for any sequence <^ : n e co> e B00 and for 

any b e B+, there is a c < b, c =# 0, such that for any neco, either c < an or 
c A an = 0. Thus an (co, 2)-distributive algebra satisfies (iii), and so Jakubik's 
result [Ja] that for an (co, 2)-distributive Boolean algebra, 2£ is a zero-convergence 
structure, follows as a direct consequence of the theorem. 

Proof, (i) <-> (ii) is clear. 
Proving not (i) —> not (iii). 2£ is not a zero-convergence structure iff 2£ is not an 

ideal iff there are a e B+ and f,ge2£ such that / v g = ka. Then {f(n) :ne co} ^ 
B Is a. Let «s/' be a subalgebra of B [ a generated by {f(n); ne co}. Then si' is 
countable. Moreover, it is atomless, otherwise there is an atom c #= 0 and so for 
any n, either c < f(n) or c A /(n) = 0. One of those cases must happen infinitely 
many times. The former contradicts the fact that f e ££, while the latter contradicts 
the fact that g e ££. Thus si' is isomorphic to the Cantor algebra. 

For proving not (iii) —> not (i), set f(n) = xn and g(n) = a — xn. It follows that 
/ v g = ka, hence «2T is not an ideal. • 

In the following we will characterize some Boolean algebras that satisfy the 
theorem using their forcing properties. We shall explain how some of the notions 
discussed previously can be reinterpreted in terms of properties of reals in generic 
extensions and restated in the language of forcing. 

Recall well-known basic relations concerning the interrelationship of functions 
and subsets of co in a generic extension and the ground model. Let M denote 
a generic extension of V. X ^ co in the extension is said to be an independent 
(or splitting) real over V if for all Ye [co]03 n V both X n Y and Y — X are 
infinite. A function f e M, f e of, is a dominating real over V iff for all 
g e cow n V for all but finitely many neco, g(n) < f(n). M is an of-bounding 
extension of V if every / e M, / e co™ is bounded by a g e co00 n V, i.e. f(n) < g(n) 
for any n. 

If B is a Boolean algebra and C its completion, sequences from C° can be 
viewed as canonical names for all reals in a generic extension when forcing 
with (B+, <) or (C+, <). Sequences from Bw can be viewed as names for 
elements of a subfield of all reals in the generic extension. If G is a generic filter 
on C over V, then a real (= subset of co) in V[G] named by feC00 is 
fG = {n:f(n)sG}. 

3£(B) is thus a set of names of reals and hence determines a set of reals in any 
generic extension. The question which set of reals in a generic extension ££(B) 
determines? has an answer in the following fact. 
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3.3 Fact. For any f eBw, fe 2£ iff for any generic filter G on B, fG e V[G] 
does not contain an infinite subset from V. 

In fact, more is easy to see. 

3.4 Fact, (i) For any generic filter G on B, ££G = \fg : f e 2f} is a family of 
subsets of co in V\G] closed under taking subsets with the property that 
2£Gn V = [co]<0). 

(ii) 2£ is a zero-convergence iff for any generic filter G on B over V, in V[G], 
2£G is a proper ideal on co. 

Similarly, the question when 2£ is a zero-convergence structure? can be 
answered using the forcing properties of B. 

3.5 Theorem. 2£(B) is a zero-convergence structure iff for any generic filter 
G on B and any f e B03, fG is not an independent real in V\G]. 

Proof. We shall prove the negated version of the equivalence, i.e. 2£ is not 
a zero-convergence structure iff there are ae B+ and f e Bw such that for any 
generic filter G on B containing a, fG is an independent real in V[G]. 

Let assume that 2£ is not an ideal. Take f e B03 and ae B+ so that / e 2£ and 
9 = K — f also belongs to 2£. Let X c co be infinite. Since \ / f(n) = a e G, it 

neX 

follows from the genericity of G that there is n0e X so that f(n0) e G. For any 
ke co, the set Xk = {ne X :n > k} is again infinite and so \/ e G, therefore for 

neXk 

some nt > k, f(nx) e G. This argument shows that X n fG is infinite. Since g e 2£ 
and gG = co — fG, it has the same property, \J g(n) = a for any x e [co]03, and the 

neX 

same argument as for / shows that X n gG = X — fg is infinite. Thus fG is an 
independent real. 

For the proof of the opposite implication, assume that for any generic filter G on 
B over V there is an / e Bw such that fG is an independent real in V\G]. Consider 
an infinite subset X of co from the ground model. Since X ^ fG does not hold, 
there is an n e X such that f(n) £ G. Thus /\ f(n) £ G. Let C be a completion of 

neX 

B. For the element c = lim f(n) — V A f{n) ^ r o m ^ there is an a e B so 
XeVnlco]03 neX 

that a < c and a e G. Set f(n) = f(n) A a. Then fG e B™, fG = fG and from the 
independence of fG we get that ka — f e2£ and fe2f. Thus 2? cannot be an 
ideal. • 

Hence any forcing notion that does not add an independent real gives an 
example of a complete Boolean algebra B for which 2?(B) is a zero-convergence 
structure. Among them the ones that add a real, but not an independent real, are 
the non-trivial and interesting ones. There are several examples of such forcing 
notions. The most familiar are Sacks forcing ([Sa]), Miller forcing ([Mi]), 
Blass-Shelah forcing ([BS]), and Matet forcing ([B]). Therefore, Boolean algebras 
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of regular open sets of these partial orders and all their dense subalgebras are 
examples of non (co. 2)-distributive Boolean algebras for which 2£ is 
a zero-convergence structure. 

It is well known that among the forcing notions mentioned above, only Sacks 
forcing is cow-bounding. On the other hand, any forcing notion adding a dominating 
real adds also an independent real and so it is not an example of an algebra where 
2£ is a zero-convergence structure. 

In the following we shall provide a simple description of 2£(B) for these 
examples. 

3.6 Definition. Let B be a cr-complete Boolean algebra. A sequence f eB™ has 
an absolute value if for any subsequence g of / limg(rz) = lim/(n), limg(n) = 
lim/(n). In such a case, the value a = lim/(n) — hmf(n) is called the absolute 
value of / and we denote it by abs lim f(n) = a. 

Recall the definition of one of the standard cardinal invariants of the continuum, 
t, which is the smallest cardinality of a strictly decreasing chain of infinite subsets 
of (o (ordered by inclusion modulo finite sets) without an infinite lower bound. 

The following Lemma is a generalization of a result from [VI]. 

3.7 Lemma. Let B be a o-complete algebra satisfying the t-cc. Then for any 
f e B™, there is a subsequence g of f which has an absolute value. 

Proof. Note that subsequences of / are determined by subsets of co. If g is 
a subsequence of / then Iimg(n) < lim/(H) and Umg(n) > hmf(n). For an 
X e [co]w, set ax = Em {f(n): n e X) - Hm \f(n): n e X}. 

Assume that such subsequence g does not exist. Then we can construct a descending 
chain <Xa: a < t> of subsets of co such that for a < /?, |Xa — Xp\ = co, and 
\Xp - X~\ < co, and aXoc > aXp. 

Then {aXa — aXa+l: a < t} is a disjoint family of size t, a contradiction. • 

3.8 Theorem. Let B be a Boolean algebra satisfying the t-cc and let ££ be 
a zero-convergence structure. Then 2£ = tfl(Os). 

Proof. We aim at proving that for any f e 2£ there is a subsequence g of / with 
Iimg(n) = 0. Fix f e2£. By Lemma 3.7, there is a g, a subsequence of / , with 
abs lim g(n) = a for some ae B. Since ge 2£, abs lim f(n) = Iimg(«) = a. Let us 
assume that a =t= 0. Then h = ka — g is in ££ and so ££ is not an ideal, which is 
a contradiction. • 

The above examples of Boolean algebras of various forcing notions, for which 
2£ is an ideal, do not satisfy the t-cc, though they all satisfy (2w)+-cc. An 
interesting open problem is whether there is a ccc complete atomless countably 
generated Boolean algebra B for which 2£ is a zero-convergence structure. The 
positive answer to the question is certainly equiconsistent with ZFC. For, consider 
Sf, a complete Boolean algebra of regular open sets of Sacks forcing. It is known 
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[GJ] that 9* is a complete subalgebra of some algebra B, which is (cr-closed 
* ccc)-decomposable, i.e. there is a C, a complete subalgebra of B, such that C has 
a r/-closed dense subset and for any generic filter G on C, the following holds true 
in V[G]: when G is extended to G on B by G = {ae B: (3b e C n G) (a > b)}, 
then the quotient algebra B/G is atomless, countably generated, and satisfies the 
ccc. Since B does not add an independent real, in the extension, ££(B/G) is 
a zero-convergence structure. 

Remark. The sequential topolohy determined by Os is neither Hausdorff nor 
Frechet for completion of any of the four forcing notions discussed above, see [BGJ]. 

We do not know of an example of an algebra for which °l/(Os) =# S. We 
conclude with a conjecture. For any Boolean algebra B, if &(B) is 
a zero-convergence structure, then 3?(B) = W(Os(B)). 
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