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Bakersfield, Warsaw 

Received 11. March 2005 

We prove that the circle S1 does not have a 2-mean, i.e., Sl x Sl cannot haye a retraction 
r onto its diagonal with r(x,y) = r(y,x), whenever x,y e Sl. Geometrically this is rather 
obvious, but a matematically rigorous proof is not trivial at all. Our proof is combinato
rial and topological rather than analytical. 

1 I n t r o d u c t i o n 

AUMANN and CARATHEODORY [1], [2] and [3] were among the pioneers who 
considered the question about the structure of spaces for which the topological 
product Xn has a symmetric retraction onto its diagonal, i.e., a n-mean. They 
studied such objects in the complex plane and in the Euclidean n-space using only 
analytical tools. For example AUMANN in [3] proved that the n-dimensional sphere 
does not have a mean. For more information about means see [8]. The aim of this 
note is to prove that the circle S1 does not have a 2-mean, using only combinatorial 
and topological tools. For this we use a method comparable to the one used in [10]. 
It is interesting to notice that this method has been used (in dimension 2) to prove, 
among some other results, the BROUWER fixed point theorem and the special 
hexagonal chessboard theorem (see GALE [6], who, as far as we know, introduced 
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the method), and the BORSUK-ULAM antipodal theorem (see [12]). We point out that 
in the case of the BROUWER fixed point theorem, the combinatorial proof in [9] is 
based on SPERNER'S Lemma [14] but in the case of the BORSUK-ULAM antipodal 
theorem [4], the combinatorial proof TUCKER'S Lemma [15] must be used instead 
(KY FAN [7] extended TUCKER's result to arbitrary n). For more information about 
fixed point theory see [5]. In the next section we present, for dimension 2, one 
universal combinatorial lemma. We wonder if it is possible to generalize this 
method to arbitrary n. 

2. Combinatorial part 

Let us fix a natural number k > 1 and let 

Zk = {£: ie{0, . .„ /c}} 

and denote by 

D2(k) = (Zk x Zk) = \o,^, ..., - ^ , l } ; 

D2 (k) is called a combinatorial square. 

Definition 1. Denote by e0 = (|,0), e! = (0,|) the basic vectors of length \. An 
ordered set z = [z0, z b z2] is said to be a simplex if and only if 

zx = z0 + ef, z2 = zx + ex_t where i e {0,1}. 

Any subset [ Z Q ^ ] , \zuz^\ and \Z2,ZQ] cz z is said to be a face of the simplex z. 

eo Z2 Zi —---> z 2 

/ 
ei 

e0 

Figure 1 

Observation 1. Any face of a simplex z contained in D2 (k) is a face of exactly 
one or two simplexes from D2(k), depending on whether or not it lies on the 
boundary of D2 (k). 

Definition 2. L e t ^ (k) be the family of all simplexes in D2 (k) and let TT (k) be 
the set of all vertices of the simplexes from 3P (k). A coloring of SP (k) is any 
function / : ^ ( f c ) - > { l , - l } , and any face 5 of any simplex z is called an fgate 
(or simply a gate if there is no ambiguity of what / is) if / [s] = {1 , -1} . 

Observation 2. Let w be a simplex, iV be the set of vertices of w and 
/ : W --> {1,-1} be a function. Then w has an even number of gates. 
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Definition 3. If f: i^(k) -* {0,1} is a function, two simplexes w and v from 
SP (k) are in the relation ~ if w n v is a gate. A subset 5^ cz ^ (k) is called a chain 
in ^(k) if Sf = {w0, wl9 ..., wn} and for each i e {0,..., n — 1}, w, ~ w/+1. 

Observation 3. For each chain [vu ..., vn} a £P(k) there exists no more than one 
vE0>(k) and one we^(k) such that {vu ..., v„, v} and {w, f1? ..., vn} are chains. 
Also, if Sfx and Sf2 are maximal chains in SP (k), then either Sfx n 5^2 = 0 or 
^ 1 = <^2-

Let a and b be two different elements of D2 (k). Consider the rectangle R with 
a and b as opposite vertices and right-hand-orient its boundary. By ab we mean 
the part of the boundary that goes from a to b. We define similarly ba . The 
boundary of R is denoted by dR. 

Lemma 1. No maximal chain Sf .= £P(k) ever finishes at a gate of an interior 
simplex, i.e., a simplex disjoint from dR. 

Proof It consists to show that if a simplex S1 in £f is disjoint with dR, there is 
always another simplex S2

 w1th a common gate (Observation 2). Thus the only 
possibility for £f to stop is at <JR.There are twelve possible (simplex, flow of the 
chain (if directed)) combinations of the simplex to be considered, each of them 
with two possible outcomes. We picture some of them with the following in mind: 
arrows mean flow, thick lines are NOT gates and thin lines are gates: 

A Al A2 

e—e e—e e—e 
-hX +>XI "hx^ e e—e e—e 

B Bl B2 

e—e e—e e—e 
© 0-1-© ©—© • 

Corollary 1. Any maximal chain Sf £ & (k) beginning at dR must finish at 
8R. n 

Combinatorial Lemma. Let &(k) be the set of simplexes of D2(k) and 
f:r(k)^{-\,\}bea coloring of iT (k). If a and b belong to_t* (k), and f (b)_ = 
= — f(a) then there exists a chain £f £ 0>(k) such that y n ab =fc 0 # Sf n ba. 

This result was proved originally in [16]. Here we present a different argument. 

Proof. We first define two equivalence relations on "V (k): 
If u, ve D2 (k) n R, we will say that u « v if u = v or if there are vertices 

u = x0, Xi,..., x„ ux„ = v in D2(k) n R such that [x,,xI+1] is a face of a simplex 
(i = 0, .... n — 1) and f(xf) = f(xl+1) Clearly « is an equivalence relation on 
D2(k) n R. 
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Let Sf _\ £?(k) be a maximal chain beginning at the boundary of R. If 
u,ve D2 (k) n R, we will say that u = v if u = v or if there are vertices u = x0, 
x1? ..., x„_1? xn = v in D2(k) n R with [x,,xI+1] being a face of a simplex (i e {0, 
..., n — 1}) and no [x„ xI+1] is a gate belonging to a simplex belonging to Sf. 
Clearly _± is an equivalence relation on D2 (k) n R as well. 

Let ^ be the ^-component of b. Walking from a to b let x be the vertex on ab 
found right before %? n ab , and y be the vertex on ab right after x. Then y e %? 
and / (x) = f (a). Thus [x, y~\ is a gate. Let Sf be the unique maximal chain to 
which the simplex containing [x,y] belongs to (Observation 3). By Corollary 1, 
Sf ends on SR. By the choice of x and y and since points in ^ are all = -equivalent, 
Sf must end on ba, as required. • 

3. Topological part 

We borrow the following from [10]. 

Definition 4. If {Atn: m e N} is a sequence of subsets of a compact metric space 
X, we define its upper limit Ls {4.: ^ e Î J} as the set of points xe X such that 
there is an infinite M _l N such that for every me M there is xm e Am with 

In the paper [10] the following result has been proved. See also [13] (5.47.6). 

Lemma 2. Let {4n :meN} be a sequence of connected subsets of a compact 
metric space X such that some sequence {an: n e N} of points an G An is converging 
in X. Then the set Is {^ :ne N} is compact and connected. 

4. Main result 

In this section we prove the result mentioned in the abstract. 
Let X be a space, and denote by A(K2) := {(x,x): x e X}. Obviously A(K2) is 

homeomorphic to X. Identify S1 with I := [0,1] and 0 = 1. 
Suppose that there exists a symmetric retraction r from S1 x S1 onto its diagonal 

A(51)2, i.e., a continuous map r:S{ x S1 -> A(SJ)2 satisfying: 
a) r(x,y) = r(y,x) for each x and y from S1, and 
b) r(x, x) = (x, x). 
We call r a 2-mean, and say that S1 has a 2-mean. 
To prove that the existence of r : (S1)2 -> A (S1)2 with properties (a-b) is 

impossible, we consider two cases: 
(1) Assume that r[(7 x {l})u ({0} x /)] ^ {(0,0)}. 
Notice that if we consider I2 instead of Sl, and r :J2->A(/2) rather than 

r: (S1)2 -• A (S1)2, then r has the following additional properties: 
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c) r(0,0) = (0,0),r(l,l) = (l,l), 
d) r(0,x) = r(l,x),r(x,0) = r(x,l). 
For illustrative purposes, we call {0} x / : = "left", {1} x / : = "right", 

/ x {0}:= "bottom" and / x {l}:= "top". The assumption we are assuming reads 
now r [(/ x {l})u ({0} x /)] ^ {(0,0),(1,1)}. (c) and the Intermediate Value Theo
rem imply that r [(/ x {l})n ({0} x /)] = A(/2). Fix k e M, and if p: / x / -> / 
denotes the projection on the coordinate, define the coloring / : V(k) -> {±l}as 
follows: 

f(- 1) = I - 1 if c o s ( 2 M r M ) ^ °> 
\k ' kJ 1 1 otherwise. 

This coloring is symmetric with respect to A (/2) and each side of the square has 
exactly the same number of gates: The gates at the left and right sides are at the 
same vertical positions, and those at the bottom and top sides are at the same 
horizontal positions, respectively. 

Considering once again r : (S1)2 -• A (S1)2, we identify the points (0, i/k) with 
(l,j k) (i = 0,..., k). Walking to the right of (0,0), one finds the first gate g\ (b, I, 
r and t stand for "bottom", "left", "right" and "top") on / x {0} which gives place 
to a chain Sfk "going" on top of the «-component A of (0,0) (the relation « was 
defined in the proof of the Combinatorial Lemma). By the case we are dealing 
with, Sfk intersects {0} x / in the last gate gf from top to bottom. By the 
identification of (0, i/k) with (1, i/k) Sfk reappears through the first gate g\ in {1} x / 
from bottom to top, and thus Sfk "goes" above the « -component B of (1,0). 

Sfk intersects / x {0} in the last gate gf going from left to right. By the 
identification of (0, i/k) with (lj/k) Sfk reappears through the first gate g\ of the 
top side from right to left, and thus Sfk "goes" under the ^-component C of (1,1). 
Again Sfk intersects / x {1} in the last gate gf of the right side going from bottom 
to top, thus Sfk reappears on the first gate g\ of the left side going from top to 
bottom, going under the ^-component D of (0,1) and intersecting the last gate 
gf of the top side from right to left, reappering on g\ and beginning the whole 
cycle once again. The union of the simplexes from the chain Sfk is connected set 
for each natural number k. 

According to Lemma 2 the upper limit C = Ls [Sfk: k e N} is connected, and 
we have that C c: r l(p x (cos ! (0))), thus r maps the continuum C onto two 
points in A (S2); a contradiction. 

This concludes the proof in case (1). 
(2) Assume that r [(J x {l))u ({0}x /)] = {(0,0)}. 
This would mean that r [5/2] = {(0,0)}, and thus would imply that any copy S of 

S1 in the sphere S2 is a retract: The sphere S2 is the image of / x / by identifying 
the left (and right) and bottom (and top) sides of / x /. Since S2 equals the union 
of two copies of the unit disk, sharing the same boundary, this is impossible by 
the following corollary to the Combinatorial Lemma: 
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Corollary 2. (Borsuk's non-retraction theorem) S1 is not a retract of the unit 
disk. 

Proof: Identify the disk with the square I2, and S1 with its boundary dl2. If k e N 
consider D2 (k) and color it according to what points get mapped to the bottom and 
left sides, and to the top and right sides. There are only two gates in dl2. By 
corollary 1 there is one and only one chain connecting these two gates. Then we 
proceed similarly as in the end of case (1). • 
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