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1. Let X be a separable Banach space and p an (equivalent) norm on X. An 
element x0 of X is called co-smooth with respect to p if p(x + tx0) is a dif
ferentiate function of t for each x, except when x + tx0 = 0. The set ^ 0 then 
consists of those norms p admitting some co-smooth element x0 =# 0. What is the 
complexity of ^0? (Here <& = "Gateaux"). Compare [BGK]. 

The solution depends on the notion of a Souslin scheme: a system of sets Es, 
where s ranges over the finite sequences of natural numbers. To any such scheme 
we can apply the Souslin operation jtf [K2, p. 198]. The class J / ( I1}) of sets is 
then obtained when all the sets Es are 11} (co-analytic). For more details on this 
class we refer to [K2, exercises 29.17, 37.4]. 

The set N(X) of all norms in X is endowed with a weak and a strong topology. 
The weak topology is the product topology of mappings of X into R. The strong 
(or metric) topology is that of uniform convergence on the unit ball of some fixed 
norm; this is too strong for certain applications. There is a small difficulty in using 
the weak topology in N(X): it is not a metric space. It is, however, a monotone 
union of compact, metrizable subsets; this allows us to define Borel and co-analytic 
subsets. 

Theorem 1. The set $0 is of class s^(H\) in its product topology. 

Theorem 2. A certain Banach space Z, contained in L2 0 c0, has this property: 

For each set E of type j/(n}) in a Polish space M, there is a continuous map 
cp of M into N(Z) — provided with its strong (or metric) topology — such that 
<P~\%) = E. 

Following the usual practice in questions of smoothness of norms, we find dual 
norms with a related property of rotundity. 
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The appearance of a weak and a strong topology, and their pleasant roles in our 
theorems, are a frequent occurrence in descriptive theory. The Souslin operation si 
commutes with formation of inverse images — without any measurability con
ditions of any kind — so that Theorem 2 is best possible in a certain sense. 

Proof of Theorem 1. We define a function of three variables 

H(p, x, y) = lim n(p(x + n~ly) + p(x — n~ly) — 2p(x)) 
n 

where p e N(X), and x, y e X — (0). Then pe&0 precisely when there is some 
y such that H(p, x, y) = 0 for all x. (That is, y 4= 0 and x + 0). Concerning the 
function H, we use only the facts that H > 0, H is Borel measurable and H(p, x, y) 
is continuous in y when p and x are fixed (since p is Lipschitz-continuous on X). 
We can replace the variable y in X — (0) by a variable o in S = NN (Baire null 
space) by mapping £ onto X — (0) by a continuous mapping; after this substi
tution, we obtain a function G(x, y, o), with properties like those of H. To each 
finite sequence 5 we assign an open subset Vs of 2: the set of all o beginning with 5. 
We define now a Borel function Gs(p, x) by the formula 

Gs(p, x) = inf {G(p, x, o):oe Vs]. 

For each s, this is a Borel function of p, x because the infimum can be evaluated 
over a countable subset of Vs. We define a 11} subset Es of N(X): 

peEso Gs(p,x) = 0 for all x e K - ( O ) . 

We assert now that ^ 0 = si(Es); it is clear that ^ 0 ~\ s/(Es). Conversely, 
suppose that p e si(Es) so there is a o such that p e Es whenever o extends s, i.e. 
oeVs. We have to show that G(p, x, o) = 0 for every x + 0; otherwise there 
would be a neighborhood V of o such that the infimum of G(p, x, o) on V is 
positive. But then there is an open set Vs such that Vs ~\ V and o extends s. For 
this s, p $ Es. This completes the proof that ^ 0 = si(Es). 

Let Si be the set of pairs (o, s), where o e 2 and 5 is a finite sequence of natural 
numbers. The set of finite sequences is treated as a discrete metric space, and Sj as 
the product of this space with S. Thus Ej is homeomorphic to E. Given a scheme 
(Es) of 11} sets in M, we choose closed sets F5 in M x 2, whose projection into 
M is M\ Es. We define a closed set F of M x I j consisting of elements (m, o, s) 
such that (m, o) e Fs. 

We define also a closed subset H of Zi x S: it consists of elements (o, s, T) 
such that T doesn't extend s. An element m of M is selected by an element 
T of E provided: for every element (o, s) of E- either (rx, s,T)eH or (m, cr, s) <£ F. 
We claim that the selected elements of M are just the elements of s/(Es). Indeed 
m is selected by T if and only if, for every initial segment s of T, m <fc M\ Es, i.e. 
meEs. 
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Because of the demands of later details in Theorem 2, we want to replace the 
set S with S1 the unit circle in the place, identified with R/2K. We'll use a similar 
definition of selected elements m, at the expense of a further complication. H* will 
be a closed subset of Z{ x S1. Elements m of s/(Es) will be selected (at least) by 
a Cantor set C(m) in S1, whereas other elements of M will be selected by (at most) 
a countable set. The idea goes back to Mazurkiewicz and Sierpinski [MS, 1924]. 

The set £ is homeomorphic to E x E, whose elements we denote by (T, f). Let 
r be a homeomorphism o f E x I onto the set of irrationals in (0,1); then H* is the 
closure of the set of elements (o, s, r(x, t')) such that (a, s, T) G H. Using the closed 
set if* we have a new method of selection: m is selected by a number t in 
S1 = R/2K provided, for every element (o, s) of _Ei either (a, s, t) e H* or 
(m, a, s) $ F. If m is selected by T0 (in the previous method of selection), then m is 
now selected by all the elements (T0, t'), and so by a Cantor set C(m). 

Conversely, suppose m is selected by an uncountable set of numbers t in 
S1 = R/2K. One of these numbers t0 will then not be a rational in [0, 1]. If t0 is 
not in [0,1], then (a, s, t0) is never in if*, so that m belongs to all sets Es. A more 
interesting argument is needed if t0 is an irrational in (0, 1). Then t0 = r(x, t') for 
some element (T, f) of E x E ; since r is a homeomorphism, we see that 
(a, s, to) e H* if and only if (a, s, T) G H. (We recall that H is closed in Ŝ  x E). 
Thus m is selected by T, whence m G stf(Es). 

Using the first definition of selection, with selectors chosen from a compact 
metric space, we could only represent 11} sets. We need not introduce any more 
bizarre sets after this. What is accomplished by passing to S1 is this: a certain 
Banach space has a separable dual. 

The sets M, 2X and S1 have metrics — 51 as a subset of R2. In the sets M x E j 
and 2<i x Sl we use a sum of the metric on the factors. We can find Lip-
schitz-continuous function M o n M x ^ and v on Sj x S1, both to [0,1], such that 
u l(l) = F and v~\0) = H*. 

After this, the nature of 2{ isn't important, so we replace it by E. Thus u is 
defined o n M x E , and v on E x Sl. The set Ej doesn't appear again. 

3. Theorem 2 Technical matters (a) we give a simple example of a norm |-| 
on .R2, admitting no co-smooth vectors except 0. This will be true if there are two 
linearly independent vector in R2, at which |-1 isn't smooth. We define the unit ball 
of |*|_by the inequalities x2 + y2 < 1, \y\ < 1/2, so the norm isn't smooth at 
(± V3/2* ± V2)- We denote e = (1, 0), f* = (1, 0), so that e is a smooth point of 
the unit ball, f* is a smooth point of the dual unit ball, and |f* + g*| < |f*| + |g*| 
for all elements of the dual not proportional to f * . The space X = £2(R2, |* |) using 
the norm | • | in R2, is of course isomorphic to £2, and has no co-smooth vectors =# 0. 
In the dual space, we define f* = (/*, 0, 0,...), f2* = (0, f * , 0, 0,...), etc., and 
we use the sequence (f„*) to find a homeomorphism i/t of Z into the sphere of the 
dual ball to t\R2). 
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Let a = (nh n2, n3,...), mx = nh m2 = n{ + n2, etc., and then \j/(o) = Y^~K2f*K' 
1 

This is our homeomorphism. Thus i/̂ E) isn't weakly closed, but it has a useful 
property which serves as a substitute: a sequence (y*) in (/t(Z) contains either 
a subsequence convergent in norm to an element of <A(2), or a subsequence 
convergent weakly to an element of norm < 1. 

00 

Technical matters (b) Let Y be the set of (formal) trigonometric series Y cn ^n° 
N - o o 

with complex coefficients cn, such that £|cn|4 = o(IV) as J V - > + O O [Kl]. 
- N N 

A possible norm is defined by \y\4 = sup (2IV + l)"1 Y lc«l4> but later we choose an 
- N 

equivalent norm. Then Y is isomorphic to a subspace of c0, whence Y* is separable. 
The exponent 4 could be replaced by any number p > 2; the purpose of using such 
an exponent will appear presently. Elements of Y can be multiplied by trigonometric 
series Yan £in9 such that ]T(1 + |rc|1/4) |aM| < + oo. Periodic functions of class A1 have 
Fourier coefficients an such that ^](1 + |rc|1/3) \an\ < +oo (by Perseval's formula and 
Cauchy's inequality) so Y becomes a continuous module over A1. This enables us to 
define the support supp(y) of an element y in two ways. First, it is the common zero-set 
of the ideal of functions / in A1 such that / • y = 0 (the annihilator of y). Second, it 
is the smallest closed set F, such that / • y = 0 whenever / = 0 on a neighborhood 
of F. (We define J(F) to be the ideal of such functions; it is the smallest ideal whose 
zero-set is F). We observe that supp(y) is a perfect, nonvoid set unless y = 0 [Kl]. 
Clearly / • y = 0 when / belongs to the norm closure J" of J(supp y). When / = 0 
on a closed set F, then f2 e J~(F). From this we show that supp(y) must have at least 
two elements (unless y + 0) and then supp(y) can have no isolated points [Kl]. 
Denoting the sum £(1 + |n|1/4) \an\ by | / | # , we obtain from Parseval's formula and 
Cauchy's inequality, | / | # < |a0| + c||/||L£4 H/l3^4. We observe that when F is an 
uncountable closed set in S1, it carries a probability measure \i such that y = fi e Y 
(i.e. its Fourier-Stieltjes series), and in this case / ' y = 0 whenever / = 0 on F (there 
is no concern here about ideals, since \i is a set-function). 

We choose a norm in Y so that Y* is strictly convex; and a number c such that 
\f'V\ < c(\\f Woo + ||f'||oo)lyl,whenfe A\S% y e Y. (Wedon't need any further 
refinements of this norm). Later we use the constant b = c~l. The space Z is now 
chosen to be X ® Y. 

Technical matters (c) Frequent use is made of this device: two norms have unit 
balls cdfii) and co(S2). When S{ and S2 are close, how close are the associated 
norms px and p{l We'll suppose S{ and S2 are symmetric, that the basic norm has 
unit ball B, and coS2 ~l 2~XB. (This is a typical situation). The important inequality 
takes the form Sx _= S2 + aB. Then coS1 ~\ coS2 + a'B, for any a! > a. Hence 
coSx ~\ (1 + 2a') coS2, whence p2 > (1 + 2a)"1 px. When xe B and a < 1/4, we 
conclude that p2(x) > pt(x) — 4a. 
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We can apply this to dual norms as well, replacing co(S^) with w*-convex closures. 

Theorem 2, concluded We assigned to each element m of s/(Es), a Cantor set 
C(m) on S1, such that m is selected by all the elements t of C(m), using the auxiliary 
functions u and v. We'll show that each continuous measure \im on C(m) is 
a co-smooth vector for the norm cp(m) in N(Z); of course \im belongs to Y through 
the Fourier expansion. We define N*(m) to be the linear subspace of Y*, 
orthogonal to all of the measures \im. 

Let pi be a norm defined by the unit ball of the dual space, which is the 
co*-closed convex hull of a set S; S is the union of two sets 
(i) B{(X*) u B,(Y*). 

(ii) The set of all sums ±u(m, o) \j/(o) + v(o, t) • y*, where o e E, y* e Y* and 
\y*\ < b, and v(o, t) acts on Y* as a Lipschitz function on S1. Clearly the norm 
Pi depends continuously on m, and Pi(x*) = |x*|, pi(y*) = |y*|, (x* eX*, y* e Y*). 

The next lemma is a key step in the program outlined above. 

Lemma A. Suppose \x*\ = 1, y* + 0, and pi(x* + y*) = 1, (x* e X*, y* e Y*). 
Then x* = + ij/(o) for a certain o in S; and y* e N*(m), provided m e stf(Es). 

Proof. Since y* + 0, there is some y0e Y, such that y*(y0) = 1; will be 
convenient below to allow y0 to be any solution of this equation; and there is some 
x0 of norm 1 in X, such that x*(x0) = 1. For each K = 1, 2, 3, . . . , there is some 
z* = XK + y* in S such that z*(x0 + K~1y0) > 1 + fc_1/2 > 1, for K large. 
Clearly z* must belong to the set listed under (ii), z*(x0) > 1 — 0(/c_1) and 
y?(yo) > 1/2. The sequence (x*) has w*-limits only on the unit sphere of X*. Since 
x* = ± u(m, oK) ij/(oK), with oK in 2, we can apply our remarks on the mapping \//, 
to conclude that the sequence (o^ has an accumulation point o^, that 
lim u(m, oK) = 1, and finally u(m, o^) = 1. Thus (\j/(o^), x0> = + 1 . Now ^(o^ 
is a point of Frechet-smoothness in X*\ we can read off x0 from this and find that 
x0 is an F-smooth point in X. (Thus we could conclude that the entire sequence 
(oK) converges.) Now y* = v(oK, t) y*, where (y*) is a bounded sequence in Y*. If 
(y*) doesn't belong to N*(m), we can choose y0 to be a measure \x concentrated on 
the Cantor set C(m). (Assuming, of course, that m e srf(Es)). Since u(m, o^) = 1, 
we see that lim v(oK, t) = lim vfa^, t) = 0 uniformly on the set C(m), so 
v(oK, t) \x -> 0 in variation (and thus in the norm of Y). This contradiction proves 
that y* e N*(m). 

In a moment we shall define a sequence of norms such that pK(x* + y*) > 
PK(X*) = \x*\, (x* eX*, y* e Y*), px > pK (K = 2, 3, 4,...) and each depends 
continuously on m. We'll then set p2 = Yj2~Kpl in Z* a nd show that the norm 

K 

p = p(m), whose dual norm p is defined in Z* by this process, works in 
Theorem 2. We show first that p isn't in % if m <£ stf(Es). We know that 
p(x + y) > p(x), and the norm in X has no co-smooth vectors except 0; from this 
we find that all co-smooth vectors, in Z, must belong to y. Let y0 e Y, and supp y0 
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be its support, a non-empty perfect set. Since m <£ s/(Es), there is an element o0 of 
S, such that u(m, o0) = 1, while v(o0, t) doesn't vanish for all t e supp y0. Thus 
v(°to t) - y0 + 0, whence we can choose y*, of norm at most b, so that 
(v(o0, t) • y$, y0} = 5 > 0. Thus \l/(o0) ± v(o0, t) • y0 have norm 1; taking x0 to be 
the solution of (\j/(o0), x> = 1 = |x0|, we find p(x0 + ry) > 1 + r\S\ for all real r. 
Thus y0 fails to be co-smooth at x0 for the norm p, as required. 

We now specify the norms p2, p3, p4,..., beginning with p2, p4, p6,... . Let (tn) be 
a dense sequence in (0,1) and define p2n(x* + y*) = p{(x* + tny*), n > 1. For the 
remaining norms, we choose a dense sequence (g*)f in Y* and define 
Pin+i(x* + y*) = inf {pi(x* + y* — tg*) + \t\ :teR}. Each of these is a dual 
norm and each depends continuously on m. 

Suppose that z e Z, z + 0, and zf, z* are elements of the duality set J(z). Then 
p(zf) = p(zf) = p(zf + z*)/2. We'll show that the last inequalities always imply 
that zf — z* vanishes on all the measures \im, whence each \im is co-smooth for the 
norm p. (To repeat, m e srf(Es)). 

The norms p^p^Pi,... all have the form inf pi(z* — tg*) + \t\, with varying 
choices of g*. We want to examine how this changes if we replace g* by gf. The 
infimum is attained at some t in the interval |t| < pi(z*); changing g* to gf yields 
an increase at most pi(z*) • pi(g* — gf) (and hence a decrease of the same size). 

Suppose, finally, that p(xf + yf) = p(x* + yf) = p(xf + yf + x* + y*)/2. 
Using the norms p2, p4, p6,... we see that the norms pi(x* + Xy*), 0 < X < 1, all 
have the same property. We observe that if xf = 0 or x* = 0 then both are 0, and 
then \yf\ = \yf\ = |yf + y*|/2, whence yf = y*. Putting aside this trivial case, we 
can assume |xf| = |x*| = 1 = |xf + x*|/2. 

We first deal with the case of linearly independent functionals yf and y*, and 
the norms q(z*) = inf {pi(z* — tryf) + \t\: teR], depending on a real number 
r > 0. As r -> oo the limit is 1 on xf + yf, whence the same is true for x* + yf; 
here we take limits of the norms p3, p5, p7,... . Hence inf Pi(x* + y* — tyf) = 1, 
and the infimum is attained at some t0, since we can assume that pi(y* — ty*) < 2 
in taking the infimum. Since yf and yf are linearly independent, we find by Lemma 
A that xf = + \j/(o) for some o, and by the properties of the mapping i/t, we see that 
xf = xf. (Here we refer to the properties of the norm in X*, as well.) In the case 
to -= 1, Lemma A implies that yf — yf belongs to N*(m). We can assume t0 + 1. 

Let 0 < X < min (1, |1 - t0|). We'll show that pi(xf + Xyf) = px(xf + zlyf) = 1, 
whence yf, yf e N*(m). The norm px is constant on the segment joining xf + Xyf 
to xf + Xy*, taking there a value e > 1. Its value is at least e at 
xf + uXyf + (1 — u) Xyf, for any real u, by convexity. We can choose u so that 
uXyf + (1 — u) Xyf is a multiple a(yf — t0yf); this occurs when a = X(l — t0)

_1, 
so |a| < 1. We see that pi(xf + yf — t0yf) > e, whence e = 1, and yf, yf belong 
to N*(m). 

The remaining case, of different but dependent functionals yf and yf, is more 
difficult. We can assume that yf = cyf, with |c| < 1. In case c < 0, the segment 
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joining xf + yf to x* + cyf traverses a points at which Pl = 1. Then we would 
have Pi(xf + yf) = 1, and could apply Lemma A. Hence we can assume 
0 < c < 1, and pi(xf + yf) > 1, to obtain a contradiction. We consider a norm 
depending on a parameter r > 0: 

q(z*, r) = inf pi(z* - tryf) + \t\, t e R. 

When z* = xf + yf, we make a substitution s = I — tr and obtain 

<?(xf + yf, r) = inf pi(xf + syf) + r_1 | l — s|, s e i?. 

Clearly, the infimum is obtained only on the set 0 < s < 1, i.e. 0 < tr < 1. When 
r is small enough, the infimum cannot be attained at s = 0; we fix such an r, and 
a value s in (0,1] at which the infimum is attained. This means that 0 < tr < 1. 

We can majorize the norm q(z*) by using t' = ct in the infimum, obtaining 

#2* + cyf) < Pl(x* + c(l - tr) yf) + c\t\. 

Since q(zf) = q(zf) we obtain 

Pi(x2* + c(l - tr)yf) > Pl(xf + (1 - tr)yf). 

But Px(x* + Xcyf) = pi(xf + Xyf) for all X in [0, 1], so 

pi(xf + (1 - tr)yf) < Pl(xf + c(l - tr)yf). 

Now 0 < c < 1 and 0 < 1 — tr < 1, and so xf = ±I//((T) for some cr, whence 
xf = xf and finally pi(xf + yf) = 1. Thus yf and y* e N*(m). 
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