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The structure of the zeros set f_1(0) of a continuous function f: In+1 -> Rn, I = [0,1], 
satisfying some additional boundary conditions are investigated. This gives an extension 
of some classical results due to Bolzano, Poincare, Brouwer, Eilenberg and Otto. 

§ 1. A main result. Let /": = [0, l ] n be the n-dimensional cube of the Euclidean 
space Rn and let us denote by 

Ir := {xe F : x(i) = 0}, / + := {xeln: x(i) = 1} 

its i-th opposite faces. In this paper we are going to prove the following. 

Theorem. Let {(H~, / / + ) : i = 1,..., n) be a family of pairs of closed sets such 
that Ir x / cz //-, /+ x / cz H? and F x I = Hr u //+. 

Then there exists a connected set W cz Pjn
=1//j~ n //+ such that 

Wn(lnx {0})+ 0 4= W n (P x {1}). 

The proof of this theorem will be based on two combinatorial lemmas. 
Letting //~ : = f_1(—oo, 0], //+ := f_1[0, co) we obtain a parametric exten

sion of Poincare's theorem (cf. [7, 3, 4]): 

Corollary 1. Let f : F x I -> jRn, f = (f, ..., f), / = [0, 1], be a continuous 
map such that for each i < n 

f(l- x /) c- ( - co, 0] and f(/,+ x /) c [0, oo). 

Then there exists a connected set W cz f~ !(0) such that 
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Wn(Fx {0})+- 0 * IV n (ln x {1}). 

It is easy to observe that Corollary 1 implies Theorem. It suffices to consider 
functions f(x):= d(x, Hj~) — d(x, H+), i = 1,..., n, where „(x, _4): = inf{||x — a | : 
ae A} means the distance functions from a set A. 

From Corollary 1 we immediately obtain an extension of Brouwer's theorem due 
to Browder (cf. [1, 6]): 

Corollary 2. If g :F xl -* F is a continuous map then there is a connected set 
W cz {(x, t)e F x I: O(x, t) = x} such that 

W n (F x {0})+ 0 4= IV n (F x {1}). 

Indeed, the map f(x, t) := x — g(x, t) satisfies the assumptions of Corollary 1. 
A closed subset F of a topological space X is a partition between two sets 

2_o, -4i cz K if there are two disjoint open sets U0, U{ cz X such that X\F = 
U0 u (J! and At cz [/. for i = 0, 1. 

The following corollary is an extension of the Eilenberg-Otto theorem [2]: 

Corollary 3. Let Fu ..., Fn be closed subsets of the cube F x I such that each 
set Ft's is a partition between I^~ x I and I+ x L Then the intersection Fx n ... n Fn 

contains a connected set W cz Fx n ... Fn such that 

Wn(Fx {0})# 0 4= IV n (7n x {l}). 

Proof. Let Ue cz F x 7, i = 1,..., n, 8 = —, + be open sets such that F x I\Ft = 
U~ u U+, Ur n U+ = 0 , 1 ' x I cz [/-, /+ x I cz U+. The sets Hr := 17," u Ff 

and H+ : = U+ u Ft satisfy the assumptions of Theorem. D 

§ 2. A combinatorial part. Let k > 1 be a given natural number and let Zk: = 
{i/k:ie Z}, where Z denotes the set of integers. Let Z\ denote the Cartesian 
product of n copies of the set Zk: 

Z\ := {z: {1,. . . , n} -> Zk\z is a map}. 

Using the Cartesian notation let 0 : = (0,..., 0) be the neutral element and let 
et:= (0,..., 0, 1/k, 0,..., 0), et(i) = 1/k, be the i-th basic vector. Denote by P(n) the 
set of permutations of the set {1,. . . , n}. 

An ordered set S = [z0,..., zn] cz Z\ is said to be an n-simplex if there exists 
a permutation a e P(n) such that 

Zl = Z0 + ^oc(l), Z2 = Zl + ea(2> ••- , Zn = Z n - 1 + ^a(n) • 

Any subset [z0,..., Zj_b z i + ] , . . . , zn] cz S, i = 0,... , rz, is said to be the 
(n — \)-face of the n-simplex S. A subset C cz Z\ of the form 

C:-OW-{fti..,^i.l 
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is said to be a combinatorial n-cube. For n > 1 let us define the i-th combinatorial 
back and front faces of C as 

Cf- := Cr(k) = {zeC: z(i) = 0}, Cf
+ := Cf

+(k) = {ZE C: z(f) = 1}, 

and the boundary as 

dC:= U{Q" uC,+ :i = 1,..., n}. 

In the case M = 1 let us put C = {0,-;,..., -£-, 1} and Cf = {0},Ci" = {1}. 
The set C = {0}is said to be 0-cube (and 0-simplex, too). 
Let us say that an (n — l)-face a of an n-simplex 5 lies in the boundary 3C if 

G cz C\ for some i = 1,..., n and e = —, + . 

CÎ 

cï 

Figure 1 

Observation 1, Let S = [z0,..., zn] c ZJJk an n-simplex. Then for each point 
Zi e S there exists exactly one n-simplex S[i] such that 

S n S[i] = {ZQ, ...., zf_1? zf+1,..., zn}. 

Proof. We shall define the i-neighbour S[i] of the simplex S (see Figure 1) as 
(a) If 0 < i < n, then S[i] := [z0,..., zf_b xi9 zf+1,..., z j , where xf = 

Zf_j + (zf + 1 - Zf) = Z f_! + ea(f+]). 
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(b) If i = 0, then S[0] := [z b ..., zm x0]> where x0 = zn + (zx — z0). 
(c) If i = n, then S[n] : = [x„, z0, •••, "«-i]- where xn = z0 + (z„_i - z„). 
We leave it to the reader to prove that the n-simplexes S[i] are well-defined and 

that they are the only possible i-neighbours of the n-simplex S. • 

The following observation is immediate: 

Observation 2. Any (n — i)-face of an n-simplex contained in the combi
natorial n-cube C is an (n — i)-face of exactly one or two n-simplexes from C, 
depending on whether or not it lies on the boundary dC. 

For a given map <j): C -> {0,..., n} a subset S cz C is said to be k-colored if 
0(S) = {0,..., k}. 

First Combinatorial Lemma. Let <j>: C -> {0,..., n} be a map an n-cube 
C = C(k) which for n > 1 satisfies the boundary condition 

(a) i $ <j)(C~~) and i — 1 <£ (j)(Cf). 

Then the number p of the all n-colored n-simplices is odd. 

Proof. Before starting the proof let us note that in the case n = 1 the condition 
(a) means that (f)(0) = 0 and 0(1) = 1. The condition (a) implies also that the face 
C~ is the only C\ face which is (n — l)-colored. It is clear that the lemma is true 
for n = 0 because <fi(C) = {0}. 

We shall proceed to the proof with the induction on n. Assume that the lemma 
holds for an (n — l)-cube, n > 1. According to the assumption (a) any 
(n — l)-colored face a of an n-simplex which lies in dC lies in C~. Considering 
C~ to be an (n — l)-cube, by our inductive hypothesis the number rj of such faces 
is odd. Let r](S) denotes the number of (n — l)-colored faces of an .n-simplex 
S c C. 

If S is an n-colored n-simplex, clearly r](S) = 1; while if S is not n-colored, we 
have r](S) = 2 or r](S) = 0 according as S is (n — l)-colored or {0,..., n — 1}\ 
c/)(S) =# 0. Hence 

P = Z^(S)' mod 2-
On the other hand, an (n — l)-colored face is counted exactly once or twice in 
^r/(S) according as it is in the boundary dC or not. 

Accordingly 
Y, *](S) = r], mod 2, 

hence 
r] = p, mod 2 . 

But r] is odd. Thus p is odd, too. • 

Consider the product D : = C x J of a combinatorial n-cube C = C(k) and an 
1-cube J = J(k) = {0,£,..., ^ , 1}.The set D is a combinatorial (n + l)-cube. Fix 
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a map 0 : D -> {0,..., n}. In the set of the all (rc + l)-simplices contained in D let 
us establish the relation ~; S^ ~ S2 whenever (̂ (Si n S2) -= {O,..., rc},i.e. Si n S2 

is n-colored. 
From the pigeon hole principle it follows that each (n + l)-simplex S cz D 

which is rc-colored has one or two sirnplices S1? S2 cz D such that Si ~ S and 
S2 ~ S depending on whether S has or not rc-colored face lying in dC. 

o * 

0 1 1 1 0 0 0 

Figure 2 

Second Combinatorial Lemma. Let 0 : C x J -> {0,..., n} be a map from the 
product of a combinatorial n-cube C = C(k) and a combinatorial 1-cube J = J(k). 
Assume that for each i = 1,..., n the fallowing condition holds: 

(P) i $ </)(Cr x J) and i - 1 <£ 0(C,+ x J). 
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Then the number of the all chains S0 ~ ... ^ Sm of(n + \)-simplices such that 

</»(so n (C x {0}))= {0,..., n} = <p{Sm n{Cx {1})) 
ts Odd. 

Proof. Consider maximal chains S0 ~ ... ^ 5m of (n + l)-simplices in C x J 
such that 
(1) <j){S0n{Cx{0}))={0,...,n}. 
According to the boundary condition (/?) there are only two possibilities (see 
Figure 2, n = 2); 
(2) 0(S m n(Cx{O}))={O, . . . , n} 
or 
(3) 0 ( 5 o n ( C x { l } ) ) = { O , . . . , n}. 

From First Combinatorial Lemma it follows that the number p of the all 
(n + l)-simplices S cz C x J such that S n (C x {0}) is ri-colored, is odd. Since any 
maximal chain which satisfies the conditions (1) and (2) occupies two (n + l)-sim-
plices having n-colored faces in C x {0}, so we infer that there is an odd number of 
chains such that the conditions (1) and (3) holds (see Figure 2 for n = 2). • 

§ 3. A topological part. For a given sequence {An : n e N} of subsets of a metric 
space X let us define the set Ls {A„ : n e IV}; X G L S {4. :ne N}if and only if there 
exists an infinite set M cz: IV of points xm e Am such that x = lim {x^ : m e M}. 

Lemma (see [5; Th. 5.47.6]). Let {Am :me N}be a sequence of connected subsets 
of a compact metric space X such that some sequence {an:ne N} of points an e An 

is converging in X. Then the set A:= Ls {An :ne IV} is compact and connected. 

Proof. 1. First, let us prove that A is a closed. Fix x e X\A. Then there exists 
a neighbourhood Ux of x such that Ux meets only finite number of the sets Ans. 
It is clear that Ux n A = 0. Thus the set X\A is open. 

2. Let {dn : n e N} be a sequence of points an e An converging to a point a e X. 
Suppose that there are two disjoint nonempty open sets C/0, CIi CZ X such that 
A cz U0u U{ and U0 n CIi = 0. Assume that ae U0 and fix a point xeUx n A. 
Let {xm : m e M}, be a sequence such that x = lim {xm:me M}. Observe, that for 
some m e M; Am cz U0 u CI!. Because if not then we can choose a converging 
subsequence {ys: s e S}9 S cz M, such that yse As\(U0v U{). We have, 
lim {ys: s e S} $ U0 u Ux ZD A, contradicting the definition of the set A. Thus 
Am cz U0 u CI! for some me M. The facts ame U0 n Am9 xme Ul n Am and 
CI0 n CIi = 0 yield that the set Am is not connected, a contradiction. 

We have completed the proof that A is a closed connected subset of X. • 

Proof of Theorem. Define a map (j): P -> {0,..., n} by 

0(x): = max I j : x e f]Ft \, (l) 
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where F+ = F x 7 and F+ = H + \ 7 r x I for each i = 1,..., ft. Since I\ x 7 cz H*, 
where s = + or —, the map (/> has the following properties: 

if (x, t) G If x I, then 0(x, t) < f, and if (x, £) e 7+ x 7, then c/>(x, t) #= f — 1. (2) 

From (1) it follows that for each subset S cz In x I 

0(S n /• x 7) = {0,..., n — 1} implies that i = n and e = — . (3) 

Observe that (2) and the fact that F x I = H~ u H + imply that 

if (j)(x) = i — 1 and <p(y) = i, then x e H~ and y e H + . (4) 

For each k = 2, 3 , . . . the map 01 C(k) x J(k) satisfies the condition (/?) of Second 
Combinatorial Lemma and therefore there is a chain SQ ~ ... ~ Smk of simplices 
such that 

0(S§ n (C(/c) x {0}))= {0,..., n} = ^ ( S ^ n (C(fc) x {1})). 

Define connected sets 
mk 

Wk:= UconvSf , k = 2 ,3 , . . . , 
i = 0 

where conv ,4 means the convex hull of the set A. Since F x I is a compact space 
we can find an infinite subset M cz N and convergent subsequence {wm : m e M}, 
wm e FJ4. According to Lemma the set W: = Ls {Wm : m e M} is connected. 
Obviously 

W n (F x {0}}+ 0 * W n (F x {1}). 

Let us prove that W cz f}"=1H[" n H + . To see this, fix xeW and choose 
a subsequence {xk:ke K}9 K cz M, of points xksWk such that lim {xk: k G K] = x. 
Next, choose n-colored (ft + l)-simplices Sfe's, Sk cz Wh such that x^GconvS^. 
Since lim diam {conv Sk: ke K] = 0, we infer that for arbitrary subsequence 
{y : I G L}, L CZ K, yte conv S;, we have; x = lim {y : I e L}. Therefore the 
proof will be completed if we show that for each i = 1,..., n an ft-colored 
(ft + 1)-simplex S; 

Hr nS + 0 #= H + n S . 

But it is clear in view of the property (4). • 
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