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It is proved a fixed point theorem for perfectly oo-connected spaces. This theorem is a generalization 
of the Schauder-Tychonoff Theorem stating that each continuous compact selfmap of a convex subset 
of a locally convex topological vector space has a fixed point. 

We shall use notation [p0,..., p„] for n-dimensional geometric simplex spanned 
by vertices p„ where the points p0,..., pn are affinely independent. Each point 
x e [p0,..., p„], x = Y}t' Pb Y}i = 1> *i — 0' *s un-quely determined by its bary-
centric coordinates tt. A k-dimensional simplex spanned by any k + 1 of the 
vertices p, of a simplex S = [p0,..., p„] is called a k-face of S. The union of all 
k-faces of the simplex S is called the k-skeleton of S and the (n — l)-skeleton of 
an rc-dimensional simplex S is said to be its geometric boundary OS; 

n 

dS := (J[p0,..., ph ..., pn] , where S = [p0,..., pn] 
i = 0 

A topological space X is said to be co-connected, X e C00, if each continuous 
map f:dS-+X from the boundary of an rz-dimensional simplex into X, n = 1,2,..., 
has a continuous extension over S; F: S -• X, F\dS = f 

The condition X e C00 is equivalent to the following statement (cf. Spanier [5], 
Th. 1.3.12): 

(a) Each continuous map f.dQ^X from the boundary of a ball Q cz Rn, 
n = 1, 2,..., is homotopic to a constant map, 

(b) Each continuous map f:dQ^X from the boundary of a ball Q has 
a continuous extension over the ball Q. 

A space X is said to be contractible if the identity map idx: X -> X is 
homotopic to a constant map i.e., there is a continuous map H : I x [ 0 , l ] - > I 
such that H(x, 0) = x and H(x, 1) = c for each xe X. 

Each contractible space is co-connected, (cf. Spanier [5], Th. 1.3.13). 
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Any linear topological space El has a neighbourhood base ^(0) at 0 e E such 
that 

tV c= V for each r e [0,1]. 

From the above it follows that any topological vector space E has a base 
consisting of open oo-connected (contractible) sets. 

Indeed, sets of the form U = x0 + V, where V e 3#(0), x0 e E are contractible, 
because the continuous map H: U x [0, 1] -> U, H(x, t) := x0 + tx is a homotopy 
between the identity map idv and the constant map x0. 

Similarly, it is easy to observe that each convex subset of £ is a contractible 
space and moreover it has a base consisting of oo-connected (contractible) 
relatively open sets. Unfortunatly we do not know if such a base is closed under 
finite intersections. If E is locally convex then the answer is "yes" because we can 
assume that the sets U = x0 + V, V e 88 are convex. 

An affirmative answer to this question would solve the Schauder problem 
(Problem 54 in the Scottish Book [2]), whether a continuous selfmap of a compact 
convex subset of any topological vector space has a fixed point.2 

Any continuous map a : [p0,..., pn~\ -> X into topological space X is said to be 
a singular simplex contained in X. The following lemma can be obtained from the 
Brouwer fixed point theorem (cf. [1,4]). 

Lemma on Indexed Covering. Let [U0,..., Un) be an open covering of 
a topological space and a : [p0,..., p„] -* X a singular simplex. Then there exists 
a sequence 0 < i0 < ... < ik < n of indexes such that o[pio,..., p,J n Uio n ... n 
Uik + 0-

Proof. Let us put 5 := [p0,..., pn~\ and At := o~\Ut) for i = 0,..., n. The sets 
Ai are open in S. Define a continuous map f:S-+S; 

/ ( * ) = Z l T T - P " where d(x):= inf {||x - y|| :y eS\At], d(x) = t^x) 
i = 0 "\X) i = 0 

Since the sets Ax form an open covering of the simplex S, we infer that d(x) > 0 
for each point xe S. According to the Brouwer Fixed Point Theorem there exists 
a point ae S such that f(a) = a. This means that 

di(a) = ti(a) - d(a) for each i = 0,..., n 

Since the sets At are open and d(a) > 0 we infer that 

tt(a) > 0 if and only if a e At for each i = 0,..., n. 

1 Throughout this paper a topological vector space means a real Hausdorff topological vector space. 
2 In December 1998, I received a letter from Professolr Robert Cauty with an information that he 

had solved in the affirmative the Schauder Problem. 
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Now, let us put {k..., ik} = {i<n: t(a) > 0}. Then, from the above we get 

ae[pi0,...,pik] nAion... n Aik. 

This completes the proof. • 

A topological oo-connected space X is said to be perfectly oo -connected if it 
has a base 28 which is closed under finite intersections and the base consists of 
oo-connected sets i.e., 

(a) X 4= # , 
(b) Ui9..., UneSS implies Ux n ... nUne@, 
(c) each set U e £8 is oo-connected. 
A map g: X -> Y between Hausdorff spaces is said to be compact if g(X) is 

a compact subset of Y. 

Theorem. Each continuous compact map g : X -> Xfrom a Hausdorff perfectly 
oo-connected space into itself has a fixed point. 

Proof. Suppose, contrary to our claim, that g(x) 4= x for each xe X. Let 88 be 
a base closed under finite intersections and consisting of oo-connected sets. Since 
X is a Hausdorff space hence for each xe X there exists an open neighbourhood 
Wxe@ofx such that 

(1) Wx n g(Wx) = 0 

Let us put Y:= g(X). Then set Y is compact and therefore from the family 
{Wx : x G Y} one can choose a finite subfamily iV = {W0,..., Wm} such that 

(2) Yc= KV0u... uWm. 

Choose $11 = {C/0,..., Un} to be a finite covering of Y with relatively open sets 
Ut and being a star-refinement of if (cf. Engelking [3], p. 377) i.e., 
Y = C/0 u ... uUn and for each y e Y there exists VVe iV such that 

(3) st(y, <&) := [j{Ue W:yeU}^W 

Define iV* := {X}u #^ and fix an arbitrary n-dimensional simplex S : = 
[Po> •••> Pn]- For each I cz {0,..., n} let Wt e & be the oo-connected set: 

(4) KV7:= f){KVG^*:U{C/,.:iG/}cz W}. 

and denote by 57 the face of the simplex S: 

(5) S7 := [p,.0,..., p fJ, where I = {/b,..., ifc}. 

We shall describe by induction (on the k-skeleton of S) a continuous map 
a : S -• X such that 

(6) (j(S7) C= Wl for each I cz {0,..., n}. 
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step 0. Choose points xt e Ut for each i = 0,..., n and set o(p^ := xt. 
step 1. For each 2-elements set I = {ij} cz {0,..., n} choose a continuous 

map o: [p„ Pj] -> Wj such that o(p^ = xt and o(p}) = Xj i.e., o is a continuous 
extension of the map o \ d[ph p j . The facts o(p^ e Uh o(pj) e Uj9 Ut u [/,- cz Ŵ  and 
W/ is oo-connected imply that such a choice of o is possible. 

step (k + 1), k < n. Assume that we have defined a continuous map o on the 
k-skeleton of the simplex 5. We shall extend continuously the map o over the 
(k + l)-skeleton of 5 such that the condition (6), o(Sj) cz Wh holds and o | S7 is an 
extension of o\3Sj for |/| = k + 1. According to the inductive assumption; 

[j{o(Sj): J cz I, |J| = k} cz PV7, where |/| = k + 1 

and the assumption that Wj is oo -connected it is possible to carry out such 
a construction. 

The n-th step completes the construction of the singular simplex o. 
The family {g~l(U^: i = 0,..., n} is an open covering of X and according to 

the Lemma on Indexed Covering there exists a set I = fa,..., ik} cz {0,..., n} and 
a point w e X such that 

(7) w e (j[pIO,..., p j n g~\Ui0) n ... n g_1([/Ifc) 

From the above we have g(w) eUion ... n l/f/c. Since cr(p,) e t/f, we infer from 
(3) that there exists W e W such that 

(8) o(pi0\...,o(pik)est(g(w\%)<^ W 

From (4) it follows that Wj cz W and according to (6) and (8) we get 
w, g(w) e W, contradicting (1). • 

Corollary. If a contractible Housdorff space X has a base which members are 
contractible sets and the base is closed under finite intersections, then any 
continuous compact selfmap of X has a fixed point. 

The above Corollary is a generalization of the 

Schauder-Tychonoff Theorem. Each continuous compact selfmap of a convex 
subset of a locally convex topological vector space has a fixed point. 

Problem. Is a convex subset of a topological vector space a perfectly oo-con­
nected space? 

Let us recall once again that a positive answer to this problem solves Schauder's 
conjecture. 
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