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ACTA UNIVERSITATIS C ROLINAE MATHEMATICA ET PHYSICA VOL. 46, NO. 2 

On the Groupwise Density Number for Filters 

HEIKE MILDENBERGER 

Wien 

Received 11. March 2005 

We consider the groupwise density number ĝ  for groupwise dense ideals or for 
non-meagre filters. We answer a question by Taras Banakh on the value g/in the known 
models of g < mcf and one by Boaz Tsaban on the value of ĝ  in the Hechler model. 
As a by-product we prove that g = fr^ in the Hechler model, which was conjectured by 
Blass, Brendle, Eisworth, Shelah and others. 

1. Introduction 

In this note, we work with five cardinal characteristics. 

Definition 1.1. (1) b = min{|F | :F g ^ A (Vg e "co)(3fe F)(f ^ * g)} is the 

bounding number. 

(2) u = min {\B\: B is a base for an ultrafilter} is the ultrafilter-base number. 

(3) g is the smallest number of groupwise dense sets whose intersection is empty 

(or not groupwise dense). A set & ^ [p]™ *s groupwise dense iff it is closed 

under almost subsets and if for every (r\:i < co> of strictly increasing 

natural numbers there is some infinite A such that {JiGA\_nbni+i) e ^ » 
(4) fy is the smallest number of groupwise dense ideals whose intersection is 

empty. 
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(5) mcf = min {cf(cOw/c7, <v) : U is a free ultrafilter on co}. Here \_f~\u -̂ U 
[g]U tff{n:f{n) -^ g(ft)}e U,and cf{L, <L) w lhe smallest size of a cofinal 
set in the linear order (L, < L). 

It is known that Q < Qf < mcf (see [4] or [1] and that Con{b = Q < mcf) [5]. 
The consistencies of the strict inequalities above b are interesting because they are 
weak relatives of the items in the long-standing open problem on the reversibilities 
of the implications: 

n < Q <=> semi filter trichotomy => 
u < Qf o filter dichotomy => 

u < mcf <-> near coherence of filters. 

For the principles, which will not be used in the current work, we refer the 
reader to [2]. In this note we prove: 

Theorem 1.2. It is consistent relative to ZFC that b = g = Qf = Kt < mcf = 
= c = K2. 

For a filter F, {co\X : X e F} is groupwise dense (and closed under finite unions) 
iff F is not meagre. Thus Qf is also the smallest number of non-meagre filters 
whose intersection is meagre. 

So far only g and mcf have been separated above b in a quite complex oracle 
c.c. iteration in [5]. We show that that forcing also separates g^from mcf. It is open 
whether g < Qf is consistent relative to ZFC. In all our models, u is K2 and there 
are X2 Cohen reals, though. 

The same sufficient criterion for g^Ahat we use in the proof of Theorem 1.2 will 
yield a short proof of the following 

Theorem 1.3. In the finite support iteration of Hechler forcing of uncountable 
length K over a ground model of CH we have that Qf = K^ 

This was known that is "should be true for g" since long ago [2, Section 11.6, 
p. 89]. 

2. A sufficient criterion 

The following sufficient criterion for ĝ^ being small is a modification Lemma 
5.1 in [5] in which the second premise is now strengthened to finite unions. 

To our knowledge neither for this criterion nor for the original criterion it is 
known whether they are also necessary. 

Lemma 2.1. Assume that {Yc: £ < c} .= [co]03, and K is a cardinal such that: 
(1) For each meagre ideal B .= [co]", \{\: Yc $ B}| = c. 
(2) For each A e [co]w, every family of finite sequences C, with pairwise disjoint 

ranges such that for all members £ of the family, A .= * YCo u . . . u i£lg(0 p 

has cardinality strictly less than K. 
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Then g < K. 

Proof. We now define K sets and then show that they are groupwise dense ideals 
and that their intersection is empty. 

Let (rk: £ < c> list all strictly increasing sequences of natural numbers, each 
sequence appearing cofinally often. By induction on £ < c we choose ec < K, 
yr < c and Q G [c0]w as follows. 

If there is some e < K such that for each £ < £ with sc = s we have \nh n
c
i+l) £ 

£ Q for all but finitely many i, then we take as 8C the minimal such s. By the 
assumption (1), applied to the meagre ideal {A:3<coi\nhn

c
i+l) ^ A} we can 

choose yc to be the minimal y < c such that y ^ y% for all ^ < £ and there are 
infinitely many i such that [w,,rif+1) ^ Yr In this case we set Q = (J{[jf, n^+1): 
i G c0, [wf,nf+1) = Yy). Otherwise we set ec = K and Cc = co. 

For each £ < K, define 

^ = {B G [co]w : (3n < co) (3d ... L < c) ((Vfc G [1, n]) (c; < eCl < K) and 
B^*Q.u . . . uCJ} 

We show that each ^ is groupwise dense and the dual of a non-meagre filter 
F£ = {co\X: X G ^ } . Clearly it is closed under almost subsets and under finite 
unions. Let an increasing sequence n be given. Then there are £,, j < c, such that 
for all j, n = nCj and the £,-, j < c, are cofinal in c. Then, by our construction 
eCj < s}, for j < f if 8^. < K, or 8 . = K So there is some j such that ec = K or 
8Cj G (£, K). In both cases we have (3£)((3°°/) [w,,nI+1) .= Q) A 8C > £). 

To see that f] {^ : <J < K) = 0, assume that B is infinite and for each ^ ,Be ^ . 
Then for each £ < K, there is (/J^,..., /Jn^) = :/?,*< c such that e ^ > ^ and 
B _= * (J,<^ Cp.^ i= (Ji<« ^ . r Since K is regular, we can thin out and assume that 
if ^ < £2, then ePi 7-= £^ 2̂ for all i < n^2. Thus we have that for £- < £2, /?««, = is 
disjoint from j5 2̂, and hence y ^ = (y^, ..., y^ )̂ is disjoint from y^. Consequen
tly, {y^: i; < K] is a family of pairwise disjoint tuples y^ of size K. But 
{7/3 : £ < K} = {(&, ..., C) < c: B .= * ( J^^c . a n d t h e C are pairwise disjoint}, 
contradicting the assumption (2). • 

3. The computation in the oracle c c . iteration 

Now we show that the oracle cc. forcing from [5] yields that the l̂ 1 [G^2] = Y^ 
fulfil the premises of Lemma 2 1. We cannot repeat the whole complicated 
construction from [5], and thus we give a sketch and point out the differences, 
where we claim that the Yc has stronger properties than the ones used in the former 
work. For an introduction to oracle-c.c.-forcing and for the explanation of the 
expression "S^ guesses <^a,ga -

 a < Ni>" we refer to the third and second section 
of the mentioned work. 
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Definition 3.1. We use a finite support iteration <P(5?Q;3, : S < K2> of c.c.c. 
forcing notions, and choose constant or increasing oracles M5, such that Ps has 
the M3-c.c. for each S. We start with a ground model satisfying 0$. and 0^(5^). 
Let (Ss: 3 e S?> be a 0^2(Sfj-sequence. 

There are three possibilities for Q3. If cf (3) = K0 or if d is a successor, then 
Qs is the Cohen forcing. 

If cf (3) = Ki and \z
Ps "S^ guesses a sequence of ultrafilters %a and of functions 

ga, a < Kj", then we choose Aa, a < Kl5 as in Lemma [5, 4.1] but with additional 
provisos as in the next definition and force with 0,$ = Q (<4x> ga: a < ^i)) - Here, 

Q = Q (A„ga <y) = {(n, h, F):ne co, henco, F e [y]<K°}, 

with (nu hh Fi) < (ri2, h2, F2) if nx < n2, h2 \ nx = hu Fx c= F2, and 

(Va e Fj) (Vw e \nu n2) n Aa) (ga (n) < h2 (n)). 

Otherwise, we set Qs = {0}. 

Definition 3.2. For y < K2 we consider the class J f y of y-approximations 

<{Ps,Qs,M\WhW2):d<y> 

with the following properties: 
(a) (P5, Q$: 3 < y> is a finite support iteration of partial orders such that for 

each 3 < y, |PJ < K^ 
(b) <M5: 3 < y> is a constant sequence of oracles such that for all 3, P3 satisfies 

the M5-c.c. and for 3 + 1 < y9 hP<5 "Qs satisfies the (Md+l)*-c.c." (as in 
Lemma [6, IV.3.1]| The constant value of the oracle sequence is some oracle 
M as in Lemma [5, 3.9], keeping cov (Ji) = Kx. 

(c) Wh W2 c= K2\S1? JVi and W2 are disjoint and if y is a limit of cofinality Kj, 
then W\ n y, W2 n y are both cofinal in y. 

(d) If (I e(Wl u W2) n y then Qp is the Cohen forcing adding the real rp e w2. 
(e) If 3 G S^ n y and Ss guesses <(^a((5), ga((5)): a < Ki>, then there is some 

strictly increasing enumeration <£x(<5): a < ^i> °f a cofinal part of W2 n 3, 
and for every a < K- there is {^ e {0,1} such that Y^ffi : = r^d) ({^a{s)})e °U^ 
and Qs = <Q(Y^\ga(<5): a < K,). 

(f) For all 3 < 7, hP<5 "(V4 G [w]m) every set of the form {fie Wx n 3 : A = * 
U»'<-g(/5)̂ - fln^ the P are pairwise disjoint] is at most countable." Here, for 
3 = y limit, Py is the direct limit of (Pp : /? < y>, and for 3 = y = j8 + 1, 
Py = Pp * Qp. 

Now the technical core is to prove the following. 

Theorem 3.3. IfV^O^ and 0K2 (Sfj, then for each y < K2, J f y is not empty. 
Let V fulfil the premises and let P^2 be the direct limit of the first component 

of an Krapproximation. If G is a P^-generic filter and Yc
l [GKJ = Yc for ( G Wl9 
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then we have in the final model a sequence <I£: £ < c> as in Lemma 2.1 with 
K = Kx. For the 2W = K2 > mcf > cov (®fin) > K2-part, which is not affected by 
the difference between the current Definition 3.2(f) and the former version, we 
refer the reader to [5]. Thus Theorem 3.3 yields: 

Corollary 3.4. Vp^ N cov (Ji) = Qf = K- < cov (®fin) = K2. 
Theorem 3.3 is proved by induction on y. The witnesses are end-extensions of 

former witnesses. For some y's, one has to work to show item (e). For this the 
work in [5] suffices. For all y's but maybe the successor steps of points not in S\, 
one has to carefully revise the work from [5] in order to show that item 3.2(f) can 
be preserved in the induction. For completeness sake, we carry this out in Lemma 
3.7 to Lemma 3.10. 

Lemma 3.5. Consider a successor y = S + 1, S e S\. Given any tt{-oracle 
(Ms+l)*, the sequence <£a(<5): a < Ni> can be chosen as in (e) so that the forcings 
given in item (e) have the (Ns+1)*-c.c. 

Proof This is literally as in [5, Lemma 5.4]. 

Choice 3.6. We start with M as described. By Lemma [6, IV, 3.1], all the Ps, 
S < K^ have the M-c.c. as soon as we can arrange that all the Q3 have the 
(M)*-c.c. in VPs. The Cohen forcing has the M-c.c. for any M. The Qs in the steps 
5 e S\ can be chosen by the previous lemma so that they have the (M)*-c.c. 

Lemma 3.7. If d e S\, Q3 is chosen as in Lemma 3.5, and P3 satisfies (f) of 
Definition 3.2, then Ps+{ has the property stated in item (f). 

Proof. Suppose that p \\- Pd+l "A e [co]w and \{£e W{nd:A c *U.<ig0^c ' ' a n d 

the C are pairwise disjoint}| = K/', and w.l.o.g. p \\- Ps+l "A e [co]w and [te Wx r\ 
nS:A c * U*<ig(Q Ki'*} is increasingly enumerated by {|a: a < Kx} = Wx (A)". 

We take for ne co a maximal antichain {pni: ieco} above p deciding the 
statements "fie A" with truth value tnM Let Cn4 = {s < S : pni(s) / 1}. For 
seCninS\ with Q£ =£ {0}, let pn^(s) = (mn4(s), hn4(s), Fn4(s)). Let F'n4(s) = 
= {t^(s):(xe Fnj(s)}. We assume that all these are objects not just names. For 
se Cni\S\ let pn>i(s) = hni(s), mni(s) = \hn>i(e)\ and set the other two components 
for simplicity zero. Set mni = max {mni(s): s e CnJ}. Set 

C = «(rrh4(s), hn4(s), Fni(s), F^(s), (ga(s) \ mn4: a e Fn4(s)}): s e Cn,-> : n, i e co>. 

For each p e Kl9 let pp > p, pp hP<51 "A n [sp, GO) _= Ui'>-gffl YlT" a n d Pfi s h a 1 1 

decide the value of ^ e 2 and sp e co. For /? < Kj we set Cp = {s < 5 : pp(s) 7-= 1}. 
If s e Cp n S\, then pp(s) = (mp(s),hp(s), Fp(s)). Use Cp\S\, then pp(e) = hp(s), 
mp(s) = \hp (e)| and Fp (s) = 0. For all /?, s e Cfi9 let F} (s) = {£ (s): a e Fp (s)} c W2. 

Set 

Rfi(m) = ((mp(s), hp(s), Fp(e), F'p(s), (ga(s) \m:oce Fp(s)}) :seCp}. 
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These are finite arrays of finite sets. 
Now we thin out: First we assume that for some k e co for all [5 < Kb \Cp\ = k, 

Sp < k. We apply the delta system lemma to Cp, /? e Xl5 get a root C. We assume 
that d e C, as this is the difficult case. We apply the delta lemma for each s e C 
to the Fp(s), jS G Kb and get a root F(2), and to F'p(s), ft e K,, and get a root F' (2). 
We further assume that for each /? in the delta system and for all seC, all 
Fp(s)\F(s) are above max({J£eC(F(s')) u (C\{(5}))and same for the primed ones. 
All F„.^)\F are above max F' (s). This goes only ^-wise, because in the definition 
of Xy in item (e) we did not require coherence in the enumerations <£* (s):oce Kj>. 
We thin out further and assume that there are (m (s), h (s), F (s)) such that for all 
jS < Ki, for all seC,mp(s) = m(s), hp(s) = h(s)e w(e)co, and for the seCp C, the 
increasingly enumerated s's in Cp = {df : i < k}, are isomorphic to the lexicograp
hically first <3:: i < k>, i.e., mp(sf) = m(s), hp(sf) = h(s)em^co, and we use 
a delta system argument on the Fp (sf) giving a root F (st) and again impose on the 
parts Fp(sf)\F(s}), that they have to lie above [ji<kF(sl) and are all of the same 
size. The analogous thinning out is done for the primed parts, that have to lie above 
max([Ji<k(F'(st)) u (C\{£})),be for all i of the same size |F^(ef)| independently 
of P (but depending on i), and all of the (F'p(sf) :i < k> shall have the same < or 
> -relations with the members of C^e,-). Moreover, if s is a Cohen coordinate in 
Cp, then pp (s) does not depend on j5. 

We let mmax be the the maximum of the m (s) and of the lengths of all the finitely 
many Cohen coordinates for all /} in the delta system. Let o denote 
the initial segment relation for finite sequences. We thin out further and assume 
that all the Rp(mmax) have the same quantifier free (<Ki, <i)-type over 
Ran (C) u Ran (Ran (C)). Speaking about components of five tuples (m, h, F, F', 
g) separately is allowed as well as evaluating g and the members of all involved 
finite sets. There are only countably many quantifier types in this language that 
can be fulfilled by a (finite) sequence Rp (mmax) in our delta system. 

Let Gs be a subset of Ps that is generic over V such IV* = {7 e WY (A) n 
n 5 : py \ 5 e Gs} is uncountable. 

For ye W*, let in V\Gd~\, 

By = {new: 3p' e Ps+1, p' > py, p' \5e G5, and p' \\- Ps+ln e ^4}. 

By <=* Ui<ig(g ^ j , a [G] , and the latter is fully evaluated by G, because 
la e Wx e 5 + 1 for a < X-, and 5 $ Wx. 

We shall show that for p, y e IV*, Bp n [k, 00) = By n [k, 00) = B e V[G\ 
Then B is a counterexample to <(Pa, Qfi, M

e, Wi9 W2): s < 5, fi < d} e Xb. 
Let ||P<5+1 denote the compatibility relation in P^+i. If n e Bp, then Pp\\pd+lp„ti for 

the one i such tat pni e G, and for this i we have tni = true. The same holds for 
n $ Bp with false. So our claim that Bp n [k, 00) = By n [k, 00) for all /?, y e W* 
now follows from 
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Claim 3.8. For all p9 y in W*: 

Pp\\Ps+iPn,i Iff Py\\Ps+\Pn,i' 

Proof The point is the coordinate 3, since the restrictions to 3 are in Gs, and 
hence compatible. Assume pn,i(3) = (mn^hn,i9Fn^9 pp(3) = (mp9hp9Fp)9 py(d) = 
= (my9hy9Fy). We do not write the 3 at these points, but will now suppress it 
completely. We assume that pp (3) is compatible with pni (3). Since £a (3) e W2, we 
can now literally use the proof of [5, Claim 5.8]. 

So the claim is proved and with it also Lemma 3.7 • 

Lemma 3.9. (I) If cf (y) = Kt and Q and My are as in the previous lemma and 
if (PP9 QP9 Mt9 Wl9 W2: p < y> e tfy, then 

(Pp9 Qfi9 M\ Wl9 W2: p < y> A <J»? Q, w> e jf7+1. 

(2) Ifcf(y) = K0 and if <PS, Qfi9 M\ Wl9 W2:P <y}e XT then 

<Pp9 Q^, M\ Wu W2: p < y> A <Py? c , ASP) e jf7+l. 

(3) If cf (y) = K0 and if <Pp, Qp9 M?9 Wl99 W2: p < y} \ P e Jfpfor each p < y, 
then (Pp9 Qp9 M^ Wi9 W2: P < y> e J f r 

(4) If cf(y) = « ! or y = K2, and if <P^ Q^, M\ Wl9 W2: p < y) \ p e Xp for 
each P <y, then <P^, Qfi9 M\ Wl9 W2: P < y) e Xy. 

Proof. (1) This was proved in Lemma 3.7. 
(2) If A is an almost subset of uncountably many ( J K I ^ O ^ / S , then there is some 

7o < y that there are uncountably many such £ below y0. A is possibly a name 
using the last, new forcing. But this is just Cohen forcing. So there is some finite 
part of a Cohen condition forcing that A is in uncountably many 1 '̂s. But then 
also the forcing Py already contains a name for some infinite B c= co almost 
contained in the intersection of uncountably many ( JKI^Q^C/S with £ < y0. So 
Py does not fulfil property (f) and hence the induction hypothesis is not fulfilled. 

(3) First we use the pigeonhole for the Yc/s as in the previous item. Then we 
use the following 

Lemma 3.10. Assume 
(a) <Pn :ne co} is a <-increasing sequence of c.c.c. forcing notions with union P, 
(b) ty is a set of P0-names of infinite subsets of co, 
(c) for new we have |f- Pn "K = cf (K) > \{Ye %/<(D : B <=* \Ji<]g{i)Y$', whene

ver B is a Pn-name of an infinite subset of co. 
Then condition (c) holds for P too. 

Proof Since P is a c.c.c. forcing notion, also in Vp we have K is a regular 
cardinal. 

If the desired conclusion fails, then we can find a P-name B of an infinite subset 
of co and a sequence <(pa, Ya9 ma): a < K) such that 
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(a) ma e co, 
(jS) Ya e °y without repetitions, 
(y) pa e P, pa |h P B\ma c (J / < l g ( F a )^a . 

Since cf(jc) > N0, for some JI(*), m(*) G co the set S = d f { a < K: paePn^9 

ma = m(*)} has cardinality K. We identify it with K. 
Now for every large enough a e S w e have 

Pa \\-pK = \{PeS:ppeGPn^}\. 

Why? Else for an end segment of a < K there is qa > pa such that for all but 
< K many (5 e S, qa\\- pp$ GP ,}. That means that for an end segments of a < K9 

w.l.o.g., for all (XEK, Perpa: = {fie S : qp .L qa} contains an end segment of S. Then 
we take the diagonal intersection D of all these end segments of S. Since K is 
regular, D contains a club in K. But then {q^: ft e D} is an antichain in Pn^ of size 
K. Contradiction. 

Let Gn^ be a subset of Pn^ generic over V, and let S*: = {fie S : p^e Gn^}. We 
choose Gn^9 such that |SJ = K. We let 5 ' = n { 1£ \m (*): P e 5*}. Then in V[Gn(*)], 
B' is an infinite subset of co included in (J,<ig(Ya)X,a f° r K pairwise disjoint members 
Ya of %/<(°9 contradicting the assumption. So Lemma 3.10 is proved. • 

(4) If Ps adds some A9 then this already comes earlier, say in V % e < d9 

because A <= co and because of the c.c.c. If A c * ^ is forced, then £ < £. This 
contradicts the induction hypothesis for Pe. This completes the proof of Lemma 
3.9. • 

The lemmas together give that there is an K2-appproximation, and the proofs of 
Theorem 3.3 and of Theorem 1.2 are completed. • 

As in [5, 5.11], with some extra care our proof can be modified to yield the 
following (cf. [7, 3]). 

Theorem 3.11. It is consistent (relative to ZFC) that all of the following 
assertions hold: 
(1) Each unbounded set of of3 contains an unbounded subset of size tflf 

(2) Each nonmeagre subset of of3 contains a nonmeagre subset of size K1? 

(3) Qf = &<!,* and 

(4) cov (®fin) = cov (Ji) = c = N2. 

4. The situation in the Hechler model 

The proof of Theorem 1.2 consists of Lemma 2.1 and the following lemma: 

Lemma 4.1. Let cf (K) > K^ Le1 P be the finite support iteration adding 
K Hechler reals over a ground model satisfying the CH. We call the generic reals 
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hc e
 wco, C < K. We set Yc = {I\(n): n < co}. Then the family {Yc: £ < K} satisfies 

the two premises of Lemma 2.1 

Proof. For every meagre set B there are r ew2 and a strictly increasing sequence 
k such that 

B c Brk.= {se"2:(^n)r \ [kn,kn+l) * s \ [kn,kn+i)}. 

Now r and k appear in some step of the iteration, say that they are in V[G<Co]. 
We show that all later Yc, £ > (0> are not in Brk. Let p = (s, f) e Qc. Then for all 
n e co there are some q > p, m > n, qeQc, such that q \\- Yc \ [km,km+l) = 
= r \ [fcn,kn+i), because \ > f on all arguments above \s\ is compatible with 
(3m > n)(Yc \ [km,km+l) = x({l\(a): a e co} n [km,km+l))). To see this, we just 
take m sufficiently large and put no points h(a) into min (Yc \ [km,km+l)). Then we 
take a = (s A h\(h l[km,km+1)),f). 

Also premise (2) is fulfilled: B ^ YCl u ... u YCn means that the next function 
of B eventually dominates the minimum of the next functions of the YCk, 
1 < k < n. Again, B is in some intermediate model, say in V[G<Co]. Then if all 
YCk come later, by a density argument, the next function on B does not dominate 
the minimum of their next functions. So B .= * YCl u ... u ^ n means Co n 

range (£) 7-= 0, and there are strictly less that K pairwise disjoint tuples £ of this 
kind. • 
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