
Acta Universitatis Carolinae. Mathematica et Physica

Zygfryd Kominek; T. Zgraja
Convex functions with respect to logarithmic mean and ѕandwich theorem

Acta Universitatis Carolinae. Mathematica et Physica, Vol. 40 (1999), No. 2, 75--78

Persistent URL: http://dml.cz/dmlcz/702059

Terms of use:
© Univerzita Karlova v Praze, 1999

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/702059
http://project.dml.cz


1999 ACTA UNrVERSITATIS CAROLINAE - MATHEMATICA ET PHYSICA VOL. 40, NO. 2 

Convex Functions with Respect to Logarithmic Mean and 
Sandwich Theorem 

Z. KOMINEK and T. ZGRAJA 

Katowice, Bielsko-Biala*) 

Received 11. March 1999 

We will show that, contrary to many classes of functions, some sandwich's theorems are not valid 
for the classes of convex and concave functions with respect to logarithmic mean. Some properties of 
convex functions with respect to the logarithmic mean will be also presented. 

Let J c R be a fixed interval and let M: J x J -> J be a mean i.e. 

min {x,y} < M(x, y) < max {x,y}, x,yel. 

A function / defined on an interval I cz J with the values in J is called 
(i) M-convex iff f(M(x, y)) < M(f(x), f(y)), x,yel, 

(ii) M-concave iff f(M(x, y)) > M(f(x), f(y)), x,yel, and 
(iii) M-affine iff f(M(x, y)) = M(f(x), f(y)), x,yel, 

In the case where M(x, y) = ^ w e Set a notion of J-convex, J-concave and 
affine functions, respectively, which were extensively studied in a book of Kuczma 
[5]. An interesting structure has the so-called logarithmic mean, i.e. the mean 
defined by the formula 

Lix>y) = \ \—> x * y> Lix>y) = x> x = y> x,ye(o, oo). 
v 7 log x — log y 

In his paper [6] J. Matkowski has proved that every continuous L-affine function 
/ : (0, oo) -> (0, oo) is either constant or of the form f(x) = kx, x > 0 where 
k > 0 is an arbitrary constant. We shall use this result to give a negative answer 
to a "sandwich's" question. This will be done in the following 

Theorem 1. There exist continuous functions f, g : (0, oo) -> (0, oo), first of 
them L-convex and the second one L-concave, g < f in (0, oo), for which there is 
no continuous L-affine function h : (0, oo) -> (0, oo) fulfilling the following inequality 

(1) g(x) < h(x) < f(x), x e (0, oo). 
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Proof. Let us put 

g(x) = y/x, f(x) = exp (x), x > 0. 

It is known [7] that / is L-convex and g is L-concave. In view of result of 
Matkowski mentioned above, it is easily seen that there is no L-affine function 
h which separates g and / (i.e. which fulfils the inequality (1)). 

Recall that if we take the arithmetic mean then a such type result holds true [8]. 
Also, if g is a superadditive function (g(x + y) > g(x) + g(y), x, y e S), f is 
a subadditive function (f(x + y) < f(x) + f(y), x,ye S), and g < f in S, where 
S is an abelian semigroup, then there exists an additive function h (h(x + y) = 
h(x) + h(y), x,yeS) which separates g and / ([3], [4]). Theorem 1 shows that 
convex (concave) functions with respect to the logarithmic mean have essentially 
different geometrical behaviour than the convex (concave) functions with the usual 
sense. 

Let g and / be defined and with the values in (0, oo) and we assume that 

(2) g(L(x, y)) < L(f(x), f(y)), x,ye (0, oo). 

Putting x = y we obtain 

(3) g(x)<f(x) x e ( 0 , a o ) . 

However, if / is L-convex and (3) holds, then (2) holds as well. It follows from 
our Theorem 1 that we cannot expect to find a continuous L-affine function 
h which separates g and / However K. Baron, J. Matkowski and K. Nikodem [1] 
have proved that functions g, f: (0, oo) - • U satisfy the inequality 

g(tx + (l-t)y)< tf(x) + (1 - t) f(y), x,y e(0,w), te [ 0 , 1 ] , 

iff there exists a convex function h : (0, oo) -> U fulfilling (1). We shall show that 
our condition (2) does not imply the existence of L-convex function h: (0, oo) -> 
(0, oo) separating g and / For this purpose we shall prove the following 

Theorem 2. Let M be a mean defined on a cartesian product of an interval I by 
itself satisfying the following conditions: 
(i) for every x,yel there is a z el such that M(y, z) = x 

and 
(ii) there exists a X e (0, 1) such that for all x,yel the condition M(x, y) < 

X max {x,y} + (1 — X) min {x,y}. 
Then every upper bounded (on I) M-convex function h: I -> M is constant. 

Proof. Let us put 

c:= sup {h(t);te I}. 

Thus h(x) < c, xe I. Fix an arbitrary £ > 0 and choose a y e I such that 

(1) h(y)> c - ( \ - X)s. 
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It is enough to show that 

(5) h(x) > c — £, x e I. 

For indirect proof we assume that h(x0) < c — 8 for some x0 e I. By virtue of (i) 
there exists a z e I such that y = M(x0, z) and according to the M-convexity of h, 
(4) and (5) we get 

c — (1 — X) 8 < h(y) = h(M(x0, z)) < X max \h{x§), h(z)} + (1 — X) min {h(x0), h(z)} < 
< AC + (1 - X) (C - 8) = C - (1 - X) 8 . 

This contradiction completes the proof of Theorem 2. 
Since L(x, y) < ^ ([2])> as a consequence of Theorem 2 we obtain 

Corollary 1. Every bounded on (0, oo) L-convex function h : (0, oo) -» (0, oo) is 
constant. 

An another consequence of Theorem 2 is following known result. 

Corollary 2. Every upper bounded J-convex function h : R -> IR is constant. 
Now, we shall construct functions g, / : (0, oo) -> (0, oo) having required proper

ties. 

Theorem 3. There exist functions g, f: (0, oo) -> (0, oo) satisfying condition (2) for 
which there is no L-convex function h: (0, oo) -> (0, oo) fulfilling the inequality (1). 

Proof. Let x0 > 0 be chosen such that the inequalities 

1 
+ 1 l o g 2 e _ x /,* x 

1 < ~ 2 — < l o g ( l + e - r X £ ( ' X 0 ) 

are fulfilled. Let us put 

z 0 : = m i n { x 0 , i ( ^ - l 

f(x):=l+e"x, x > 0 , 
and 

J - X + 1 + z0, X 6 (0, oo) 
gW-\l, xe[z0 ,oo). 

We shall show that g and f satisfy the inequality (2) and there is no L-convex 
function h: (0, oo) -> (0, oo) fulfilling condition (1). At first we note that for all 
x, y e [z0, oo) we have 

L(x,y)e [z0, oo) and g(L(x,y)) = l. 

Moreover, f(x), f(y) e (1, 2) and therefore L(f(x), f(y)) e (1, 2). Consequently 

(7) a(L(x, y)) < L(f(x), f(y)), x, y e (z0, oo). 
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Fix an x e (0, z0] and take an arbitrary y > 0. By the definition of g we get 

1 - ! 1+ ' 
(8) g(L(x,y)) < 1 + z0 < 1 + ^ _ _ = - — - ^ . 

Since / is decreasing and 1 < f(y) < 2, by virtue of the monotonicity of 
L(/(x),.) and (6) we obtain 

(9) L(f(x), f(y)) > L(f(x), 1) = l o g ( 1

C " +

X

e _ x ) > — ^ . 

It follows from (7), (8) and (9) that (2) holds true. 
Suppose now that h : (0, oo) -» (0, oo) is a L-convex function fulfilling condition 

(1). Similarly to /, function h is bounded on (0, oo). According to Corollary 1 there 
exists a constant c > 0 such that 

(10) h(x) = c9 xe(0, oo). 

In view of definitions g, / and (11) we infer that c = 1 which is impossible, 
because g(x) > 1 for each x e (0, z0). This contradiction proves that there is no 
L-convex function h separating g and / 
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