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1. Introduction 

Let C(2°°, J00) be the space of continuous mappings from the Cantor set 200 to 
the Hilbert cube J00, equipped with the topology of uniform convergence. A mapping 
f: 200 -> X is finite-to-one, if all fibers of fare finite. 

We shall consider the set 

c$ = {fG c(2°°, /°°): f is finite-to-one} . (l) 

One readily checks that the set ^ is coanalytic. We shall indicate a natural Lusin-
Sierpinski index for # , the transfinite order of a finite-to-one mapping on 200 (sec. 3), 
and we shall verify that the transfinite order of mappings is relaxed to the transfinite 
inductive dimension of compacta by a Hurewicz-type formula (sec. 4). Finally, we 
shall make some observations about Borel-measurable selections of finite-to-one 
parametrizations on 200 for certain collections of countable-dimensional compacta 
(sec. 5). 

These remarks are related to some open problems about the transfinite inductive 
dimension, discussed in [Pol] and [Po2; sec. 6]. 

2. Terminology and some background 

Our terminology follows Kuratowski [Ku] and Nagata [Na]. We consider only 
separable metrizable spaces and by a compactum we mean a compact space. A set 
S a Tis residual (non-meager) in T, if T \ S is of first category (S is of second cate
gory) in the space T. The spaces of continuous functions are considered with the 
topology of uniform convergence. 

A space is countable-dimensional (strongly countable-dimensional) if X is 
a countable union of finite-dimensional sets (compacta) 
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The transfinite inductive dimension ind is the extension, by transfinite induction, 
of the classical Menger-Urysohn dimension: indX = - 1 means that X = 0, 
ind X ^ a, if, and only if, each point in X can be separated from a closed set not 
containing it by a partition L with ind L < a; we let ind X be the smallest ordinal a 
with indX ^ a, if such an ordinal exists, and we set indX = oo, otherwise. If 
indX 4= oo, then indX < co1. 

The following two classical results (proofs can be found in [Na; VI] and [Ku; 
§ 45, II]) provide a link between countable-dimensionality, finite-to-one mappings 
on the Cantor set, and the transfinite dimension: 

2.1. Theorem (Hurewicz). For a compactum X without isolated points the fol
lowing conditions are equivalent: 

(i) X is countable-dimensional, 
(ii) indK #= oo, 

(iii) there is a continuous finite-to-one mapping of2co onto X, 
(iv) the set of finite-to-one mappings is dense in the space of continuous mappings 

of 2°° onto X. 

2.2. Theorem (Kuratowski). Let X be a strongly countable-dimensional com
pactum without isolated points. Then the set of finite-to-one mappings is residual 
in the space of continuous mappings of 200 onto X. 

The converse to the Kuratowski's theorem, even with "residual" weakened to 
"non-meager", also holds true [Po3], 

;3. The transfinite order of a finite-to-one mapping on 200 

Here we shall adopt some general notions from descriptive set theory to the 
situation we,are interested in, cf. Moschovakis [Mo; 2D, 2F], Kuratowski [Ku; § 39]. 

3.1. The transfinite length of collections of partitions of 200. 
Let Q be the countable collection of all finite partitions of the Cantor set 2°° into 

pairwise disjoint closed-and-open sets. Given ^ , if e .Q, we write % -< "V if ̂ U 
refines iT and W # Y. 

Let 2Q be the space of all subcollections of Q with the topology of pointwise 
convergence (we identify any A a Q with its characteristic function). Topological!/, 
2^ is the Cantor set. 

Let WF be the set of all collections A a Q with the property that there is no in
finite descending sequence ^ x >- ^ 2 !> • • • of elements of A. 

The set WF c 2s2 is coanalytic. For any A e WF the rank function on A is defined 
inductivity as follows, cf. [Mo; pp. 83, 84]: for each °U e A we set 

rankA<% = I if there is no iT- e A with i"<^l, < 
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and 

rankA Ql = sup {rankA TT + 1: Y -< * , "T e A} . 

The length of A. e WF is defined by the formula 

length A = sup {rankA %: °U e A} , 

and we set length A = oo if A $ WF. 
The length is a Lusin-Sierpinski index for the coanalytic set WF. 

3.2. The function ord. Let f: 200 -• I00 be a continuous mapping and let 

zl(f) = {^e(2: n{/(-P):-Fe*} * 0} . 

The mapping f -> A.(f) from the function space C(2°°, I00) (see sec. 1) to the Cantor 
set 2Q is Borel-measurable. Since, as one easily checks, 

A(f)eWFofeV, 

where # is described in (l) sec. 1, the transfinite order defined by the formula 

ordf = length A(f) , for fe C(2°°, I00) , 

is a Lusin-Sierpinski index for the coanalytic set # . In particular, the transfinite 
order is bounded on each analytic set in c€, and each set ^ = {fe # : ordf ^ £} 
is Borel, see [Ku; § 39, VIII]. 

4. A Hurewicz-type formula for the transfinite order 

The following fact is a certain substitute for a classical theorem of Hurewicz 
[ K u ; § 4 5 , I , T h . 2 ] . 

4.1. Proposition. Let f: 200 -> X be a finite-to-one mapping of the Cantor set 
onto the compactum X. Then 

(*) indX = ordf. 

Proof. The proof is by induction with respect to the transfinite order of the map
pings. For the mappings of finite order formula (*) is valid by the classical result. 
Suppose that (*) holds true for the mappings of order < a, a being a countable 
infinite ordinal, and letf: 200 -> X be a continuous surjection with ordf = a. 

Let us split 200 into two nonempty closed-and-open sets K, L, and let 

Z=f(K)nf(L). 

Since such sets Z separate all pairs of disjoint closed sets in X,.it is enough to check 
that 

(1) indZ <ordf. 
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We can assume that Z has no isolated points, as for the set Z' of points of conden
sation of Z, either ind Z' = ind Z, or Z is countable. Let S be a minimal compactum 
such that 

(2) S c K and f(S) = Z . 

Since S has no isolated points, there exists a homeomorphism h: 200 -* S. Let 

g =foh: 2*>-+Z. 

We shall check that 

(3) ord g < ordf. 

Let r: K -> 5 be a retraction [Ku; § 26, II, Corollary 2], and let for partition °U e Q, 

q/* = { r - ^ F ) ) : F e %\ u {L} e Q . 

The correspondence °U -> ^ * is invertible and preserves the order -<. Moreover, 
if %eA(g), then <%* e A(f). Therefore, taking into account that {200}* = {K, L], 
we get (see sec. 3A): ordf = length A(f) = rankMf) {200} > rankMf){K,L} ^ 
^ rankMg) {200} = length A(g) = ord g, i.e. we obtain (3). 

By the inductive assumption, ind g(2°°) g ord g, and, since g(2°°) = f(S), (l) 
follows from (2) and (3). 

4.2. Remark. One can define a function *F: co1 -> col such that for each com
pactum X without isolated points, if ind X ^ a then there exists a finite-to-one 
surjectionf: 200 -• X with ordf = <P(a). 

To see this let us fix a < co1 and let u: 200 -> Ka be a finite-to-one mapping onto 
a countable-dimensional compactum which contains topologically all compacta 
with ind ^ a (see [Po 2 sec. 3]). We let !F(a) = ord u. Now. given a compactum X 
without isolated points such that ind X ^ a we can assume that X c Ka and, for 
a minimal compactum S in 200 with u(5) = X and for a homeomorphism h: 200 -> S, 
we l e t / = w o h: 200 -> X. Since ord/ ^ ord u , / i s the required surjection. 

This observation is connected to the assertion of Lemma 2.1 in [Po 1; § 3]; we do 
not examine, however, the relationship more closely. 

4.3. Remark. The remark at the end of sec. 3.2 and Proposition 4.1 yield the 
following fact: 

Ifs/ctf is an analytic set of finite-to-one mappings o/200 in J00, then 

sup {ind/(2°°): / e s^} < co1. 

This can be also verified directly. Let u: co00 - > j / b e a continuous map of the 
irrationals co00 onto s4 and let F: a>°° x 200 -• co00 x J00 be defined by the formula 
F(t, x) = (t, u(t) (x)). The map F is perfect and finite-to-one. Therefore, the space 
E = F(coco x 200) is completely metrizable and countable-dimensional and, since 
each /(2°°), fes/, embeds in E, we have sup {md / (2°°): /e sf) ^ ind E < col 

(cf. [Po 2; sec 6] for similar arguments). 
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5. Borel-measurable choice of finite-to-one parametrizations 

Let Jf(I°°) be the hyperspace of the Hilbert cube, i.e. the space of compact subsets 
of I00 with the topology induced by the Hausdorff metric. 

Let 
C = {K e Jf (I00): K is countable-dimensional}, 
C* = {Ke jr(I°°): K is strongly countable-dimensional}. 

5.1. Proposition. For each analytic set A c C* there exists a Borel-measurable 
function a which assigns to each compactum Ke A a finite-to-one continuous 
mapping a(K): 2°° -• K onto K. 

Proof. Let q>: C(200,I00) -> /^(I00) (see sec. 1) be defined by the formula 

<?(/)=/(20 0) 

By a result of Michael [Mi; Th. 1.1] 

(1) the mapping q> is open . 

Let us consider the set <8 defined in sec 1, (1). By Hurewicz's Theorem 2.1, <p(#) = C 
and for each Ke C the sei <p_1(K) n <6 is dense in <p_1(K). Therefore, by (1), 

(2) (p | V: <6 -• C is open , 

where q> \ <& is the restriction of (p to <€. By Kuratowski's Theorem 2.2, for each 
Ke C* the set <P~X(K) n ^ is residual in <p_1(K). Now, the set <€ being coanalytic, 
we can apply, by (2), to the multifunction F(K) = <p_1(K) n <& defined on A a selec
tion theorem due to Burgess [Bu; Theorem 3.1] and Cenzer and Mauldin [C-M] 
which provides a Borel-measurable function a: A -> # such that tr(K) e F(K), i.e., 
a(K) (200) = K. 

5.2. Remark. By Kuratowski's Theorem 2.2 and the remark following this theorem, 
C* = {KeJf(I°°): (p~l(K)r\<tf is non-meager in (p~\K)}. Therefore, the above 
approach works only for analytic subsets of C*. 

I do not know, if the assertion of Proposition 5.1 is valid for all analytic sets 
A a C, or even for the analytic sets Ca = {Ke Jf(/°°): indK ^ a} (cf. the next 
section). 

5.3. Remark. Let Cn = {Ke Jf(I°°): K is at most n-dimensional} and let <€n = 
= {fe <€: the order f is at most n}. Then <6n and Cn are G -̂sets in C(2<X3,I°°) and 
jr(I°°), respectively [Ku; §45, IV, Th. 4], and, by a Kuratowski's theorem [Ku; 
§ 45, II, Th. 1], for each K e Cn, the set <p_1(K) n <£n+1 is dense in ^"^K) . It follows 
that the multifunction K -> ^_1(K) n <#n+1 defined on Cn is lower-semicontinuous. 
By a selection theorem due to Kuratowski and Ryll-Nardzewski [K-RN] there exists 
a first Baire class function a: Cn -> # n + 1 such that a(K) (200) = K. 

For n = 0 such selection a can be continuous, see Margerl, Mauldin and Michael 
[M-M-M; Theorem 5.1(b)]. 
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5.4. Remark. For the analytic set Ca, described at the end of sec. 5.2, there is 
an analytic set st a <g such that Ca = {f(2°°):fe st\. Indeed, by Remark 4.2, 
Ca c <p(#5), where £ = !P(a) and ^ is defined at the end of sec. 3.2. 
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