Acta Universitatis Carolinae. Mathematica et Physica

Władysław Kulpa; Lesław Soche; Marian Turzański
 Parametric extension of the Poincare theorem

Acta Universitatis Carolinae. Mathematica et Physica, Vol. 41 (2000), No. 2, 39--46
Persistent URL: http://dml.cz/dmlcz/702067

Terms of use:

© Univerzita Karlova v Praze, 2000

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

Parametric Extension of the Poincaré Theorem

W. KULPA, L. SOCHA and M. TURZAŃSKI

Katowice

Received 11. March 2000

Abstract

The structure of the zeros set $f^{-1}(\mathbf{0})$ of a continuous function $f: I^{n+1} \rightarrow R^{n}, I=[0,1]$, satisfying some additional boundary conditions are investigated. This gives an extension of some classical results due to Bolzano, Poincaré, Brouwer, Eilenberg and Otto.

§ 1. A main result. Let $I^{n}:=[0,1]^{n}$ be the n-dimensional cube of the Euclidean space R^{n} and let us denote by

$$
I_{i}^{-}:=\left\{x \in I^{n}: x(i)=0\right\}, \quad I_{i}^{+}:=\left\{x \in I^{n}: x(i)=1\right\}
$$

its i-th opposite faces. In this paper we are going to prove the following.
Theorem. Let $\left\{\left(H_{l}^{-}, H_{i}^{+}\right): i=1, \ldots, n\right\}$ be a family of pairs of closed sets such that $I_{i}^{-} \times I \subset H_{l}^{-}, I_{i}^{+} \times I \subset H_{i}^{+}$and $I^{n} \times I=H_{i}^{-} \cup H_{i}^{+}$.

Then there exists a connected set $W \subset \bigcap_{i=1}^{n} H_{i}^{-} \cap H_{i}^{+}$such that

$$
W \cap\left(I^{n} \times\{0\}\right) \neq \emptyset \neq W \cap\left(I^{n} \times\{1\}\right) .
$$

The proof of this theorem will be based on two combinatorial lemmas.
Letting $H_{i}^{-}:=f_{i}^{-1}(-\infty, 0], H_{i}^{+}:=f_{i}^{-1}[0, \infty)$ we obtain a parametric extension of Poincare's theorem (cf. [7, 3, 4]):

Corollary 1. Let $f: I^{n} \times I \rightarrow R^{n}, f=\left(f_{1}, \ldots, f_{n}\right), I=[0,1]$, be a continuous map such that for each $i \leq n$

$$
f_{i}\left(I_{i}^{-} \times I\right) \subset(-\infty, 0] \text { and } f_{i}\left(I_{i}^{+} \times I\right) \subset[0, \infty) .
$$

Then there exists a connected set $W \subset f^{-1}(\mathbf{0})$ such that

[^0]$$
W \cap\left(I^{n} \times\{0\}\right) \neq \emptyset \neq W \cap\left(I^{n} \times\{1\}\right) .
$$

It is easy to observe that Corollary 1 implies Theorem. It suffices to consider functions $f_{i}(x):=d\left(x, H_{i}^{-}\right)-d\left(x, H_{i}^{+}\right), i=1, \ldots, n$, where $d(x, A):=\inf \{\| x-a \mid:$ $a \in A\}$ means the distance functions from a set A.

From Corollary 1 we immediately obtain an extension of Brouwer's theorem due to Browder (cf. [1, 6]):

Corollary 2. If $g: I^{n} \times I \rightarrow I^{n}$ is a continuous map then there is a connected set $W \subset\left\{(x, t) \in I^{n} \times I: g(x, t)=x\right\}$ such that

$$
W \cap\left(I^{n} \times\{0\}\right) \neq \emptyset \neq W \cap\left(I^{n} \times\{1\}\right) .
$$

Indeed, the map $f(x, t):=x-g(x, t)$ satisfies the assumptions of Corollary 1.
A closed subset F of a topological space X is a partition between two sets $A_{0}, A_{1} \subset X$ if there are two disjoint open sets $U_{0}, U_{1} \subset X$ such that $X \backslash F=$ $U_{0} \cup U_{1}$ and $A_{i} \subset U_{i}$ for $i=0,1$.

The following corollary is an extension of the Eilenberg-Otto theorem [2]:
Corollary 3. Let F_{1}, \ldots, F_{n} be closed subsets of the cube $I^{n} \times I$ such that each set F_{i} 's is a partition between $I_{i}^{-} \times I$ and $I_{i}^{+} \times I$. Then the intersection $F_{1} \cap \ldots \cap F_{n}$ contains a connected set $W \subset F_{1} \cap \ldots F_{n}$ such that

$$
W \cap\left(I^{n} \times\{0\}\right) \neq \emptyset \neq W \cap\left(I^{n} \times\{1\}\right) .
$$

Proof. Let $U_{i}^{\varepsilon} \subset I^{n} \times I, i=1, \ldots, n, \varepsilon=-,+$ be open sets such that $I^{n} \times I \backslash F_{i}=$ $U_{i}^{-} \cup U_{i}^{+}, U_{i}^{-} \cap U^{+}=\emptyset, I_{i}^{-} \times I \subset U^{-}, I_{i}^{+} \times I \subset U_{i}^{+}$. The sets $H_{i}^{-}:=U_{i}^{-} \cup F_{i}$ and $H_{i}^{+}:=U_{i}^{+} \cup F_{i}$ satisfy the assumptions of Theorem.
§ 2. A combinatorial part. Let $k>1$ be a given natural number and let Z_{k} := $\{i / k: i \in Z\}$, where Z denotes the set of integers. Let Z_{k}^{n} denote the Cartesian product of n copies of the set Z_{k} :

$$
Z_{k}^{n}:=\left\{z:\{1, \ldots, n\} \rightarrow Z_{k} \mid z \text { is a map }\right\} .
$$

Using the Cartesian notation let $\mathbf{0}:=(0, \ldots, 0)$ be the neutral element and let $e_{i}:=(0, \ldots, 0,1 / k, 0, \ldots, 0), e_{i}(i)=1 / k$, be the i-th basic vector. Denote by $P(n)$ the set of permutations of the set $\{1, \ldots, n\}$.

An ordered set $S=\left[z_{0}, \ldots, z_{n}\right] \subset Z_{k}^{n}$ is said to be an n-simplex if there exists a permutation $\alpha \in P(n)$ such that

$$
z_{1}=z_{0}+e_{\alpha(1)}, \quad z_{2}=z_{1}+e_{\alpha(2)}, \ldots, \quad z_{n}=z_{n-1}+e_{\alpha(n)}
$$

Any subset $\left[z_{0}, \ldots, z_{i-1}, z_{i+1}, \ldots, z_{n}\right] \subset S, i=0, \ldots, n$, is said to be the $(n-1)$-face of the n-simplex S. A subset $C \subset Z_{k}^{n}$ of the form

$$
C:=C(k)=\left\{0, \frac{1}{k}, \ldots, \frac{k-1}{k}, 1\right\}^{n}
$$

is said to be a combinatorial n-cube. For $n>1$ let us define the i-th combinatorial back and front faces of C as

$$
C_{i}^{-}:=C_{i}^{-}(k)=\{z \in C: z(i)=0\}, \quad C_{i}^{+}:=C_{i}^{+}(k)=\{z \in C: z(i)=1\}
$$

and the boundary as

$$
\partial C:=\bigcup\left\{C_{i}^{-} \cup C_{i}^{+}: i=1, \ldots, n\right\} .
$$

In the case $n=1$ let us put $C=\left\{0, \frac{1}{k}, \ldots, \frac{k-1}{k}, 1\right\}$ and $C_{1}^{-}=\{0\}, C_{1}^{+}=\{1\}$.
The set $C=\{0\}$ is said to be 0 -cube (and 0 -simplex, too).
Let us say that an $(n-1)$-face σ of an n-simplex S lies in the boundary ∂C if $\sigma \subset C_{i}^{\varepsilon}$ for some $i=1, \ldots, n$ and $\varepsilon=-,+$.

Figure 1
Observation 1. Let $S=\left[z_{0}, \ldots, z_{n}\right] \subset Z_{k}^{n}$ be an n-simplex. Then for each point $z_{i} \in S$ there exists exactly one n-simplex $S[i]$ such that

$$
S \cap S[i]=\left\{z_{0}, \ldots, z_{i-1}, z_{i+1}, \ldots, z_{n}\right\}
$$

Proof. We shall define the i-neighbour $S[i]$ of the simplex S (see Figure 1) as (a) If $0<i<n$, then $S[i]:=\left[z_{0}, \ldots, z_{i-1}, x_{i}, z_{i+1}, \ldots, z_{n}\right]$, where $x_{i}=$ $z_{i-1}+\left(z_{i+1}-z_{i}\right)=z_{i-1}+e_{\alpha(i+1)}$.
(b) If $i=0$, then $S[0]:=\left[z_{1}, \ldots, z_{n}, x_{0}\right]$, where $x_{0}=z_{n}+\left(z_{1}-z_{0}\right)$.
(c) If $i=n$, then $S[n]:=\left[x_{n}, z_{0}, \ldots, z_{n-1}\right]$, where $x_{n}=z_{0}+\left(z_{n-1}-z_{n}\right)$.

We leave it to the reader to prove that the n-simplexes $S[i]$ are well-defined and that they are the only possible i-neighbours of the n-simplex S.

The following observation is immediate:
Observation 2. Any $(n-1)$-face of an n-simplex contained in the combinatorial n-cube C is an $(n-1)$-face of exactly one or two n-simplexes from C, depending on whether or not it lies on the boundary ∂C.

For a given map $\phi: C \rightarrow\{0, \ldots, n\}$ a subset $S \subset C$ is said to be k-colored if $\phi(S)=\{0, \ldots, k\}$.

First Combinatorial Lemma. Let $\phi: C \rightarrow\{0, \ldots, n\}$ be a map an n-cube $C=C(k)$ which for $n \geq 1$ satisfies the boundary condition

$$
i \notin \phi\left(C_{i}^{-}\right) \quad \text { and } \quad i-1 \notin \phi\left(C_{i}^{+}\right)
$$

Then the number ρ of the all n-colored n-simplices is odd.
Proof. Before starting the proof let us note that in the case $n=1$ the condition (α) means that $\phi(0)=0$ and $\phi(1)=1$. The condition (α) implies also that the face C_{n}^{-}is the only C_{i}^{ε} face which is $(n-1)$-colored. It is clear that the lemma is true for $n=0$ because $\phi(C)=\{0\}$.

We shall proceed to the proof with the induction on n. Assume that the lemma holds for an $(n-1)$-cube, $n \geq 1$. According to the assumption (α) any $(n-1)$-colored face σ of an n-simplex which lies in ∂C lies in C_{n}^{-}. Considering C_{n}^{-}to be an $(n-1)$-cube, by our inductive hypothesis the number η of such faces is odd. Let $\eta(S)$ denotes the number of $(n-1)$-colored faces of an n-simplex $S \subset C$.

If S is an n-colored n-simplex, clearly $\eta(S)=1$; while if S is not n-colored, we have $\eta(S)=2$ or $\eta(S)=0$ according as S is $(n-1)$-colored or $\{0, \ldots, n-1\} \backslash$ $\phi(S) \neq \emptyset$. Hence

$$
\rho=\sum \eta(S), \bmod 2
$$

On the other hand, an $(n-1)$-colored face is counted exactly once or twice in $\sum \eta(S)$ according as it is in the boundary ∂C or not.

Accordingly

$$
\sum \eta(S)=\eta, \bmod 2
$$

hence

$$
\eta=\rho, \bmod 2
$$

But η is odd. Thus ρ is odd, too.
Consider the product $D:=C \times J$ of a combinatorial n-cube $C=C(k)$ and an 1 -cube $J=J(k)=\left\{0, \frac{1}{k}, \ldots, \frac{k-1}{k}, 1\right\}$. The set D is a combinatorial $(n+1)$-cube. Fix
a map $\phi: D \rightarrow\{0, \ldots, n\}$. In the set of the all $(n+1)$-simplices contained in D let us establish the relation $\sim ; S_{1} \sim S_{2}$ whenever $\phi\left(S_{1} \cap S_{2}\right)=\{0, \ldots, n\}$, i.e. $S_{1} \cap S_{2}$ is n-colored.

From the pigeon hole principle it follows that each $(n+1)$-simplex $S \subset D$ which is n-colored has one or two simplices $S_{1}, S_{2} \subset D$ such that $S_{1} \sim S$ and $S_{2} \sim S$ depending on whether S has or not n-colored face lying in ∂C.

Figure 2
Second Combinatorial Lemma. Let $\phi: C \times J \rightarrow\{0, \ldots, n\}$ be a map from the product of a combinatorial n-cube $C=C(k)$ and a combinatorial 1-cube $J=J(k)$. Assume that for each $i=1, \ldots, n$ the following condition holds: $i \notin \phi\left(C_{i}^{-} \times J\right)$ and $i-1 \notin \phi\left(C_{i}^{+} \times J\right)$.

Then the number of the all chains $S_{0} \sim \ldots \sim S_{m}$ of $(n+1)$-simplices such that is odd.

$$
\phi\left(S_{0} \cap(C \times\{0\})\right)=\{0, \ldots, n\}=\phi\left(S_{m} \cap(C \times\{1\})\right)
$$

Proof. Consider maximal chains $S_{0} \sim \ldots \sim S_{m}$ of $(n+1)$-simplices in $C \times J$ such that
(1) $\phi\left(S_{0} \cap(C \times\{0\})\right)=\{0, \ldots, n\}$.

According to the boundary condition (β) there are only two possibilities (see Figure 2, $n=2$);
(2) $\phi\left(S_{m} \cap(C \times\{0\})\right)=\{0, \ldots, n\}$

$$
\begin{equation*}
\phi\left(S_{0} \cap(C \times\{1\})\right)=\{0, \ldots, n\} . \tag{or}
\end{equation*}
$$

From First Combinatorial Lemma it follows that the number ρ of the all $(n+1)$-simplices $S \subset C \times J$ such that $S \cap(C \times\{0\})$ is n-colored, is odd. Since any maximal chain which satisfies the conditions (1) and (2) occupies two $(n+1)$-simplices having n-colored faces in $C \times\{0\}$, so we infer that there is an odd number of chains such that the conditions (1) and (3) holds (see Figure 2 for $n=2$).
§3. A topological part. For a given sequence $\left\{A_{n}: n \in N\right\}$ of subsets of a metric space X let us define the set $\operatorname{Ls}\left\{A_{n}: n \in N\right\} ; x \in \operatorname{Ls}\left\{A_{n}: n \in N\right\}$ if and only if there exists an infinite set $M \subset N$ of points $x_{m} \in A_{m}$ such that $x=\lim \left\{x_{m}: m \in M\right\}$.

Lemma (see [5; Th. 5.47.6]). Let $\left\{A_{m}: m \in N\right\}$ be a sequence of connected subsets of a compact metric space X such that some sequence $\left\{a_{n}: n \in N\right\}$ of points $a_{n} \in A_{n}$ is converging in X. Then the set $A:=L s\left\{A_{n}: n \in N\right\}$ is compact and connected.

Proof. 1. First, let us prove that A is a closed. Fix $x \in X \backslash A$. Then there exists a neighbourhood U_{x} of x such that U_{x} meets only finite number of the sets $A_{n}^{\prime} s$. It is clear that $U_{x} \cap A=\emptyset$. Thus the set $X \backslash A$ is open.
2. Let $\left\{a_{n}: n \in N\right\}$ be a sequence of points $a_{n} \in A_{n}$ converging to a point $a \in X$. Suppose that there are two disjoint nonempty open sets $U_{0}, U_{1} \subset X$ such that $A \subset U_{0} \cup U_{1}$ and $U_{0} \cap U_{1}=\emptyset$. Assume that $a \in U_{0}$ and fix a point $x \in U_{1} \cap A$. Let $\left\{x_{m}: m \in M\right\}$, be a sequence such that $x=\lim \left\{x_{m}: m \in M\right\}$. Observe, that for some $m \in M ; A_{m} \subset U_{0} \cup U_{1}$. Because if not then we can choose a converging subsequence $\left\{y_{s}: s \in S\right\}, \quad S \subset M$, such that $y_{s} \in A_{s} \backslash\left(U_{0} \cup U_{1}\right)$. We have, $\lim \left\{y_{s}: s \in S\right\} \notin U_{0} \cup U_{1} \supset A$, contradicting the definition of the set A. Thus $A_{m} \subset U_{0} \cup U_{1}$ for some $m \in M$. The facts $a_{m} \in U_{0} \cap A_{m}, x_{m} \in U_{1} \cap A_{m}$ and $U_{0} \cap U_{1}=\emptyset$ yield that the set A_{m} is not connected, a contradiction.

We have completed the proof that A is a closed connected subset of X.
Proof of Theorem. Define a map $\phi: I^{n} \rightarrow\{0, \ldots, n\}$ by

$$
\begin{equation*}
\phi(x):=\max \left\{j: x \in \bigcap_{i=0}^{j} F_{i}^{+}\right\} \tag{1}
\end{equation*}
$$

where $F_{i}^{+}=I^{n} \times I$ and $F_{t}^{+}=H_{i}^{+} \backslash I_{i}^{-} \times I$ for each $i=1, \ldots, n$. Since $I_{i}^{\varepsilon} \times I \subset H_{i}^{\varepsilon}$, where $\varepsilon=+$ or - , the map ϕ has the following properties:

$$
\text { if }(x, t) \in I_{i}^{-} \times I \text {, then } \phi(x, t)<i \text {, and if }(x, t) \in I_{i}^{+} \times I \text {, then } \phi(x, t) \neq i-1 \text {. (2) }
$$

From (1) it follows that for each subset $S \subset I^{n} \times I$

$$
\begin{equation*}
\phi\left(S \cap I_{i}^{\varepsilon} \times I\right)=\{0, \ldots, n-1\} \text { implies that } i=n \text { and } \varepsilon=-. \tag{3}
\end{equation*}
$$

Observe that (2) and the fact that $I^{n} \times I=H_{i}^{-} \cup H_{i}^{+}$imply that

$$
\begin{equation*}
\text { if } \phi(x)=i-1 \text { and } \phi(y)=i \text {, then } x \in H_{i}^{-} \text {and } y \in H_{i}^{+} . \tag{4}
\end{equation*}
$$

For each $k=2,3, \ldots$ the map $\phi \mid C(k) \times J(k)$ satisfies the condition (β) of Second Combinatorial Lemma and therefore there is a chain $S_{0}^{k} \sim \ldots \sim S_{m_{k}}^{k}$ of simplices such that

$$
\phi\left(S_{0}^{k} \cap(C(k) \times\{0\})\right)=\{0, \ldots, n\}=\phi\left(S_{m_{k}}^{k} \cap(C(k) \times\{1\})\right) .
$$

Define connected sets

$$
W_{k}:=\bigcup_{i=0}^{m_{k}} \operatorname{conv} S_{i}^{k}, \quad k=2,3, \ldots,
$$

where conv A means the convex hull of the set A. Since $I^{n} \times I$ is a compact space we can find an infinite subset $M \subset N$ and convergent subsequence $\left\{w_{m}: m \in M\right\}$, $w_{m} \in W_{m}$. According to Lemma the set $W:=\mathrm{Ls}\left\{W_{m}: m \in M\right\}$ is connected. Obviously

$$
W \cap\left(I^{n} \times\{0\}\right\} \neq \emptyset \neq W \cap\left(I^{n} \times\{1\}\right) .
$$

Let us prove that $W \subset \bigcap_{i=1}^{n} H_{i}^{-} \cap H_{i}^{+}$. To see this, fix $x \in W$ and choose a subsequence $\left\{x_{k}: k \in K\right\}, K \subset M$, of points $x_{k} \in W_{k}$ such that $\lim \left\{x_{k}: k \in K\right\}=x$. Next, choose n-colored $(n+1)$-simplices S_{k} 's, $S_{k} \subset W_{k}$, such that $x_{k} \in \operatorname{conv} S_{k}$. Since $\lim \operatorname{diam}\left\{\operatorname{conv} S_{k}: k \in K\right\}=0$, we infer that for arbitrary subsequence $\left\{y_{i}: l \in L\right\}, L \subset K, \quad y_{l} \in \operatorname{conv} S_{l}$, we have; $x=\lim \left\{y_{i}: l \in L\right\}$. Therefore the proof will be completed if we show that for each $i=1, \ldots, n$ an n-colored $(n+1)$-simplex S;

$$
H_{i}^{-} \cap S \neq \emptyset \neq H_{i}^{+} \cap S .
$$

But it is clear in view of the property (4).

References

[1] Browder F. E., On con inuity of fixed points under deformations of continuous mappings, Summa Bras liensis Mathematicae 4 (1960), p. 186.
[2] Eilenberg S., Otto E., Quelques propriétés caractéristiques de la théorie de la dimension, Fund. Math 31 (1938), 149-153.
[3] Kulpa W, The Poincaré-Miranda Theorem, Amer. Math. Monthly 104 (6) (1977), 545-550.
[4] Kulpa W., Poincaré and domain invariance theorem, Acta Univ. Carolinae - Mathematica et Physica 39 (1998), 127-136.
[5] Kuratowski K., Topology vol II, Academic Press, New York 1968.
[6] Mas-Collel A., A note on a theorem of F. Browder, Mathematical Programming 6 (1974), 229-233.
[7] Poincaré H., Sur certaines solutions particulieres du problème des trois corps, C. R. Acad. Sci. Paris 97 (1883), 251-252.

[^0]: Department of Mathematics, Unıversity of Silesia, ul. Bankowa 14, 40007 Katowice, Poland (W. Kulpa, M. Turzańskı), and Institute of Transport, Sılesian Technical University, ul. Krasinskiego 8, 40019 Katowice, Poland (L. Socha).

