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Introduction 

Over the last decade there have been discovered several deep characterizations 
of special subspaces of hyperspaces of euclidean spaces Rn or of n-cubes. Methods 
used involved a powerful technique of absorbers. Examples of fully recognized 
families of subsets of Rn or F are: 

• locally connected subcontinua (for n > 2) [10]; 
• arcs(n = 2) [3]; 
• pseudoarcs (n = 2) [4]; 
• ANR's and AR's [5, 8]. 

There is, of course, a long list of interesting subspaces of the hyperspaces waiting 
for their turn. One can also consider hyperspaces of non-euclidean spaces. It seems 
that good candidates to study are, e.g., hyperspaces of Menger universal continua 
and their peculiar subspaces. 

The first step leading to recognition is evaluation of an exact Borel class of a sub-
space, which is often not an easy task. The aim of this note is to gather some obser
vations, mostly about Borel classes of some old and new examples of subfamilies of 
hyperspaces. In Theorem 1 a result from [10] is extended over a class of continua larger 
than cubes. In Theorem 2 the Borel class of simple closed curves in cubes is evaluated. 

Most observations are inspired by ideas from [10]. I hope they can motivate 
further progress. 

Preliminaries 

All spaces in this paper are assumed to be metric separable. If d is a metric in 
a continuum X, then C{X) denotes the hyperspace of all nonempty subcontinua of 
X with the Hausdorff metric dH. 
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If X is a locally connected continuum with no free (i.e., non-boundary) arcs, 
then C(X) is homeomorphic to the Hilbert cube Q = [ - 1 , l]x° [7]. 

We set the following notation: M", n > 1 is the Menger ^-dimensional universal 
continuum, Mn_l is the Sierpiriski continuum in Rn universal for all n — 1-dimen
sional compacta in Rn, Dn is the rc-dimensional disk, S is the unit circle, I = [0, 1]. 

If M is a continuum, then M(X) is the subspace of C(X) consisting of all 
topological copies of M in X. We will also consider the subspaces 

AR(X), ANR(X), LCn(X\ Den(X\ L(X\ LX(X) 

of C(X) of all AR's, ANR's, LC"-spaces, dendrites, locally connected subcontinua 
and locally connected 1-dimensional subcontinua in X, respectively. 

It is well known that, for any compactum X, L(X) is an Fff(5-set [12]. It is proved 
in [10] that L ( [ - l , l]n), n > 1, is not a G^-set. 

Let c0 = {(^) G Q: lim xt = 0}. If n > 2, then L([— 1,1]") is homeomorphic to 
c0 because it is an Fff(5-absorber in C([—1, l]n) (see [10]). 

At the beginning, we describe three auxiliary continua. 

Harmonic fan Fv. 

Fv = \zeR2: \z\ < 1 and arg z = ± 7, i = 1, 2,..., or arg z = 0]. 

Denote by v the vertex z = 0. 

Harmonic comb CB. 

CB = {lx {0})u ({0,1, i i . . . } x [0,1]) <= R2. 

Denote by B the base segment / x {0}. 

Harmonic comb of n-disks C„. Let s, be the middle point of the interval Q ŷ, j ] . 

C„ = [ - 1 , 0]" u ( Q [ S , | ] x [0,1] x [ -1 ,0]"- 2 ) u 

({0}x[0 , l ]x [ - l ,0 ] - 2 ) C [ - l , l ] " . 

Results 

For each x = (*,) e Q denote T+(x) = {i: xt > 0} and V~(x) = [i: x, < 0}. 

Theorem 1. Let a continuum X topologically contain the harmonic fan Fv or 
comb CB. Suppose a subspace C/f cz C(X) satisfies 

{CeL(Fv) :veC}<~ JtT n C(FV) cz L(FV) 

in the case where X contains the harmonic fan or 

{Ce L(CB) : B c C } c j f n C(CB) cz L(CB) 
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if X contains the harmonic comb. Then c0 embeds in X as a closed subset. In 
particular, X is not a GSa-set. 

Proof. We slightly modify the proof of [10, Theorem 3.1]. Assume Fv cz X. Let 
x = (x,-) e Q. Define 

X-
f(x) = {zeFv: there is i such that xt + 0 and arg z = ——t and \z\ < |x,|) u 

i\xt\ 
{z: \z\ < 1 and arg z = 0) . 

Then / : Q -» C(X) is an embedding satisfying f(c0) = f(Q) n X. Hence, f(c0) 
is a closed subset of X. 

Suppose now CB cz X. Put, for t e I and i = 1, 2, . . . , £,(t) = {7} x [0, t]. 
Define an embedding / : Q - • C(K) by 

/ (x) = B u ( { 0 } x [ 0 , l ] ) u U £ 2 N ^ U ^ - i ( N ) . 
ier+(x) i e r ~ ( x ) 

As before, it is clear that f(c0) is a closed subset of X. 

Corollary 1. If a continuum X contains a copy of Fv or CB, then L(X) is an 
absolute Fao-set but it is not a GSa-set. The subspaces Den(X), AR(X), ANR(X), 
LX(X) and LCn(X) are not G8a-sets. 

If X is a locally connected continuum with no local separating point and no 
planar nonempty open subset, then, moreover, L(X) is contained in a oZ-subset 
ofC(X). 

Proof. The first part follows directly from Theorem 1. If X is locally connected 
with no local separating points and no planar nonempty open subsets, then C(^) 
is a Hilbert cube [7] and X has the disjoint arcs property (see [11]). It means that 
continuous mappings from at most 1-dimensional compacta to X can be approxi
mated by embeddings (see [6, p. 40]). This gives the possibility to use the method 
of [10] to show that L(X) is contained in a crZ-set in C(X). 

We do not know whether L(X) is F^-strongly universal for locally connected 
X with no local separating points and no planar nonempty open subsets (even in 
the simplest case of X = Mn). 

By a Warsaw circle we mean any continuum of the form X = A u B, where 
A is a compactification of [0, 1) with the remainder a nondegenerate arc a and B is 
an arc with endpoints p, q such that p is an endpoint of a, q = 0 (i.e., q is an 
endpo nt of [0, 1) in the compactification A) and A n B = {p,q}. 

Theorem 2. 
(1) S(X) is Faofor any continuum X. 
(2) If X cz C(X) contains S(X) and no Warsaw circle belongs to X, then c0 

embeds in X as a closed subset for any continuum X containing [—1, l ] 2 . 
In particular, X is not Gda. 
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(3) If X is a locally connected continuum with no local separating point and no 
planar nonempty open subset, then S(X) is contained in a oZ-set in C(X). 

Proof. In order to prove (1) recall the notion of a circle-like subcontinuum: 
a subcontinuum Y c_ X is circle-like if, for every s > 0, Y can be covered by 
a finite circular chain of open subsets of X of diameters less than s. It is known 
that Y is a simple closed curve if and only if it is locally connected and circle-like. 

Put 

Um = iC e C(X): C is covered by a finite circular chain 
of open subsets of X of diameters less than ^ ] . 

Since Um are open subsets of C(X), the family Ci(X) = f]mUm of all circle-like 
subcontinua of X is a G -̂set in C(X). Hence S(X) = L(X) n Ci(X) is Fad. 

To prove (2), let x = (x,) e Q. Denote by At(x) the segment from the point 
(), - 1 ) to (T^T, |x,-| - 1) in R2 and put Bt = [~\ x [ - 1 , |x,| - 1]. Define an 
embedding / : Q -> C ( [ - 1 , l]2) cz C(X) by 

/(x) = ( { 0 } x [ - l , l ] ) u |J ( ^ u B a . J u 
i e r + (x) 

U (A2i u _?a) u ([0,1] x {1})U ({l}x [ -1 ,1 ] ) . 
i 6 r - (x) 

Observe that /(x) is a Warsaw circle if and only if x ^ c0 which means that 
f{co) = f{Q)^^. 

Part (3) follows from Corollary 1. 
Let us recall that the space l([— 1, l]2) is an F^-absorber in C([— 1, l]2), so it 

is homeomorphic to c0 [3]. It would be interesting to characterize S([— 1, l]w). 
By similar methods one can easily establish the following proposition. 

Proposition 1. Let a continuum X contain a copy of [—1, 1]", n > 1. Then 
each of the spaces T>n(X), MJ.^X) and, for n = 2k + 1 > 2, Mk(X) contains 
a topological copy of c0 as a closed subset. In particular, the spaces are not 
G6a's. 

Proof. The proof is very similar to that of Theorem 1. Concerning Dn(X), we 
take the harmonic comb Cn of rz-disks which plays the role of the harmonic 
comb CB considered in that proof. 

In case of the other two spaces, we construct, for every x = (xt) e Q, continua 
which look like combs built up from copies of Mn_x or Mn, respectively. More 
precisely, let Z0 be the standard geometric model of Mn

n_x located in the cube 
[—1,0]" (as constructed, e.g., in [9]). For i > 0, let Z2,-_i be such a model 
constructed in [s2,-_i, _~i\ x lA x_ x [ — 1> 0 ] n 2> if xt > 0, whereas Z2l is a stan
dard model of Mn

n_x in [s2i-i,„] x [0, |xj] x [ - 1 , 0]n"2, if xt < 0. If xt = 0, then 
we put Z2l-_i = Z2i = 0. Define an embedding / : Q -> C(X) by 
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f(x)=UZ,u({0}x[0,l]x[-l,0]-2). 
i - 0 

It follows by known characterizations of M„_x ([2] and [13]; see also [6]) that the 
countable union of Z,'s, i = 0,1, . . . , is homeomorphic to M"_1? provided that the 
spaces Zj's form a null-sequence. Thus, we again have f(c0) = f(Q) n MJ.^X). 

In the case of Mk(X), n = 2k + 1 > 2, we define an embedding / similarly, 
replacing Mn

n_x by Mk in the construction above. The property f(c0) = 
f(Q) n Mk(K) holds true because an appropriate characterization of Mk exists [1]. 
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