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We consider combinatorical facts on [co]60 which walk back and forth around Base Tree 
Theorem. Ideals jfK are introduced and their cardinal invariants are estimated. Known 
facts about PN are adopted for [co]03. 

1. Introduction. A family of infinite subsets of natural numbers is almost 
disjoint if each two its elements have finite intersection. An infinite family 
consisting of almost disjoint sets is called a maximal almost disjoint family, 
whenever any infinite subset of natural numbers has infinite intersection with some 
element of this family. Following shortened characters will be used: AD-family 
instead of almost disjoint family; MAD-family instead of maximal infinite almost 
disjoint family; A e \_X\W instead of A is a infinite subset of X; and A meets B 
instead of A has infinite intersection with B. Thus co denotes the set of all natural 
numbers; and [cO]w denotes the family of all infinite subset of natural numbers. For 
AD-families °U and if we say that °U refines Y, whenever any element of % meets 
at most one element of if. But for MAD-families °U refines if if and only, if any 
element of °U is almost contained in some element of if — recall that X is almost 
contained in Y, whenever the difference X\ Y is finite. We assume that our readers 
are familiar with standard notions of set theory, i.e. with ordinal and cardinal 
numbers. We need following less known facts from this theory. 

Base Tree Theorem. There exists a family & = {% : a < h}with the following 
properties: every S)a is MAD-family; if a < /? < h, then @p refines @a; for any 
X e [co]03 there exists an ordinal a < h such that X almost contains continuum 
elements of @a; if a < j8 < h, then every element of QJ^ meets continuum elements 
of 2fi. a 
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Base Tree Theorem was stated in B. Balcar, J. Pelant, P. Simon [2]. It had been 
using in B. Balcar, J. Dockalkova, P. Simon [1], B. Balcar, P. Simon [3], B. Balcar, 
P. Vojtas [4], A. Dow [6] and [7], R. Frankiewicz, P. Zbierski [9], Sz. Plewik [11], 
S. Shelah, O. Spinas [12]. Assume that h is the minimal ordinal for which Base 
Tree Theorem is valid, so h is a regular uncountable cardinal. In [2]: see Lemma 
2.6, there was stated the following. 

Lemma. If °U has cardinality less than h and °U consists of MAD-families, then 
there exists a MAD-family which refines every family belonging to °U. • 

2. Ideals C/CK. Suppose si is some AD-family and K is a cardinal number such 
that 2 < K < c, where c stands for the cardinal 2co: this cardinal is called 
continuum. Put 

JK{si) = {Xe [co]03: X meets at least K elements of si} 

and let JfK be the ideal on [co]w generated by the family of sets 

{r{si):si is AD-family}. 

Since in ZFC every infinite AD-family is contained in some MAD-family, 
one could say that Jf * is generated by the family of sets {JK{si): si is MAD-
family}. 

Lemma 1. If 2 < K < c, and X < h, and a family {sia: a < X} consists of 
MAD-families, then there exists some MAD-family & such that 

{J{r{sia):oc<X}^JK{@). 

Proof. One could use Lemma from the introduction and consider some 
MAD-family 38 which refines every family sia. • 

Note that Jf2 is exactly the ideal of nowhere Ramsey sets, see Lemma 3 in [11] 
or compare Claim on p. 352 in [3]. On the other hand Jfc is exactly the ideal of 
all sets which have ADR. Indeed, following [1], [3] or [4] we say that a family 
°U cz [co]w has ADR, whenever there is some AD-family si such that for any 
U e % there is some A e si with A ^ U. 

Theorem 1. A family of subsets of natural numbers has ADR if and only, if it 
belongs to Jfc. 

Proof. Let si be some MAD-family. For any U e Jc{si) choose cp{U)e si such 
that cp{U) meets U and cp : J\si) -> si is some one-to-one function. The family 

{Uncp{U):UeJc{si)} 

is some AD-family which shows — since the intersection U n cp{U) is always 
contained in U, that Jc{si) has ADR. Because of the definition every element of 
Jfc has to have ADR. 
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Let si be AD-family which shows that a family °U has ADR. Split any element 
of si onto continuum almost disjoint and infinite pieces and denote the family of 
those pieces by si*. We have U e J\si% i.e. UeJTc. • 

Directly from the definition one concludes the following inclusions 

J T 2 ^ J T 3 3 ... Z2 j r ° ^ ... ^ j f c . 

Some of them are proper. 

Theorem 2. If n and m are different natural numbers, then Jfn 4= Jfm. 

Proof. Let 2 < m < n < co. Since Jfn c Jfm, we shall show that the family 
Jm(si) does not belong to Jf" for every MAD-family si. Suppose 3) is some 
MAD-family. Choose sets Au _42,..., An which belong to si and sets I?1? B2,..., Bm 

which belong to ^ such that Ak meets Bfc, whenever 1 < k < m. The union 

Ax n Bxu A2r\ B2 u ... u Am n Bm 

belongs to Jm(si) — because it meets any set Au A2,..., Am — and does not belong 
to J\$) — because it meets less than n elements of £&. By the definition of JfK 

one concludes that Jfm is not contained in Jfn. • 

Theorem 2 implies that Jfw is a proper subfamily of any JTn, where n is some 
natural number. In [3] — see Theorem 4.18, there was given set-theoretical 
assumptions which imply Jfw = jfc. However the validity of this equality remains 
still open, compare also [1] p. 82. Note that we have showed the following: If 
2 < n < co and si is some MAD-family, then Jn(si)\ J\si) has not ADR. So, 
we have obtained some examples which were in search by S. H. Hechler [10] 
p. 109. 

3. Additivity and covering numbers for JfK. If S is a set, then [S] denotes its 
cardinality. Recall that the additivity number of family si is the cardinal 

add(si) = min{\Sf\:Sr <= si and \j£f$si}\ 

but the covering number is defined by 

cov(si) = min{\£?\:&> <= ̂  and \}si = \)if). 

For every non-empty family si the covering number cov(si) is always well 
defined But additivity number add(si) is well defined, if [J si does not belong to 
si. Directly from the definitions it follows that for 2 < K < c the family of all 
infinite subset of natural numbers does not belong to JfK, i.e. [co]w £ JTK. So, 
cardinal numbers add(tfK) and cov(jfK) are well defined. In [11] — compare [3] 
p. 352 — there was observed that add(X*2) = cov(X2) = h. Let us generalize 
those facts. 

Lemma 2.If2<K<c, then add(XK) > h. 

63 



Proof. Consider some family 

{r(s/a):a < X}. 

If X < h, then — by the Lemma from Introduction — there is a MAD-family 
s/ which refines every family stfa. By the definition we have 

{j{r(s/a):a < 2}<= JK(stf). 

This means that every family of less that h elements of JfK has union which has 
to belong to JfK. • 

Lemma 3. If 2 < K < c, then cov(jfK) < h. 

Proof. Consider some family 0 = {% : a < h} of MAD-families with proper
ties as in Base Tree Theorem. Since, for any X e [co]w there exists an ordinal 
a < h such that X almost contains continuum elements of Sa and by the 
definitions one concludes that 

{J{r(@a):a<h}=[co]™, 

and the family {.F(®a): a < h] consists of elements of JfK. • 

The next theorem generalizes [10] p. 97 Theorem 2.8, and answers the problem 
4, see [10] p. 109. 

Theorem 3. If 2 < K < c, then cov(XK) = add(jfK) = h. 

Proof. Since [co]™ $ CtfK one concludes that add(jfK) < cov(tfK). By Lemmas 
4 and 5 one infers 

h < add(jfK) < cov(XK) < h. 

This means that add(jfK) = cov(jiTK) = h. • 

4. Cofinality number for JfK. Recall that for a family stf the cofinality number 
cof(s$) is the least cardinal \£f\ for families £f ^ si which fulfill the following 
condition: for any A e srf there exists S e ^ such that A c= S. 

Theorem 4. If 2 < K < c, then cof(jfK) > c. 

Proof. Suppose {stfa: a < c} are MAD-families and let stf0 = {Va: a < c}. For 
every ordinal a < c choose some Ba e s/a which meets Va. Let {Cp : jS < c} be 
some AD-family which consists of subsets contained in Ba n Va. If s/ is 
a MAD-family which contains all above defined families {C^ : /? < c}, then JK(stf) 
is contained in no JK(stfa): in fact 

BanKeJK(stf)\JK(stfa). 

This implies that no family of cardinality c which consists of elements of XK could 
be considered in the definition of cof(c/fK). • 
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Theorem 5. If% °U contains no AD-family of cardinality c, then % e Jf2. 

Proof. For any A e [co]03 there is VA := A such that VA almost contains no 
element of °U. Indeed, if {Ca: a < c} is some AD-family consisting of subset of A, 
then some Ca one could take as VA. In the opposite case, for every a < c one takes 
some element of °U which is almost contained in Ca. By this way one would choose 
AD-family which could not exist because of the assumptions. If £% is 
a MAD-family which consists of subsets of sets VA — where A e [co\w — then 
W c J2(^). • 

We do not know if the above theorem holds for some JfK, where K 4= 2. In [3]: 
Theorem 4.16, there was stated that a union of less than continuum ultrafilters has 
ADR. This fact follows that any set of cardinality less than continuum belongs to 
X°\ in fact has ADR. 

5. JK(si) and AD-families of large cardinality. Consider some AD-family 
si = {Aa : a < c}. For every ordinal a < c put 

B« = U U m } x {°>!> •••> rn}:me Aa}. 

Lemma 4. The family {Ba: a < c} cz [Oj x Oj]w consists of almost disjoint sets 
and any set Ba meets each set co x {n}. 

Proof. By the definition Ba is some infinite union of non-empty pairwise 
disjoint sets, so every Ba is infinite. Also 

BanBp = \J{{m}x {(U,..-, m}:me,4 a n Ap}. 

If a -# P, then Ba n Bp has to be finite because of Aa n Ap is finite. Since 

Ba n (co x {n})= {(m,n) :n < me Aa}, 

then this intersection has to be infinite. • 

Theorem 6. If si is infinite AD-familyy then Jw(si) contains some AD-family of 
cardinality c. 

Proof. Take different sets A0, Ah A2,... which belong to si. Let 

fn:co x {n}-> An\(A0v AXKJ A2U ... u ^ j 

be one-to-one functions and put f0 u f u ... = F. If {Ba : a < c} is a family as in 
Lemma 4, then F(Ba) e Jw(si) for every a < c. Therefore the family of images 
{F(Ba): a < c} is a desired one. • 

6. Sets which have to belong to Jfc. For some infinite and countable 
AD-family {B^ :n < co} denote by 3FR the filter which is generated by sets 
co\(R0 u i?! u ... u Rn\ and put 

/(#*) = J^({K: n < co}). 
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Recall that 3F cz [co]60 is a filter, whenever: — it is closed under finite intersection, 
i.e. A e f and B e # \ then A n B e ^7; — if yl is almost contained in B c co and 
A e J^, then B e ^F. A family ^ consists of generators of a filter :#", if J27 is the 
intersections of all filters which contains °tt. A filter 3F is countably generated, if 
there exist sets F0, F1? F2,... such that J^ is generated by those sets and 
F0 => Fj ID F2 zo ..., and Fn+i\Fn are always infinite. Next lemmas explain when 
r(srf) = r(3fi), for infinite and countably AD-families si and J>. 

Lemma 5. 1/* F0 ZD F: ZD F2 ZD ... are generators of a filter 3F such that 
Fn+l\Fn is always infinite, then 

Ja{{F0\Fu F,\F2, F2\F3,...}) = /(#-) . 

Proof. Suppose that H0, Hh H2,... and G0,GhG2... are two collections of 
generators of 3F such that for each natural number k there hold: Gk almost contains 
Hk; and Hk almost contains Gk+i; and Gk\Hk is infinite; and Hk\Gk+1. This 
follows that Hk\Hk+m is almost contained in Gfc\G/c+m_1. To obtain 

rdK : n < co}) c J-({F0\Fb F^F,, F2\F3,...}) 

one could consider generators Hk on the form co\(R0 u Rx u ... u .Rn), and 
generators Gk on the form Fn. But to obtain 

J-({P„: n < co}) =2 J1{Fo\F1? PAFz, P2\P3,...}) 

one should consider generators Gk in the form co\(R0 u Rxu R2... u Rn), and 
generators Hfc in the form Fn. • 

Lemma 6. //«f0 c ^ c ^ c ... w « sequence of countably generated filter 
and always M e l(£Fn\ then M belongs to l([J{^F : n < co}). 

Proof. This is immediately consequence of the following property: IfMs l(tF\ 
then for any G e 3F there is Jtf e 3F such that M meets G\H. One concludes this 
property directly for the definition of l(3F). • 

Let \tf : K < b} be some fixed, unbounded and increasing family of sequences 
of natural number. This means that: gK = {gg, g\,...} for every ordinal K; if 
P < K < b, then gf < gn for all but finite many n < co; no sequence of natural 
number f0, f , . . . fulfills gf < fn, for all but finite many n < co and for every 
p < b. Assume that the cardinal b is minimal ordinal for which there exists 
unbounded and increasing family of sequences of natural number. More details 
about b one can find in [5]. 

Lemma 7. Let 3F be some countably generated filter. There exists a family 
{ j ^ : a < b} consisting of countably generated filter such that: 2F cz j ^ for every 
ordinal a; zf a + (3, then there are A e #"a and B e 3F$ such that A does not meet 
B; if Me 1{3F\ then M e 7(j^a) n /(i%) for some a + j3. 
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Proof. Let F0 z> Fi =5 F2... be some generators of J^ such that Fn\Fn+1 is 
always infinite. For any ordinal K < b put 

Y(3F9 K) = [j{{ne Fm\Fm+1 :n<gK
m}:m<m}. 

Let J \ be filters generated by families 

P u {Y{F, a)\Y(F, Q : lim £, = a}, 
tt-KX) 

where all sets Y(^, £n+1)\Y(J% £n) are always infinite. 
If M e I(J^), then there are different filters <& and Jf7 which have been defined 

by the above formula, and M e I(^) n I(j^). Indeed, put Co = 0, and suppose that 
we have defined £«• Since M e I(Jr) there exists an increasing sequence 
m0, mb m2,... such that M n Fm\Fm is always infinite. For each j < m choose 
kjE M n Fm\Fm.+1 such that g^ < k;. Consider the sequence of natural number 
f0, f , . . . such that: f = k0 whenever i ^ m0; and f = k; whenever mj_1 < i ^ m7. 
Since {cf: K < b} is unbounded one could take an ordinal C«+i > C« such that 
ji < g?M+1 f°r infinitely many f < m. If m;_! < i ^ m; and f < g-"+1, then 
kj = f < gp+1 ^ gm"+S i-e. /c; < g^+1, because of the sequence gCn+1 is in
creasing. Therefore the set M n Y(i^, £n+i)\ Y(J^, £n) is always infinite. Put 
r/ = sup{C„: rz < co}. This is possible since b is a regular cardinal number. The 
filter <S is generated by the family 

# - u { Y ( ^ , r / ) \ Y ( ^ , g : l i m C „ = ^} , 
n->oo 

such that M e !($). A next filter 2tf one defines similarly, but with the starting 
point Co = *7- In fact one could define filters J^a such that M G I(J^a) for b many 
ordinals, where a < b because of b is a regular cardinal. • 

Theorem 1. If a family {R^ :n < m} consists of infinite and parwise disjoint 
sets of natural numbers, then Jw({Rn: n < m}) belongs to Jfc. 

Proof. We construct a tree 7̂  u T{ u T2... — where Tn denotes the n-th level 
of the tree — of height m consisting of countably generated filters. Let T0 = {^R}, 
i.e. it consists of the filter generated by sets cO\(jR0 u R1 u ... Rn). Suppose that 
the level Tn has been defined. If J^ e Tm then the immediately successors of 
£F could be filters which exist by Lemma 7. For any M e l(^R) choose some filter 

^M = \J{^n'n < m}9 

where #0 <= ^\ <= ^2 <= •••, such that: always Ĵ fc G 7̂ ; and always M G I(#^); and 
if IV 4= M, then $N + ^M. This is possible because of by Lemma 6 for any M one 
could choose <§M between continuum filters. For every filter C§M fix a sequence 
F0 => F! => F2 =5 ... such that M always meets Fn\Fn+1: this is possible because of 
Lemma 6. Choose some mke M n Fn\Tn+1 and put s/(M) = {m0, mb m2,... }. The 
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family {s/(ht): M e J^Ro, Rh R2, ...}) = I{FR)} 1s AD-family: by the definition 
stf(M) is almost contained in any element of ^ M ; and if N 4= M, then there are 
Ge^N and H e <3M such that G n H is finite. We have proved that the family 
Jw({i^: n < co}) has ADR. It has to be Jw({i^ : rc < co})e JTC because of 
Theorem 1. • 

Theorem 7 or Lemma 7 are combinatorical roots which had been considered in 
[1]: Lemma 2.1, in [3]: Lemma 4.15, in [4]: Theorem A, in R. Frankiewicz [8]: 
Lemma 2.2, and in [9]: Lemma 3.2 on p. 101. Our proof of Lemma 7 does not use 
Base Tree Theorem, but in quoted papers this theorem was used. 
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