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ON SOME QUALITATIVE METHODS FOR SYSTEMS OF ORDINARY 
DIFFERENTIAL EQUATIONS IN THE LARGE 

V. V. NEMYCKIÍ, Moskva 

1 Introduction 

Most of the investigations in the qualitative theory of differential equations are of 
a local character. The behaviour of integral curves is studied in a sufficiently small 
neighbourhood of a given solution, e.g. in a neighbourhood of a stationary point or of 
a periodic solution. 

The situation is different if the investigation is made in the whole or in the large. In 
this case the examined system and a certain domain are given and one has to study 
all the solutions which are situated in this domain or to find all solutions of a given 
family which are situated in this domain. Such an approach is due to H. Poincare [1] 
who in his second paper included the chapter "Examples of investigation in the 
whole".*) In this chapter he examined some examples of the behaviour of integral 
curves of a system of two equations with polynomial right-hand sides. 

Among the examples considered by Poincare there also were those of equations pos
sessing limit cycles both in a finite domain and at infinity. In 1934 these methods were 
used by A. A. Andronov and A. G. Maier to prove the existence of limit cycles for 
equations of Rayleigh and Van der Pol. To do this they had to use the theory of singu
lar points of higher order. It seems to me that the methods of Poincare have not yet 
been fully exploited. 

If one analyzes the work concerning either the local theory or even the investigation 
in the large (Poincare), one observes that invariants of affine transformations have 
been studied. However, the classification of singular points given by Poincare was not 
affine, but possessed a mixed character. As a matter of fact, numerical values of the 
eigenvalues of coefficient matrices of linear systems are affine invariants. However, 
singular points, the corresponding matrix of which possesses real roots with different 
signs have been called saddle points, and all the saddle points possessing the same 
number of positive and negative roots of the characteristic equation have been grou
ped in one class; on the other hand the nodes and foci which from the point of view of 
homeomorphical mappings belong to a single class in the sense of Poincare, have been 
included in different classes. The other founder of modern qualitative theory A. ML 
Lyapunov, in his classification of stationary solutions in stable and unstable ones, laid 
the fundamental stress not on geometry, but on time. G. D. Birkhoff classifying va-

*) See [1], Chap. VII: Exemples de discussion complète, pp. 274—283. 
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rioiis types of motion also introduced "time" in his definitions. However, subsequent 
considerations showed that Lyapunov and especially Birkhoff pointed out some topo
logical properties of a family of integral curves [2]. 

From 1930, under the influence of the excellent book of G. D. Birkhoff "Dynamical 
systems", papers began to appear where classification was based on topological pro
perties. E.g. at the beginning of the thirties, a problem was formulated concerning the 
classification of dynamical systems all trajectories of which tend to infinity in both 
directions. It was shown that their behaviour was closely related to a phenomenon 
which I called a "saddle point at infinity" or "improper saddle point". 

Since in what follows we shall have to work with this concept, its definition will be 
presented. 

Definition. A family of integral curves will be said to have a saddle point at 
infinity, if there exist sequences of points {pn} and {qn} such that 

i) both pn and qn are situated on a single trajectory; 

ii) Pn -» A <in-+<ll 
iii) p and q are situated on different trajectories ; 

iv) there is a sequence of points zn e pnqn such that zn ->oo. 

Systems without saddle points at infinity can be mapped to a system of parallel 
direct lines, i.e. they are parallelizable. 

The conception of parallelizable systems has been further developed. Results of 
mine have been transferred by M. V. Bebutov [4] to the dynamical systems of G. D. 
Birkhoff and further, by D. Montgomery and L. Zippin [5] to more general systems. 
Especially, in theJatter paper the concept of a dispersive system was introduced which 
is equivalent to that with a saddle point at infinity. Namely, initially the following 
definitions were introduced: A pair of points p and q of a dynamical system is called 
wandering, if there exist neighbourhoods Up and Uq of these points and a Tsuch that 
for \t\ > Tthe map of Up does not intersect Uq and the map of Uq does not intersect 
Up; finally, a system is called dispersive, if every pair of points of this system is 
wandering. Locally compact dispersive systems will be called parallelizable. 
E. A. Barbasin [6] presented an analytic criterion of parallelizability which is analo
gous to the theorems of the "second Lyapunov's method". A dynamical system 
described by the system of differential equations dxtldt = fJ[xl9 x7,..., xn) will be 
parallelizable, if and only if the partial differential equation 

»=i 0Xi 

possesses a uniquely defined solution. Finally, in their recent paper J. Dugundji and 
H. A. Antosiewicz [7] impressed a geometrical character on this theory. In particular, 
they proved the following theorem: The flow of trajectories F will be parallelizable, 
if and only if F possesses a section for which tp is continuous, tp being the time 

106 



distance of the point p from the section. Particularly, in the locally compact case in 
Rn the necessary and sufficient condition for the existence of such a section is that the 
system is dispersive. 

There is an infinite number of topological types of saddle points at infinity. This was 
particularly studied by Kaplan [8] who enumerated the topological types of systems 
without singular points in the whole plane. 

In 1937 the paper of E. A. Leontovic and A. G. Maier [9] appeared in which the 
problem of topological classification of dynamical systems in the plane was formulat
ed. In this paper a new method of investigation is presented. The problem of topo
logical equivalence of systems is reduced to topological equivalence of a one-dimen
sional system of orbitally unstable solutions. As a result of the absence of proofs in 
this paper it has not received the attention it reserved. It is necessary to remark that 
these proofs have not yet been published. Several results of this paper will be shown 
r^elow. It is also necessary to mention a little known or studied paper of G. Birkhoff 
from 1935 [10]. In this paper G. Birkhoff tried to present a topological characteriza
tion of transitive systems in three-dimensional space. Such systems include e.g. 
systems the trajectories of which are everywhere dense in the interior of a torus. More 
-exactly, this class is characterized by the following conditions: 

i) These systems are transitive in space R3, i.e. to any pair of points p0 and q0, in an 
arbitrarily small neighbourhood of these points there exist points pi and q1 lying on 
the same trajectory. 

ii) They admit a regular section, i.e. there exists an analytical manifold S2 which is 
cut by all trajectories without contact in one direction; moreover, the trajectories 
intersect it in every time interval of sufficiently large but fixed length. A finite number 
of periodic trajectories may be tangent to S2; in the latter case they may lie on S2. 

iii) There exists at least one periodic solution. The latter is regular, i.e. its neigh
bourhood does not consist of periodic solutions of the same period only. 

G. Birkhoff asserts that for such systems it is possible to find an invariant set Ex the 
topological characteristic of which is sufficient for the full topological characterization 
of the whole system. As to the topological characteristic of El9 it can be given by 
means of a signature which represents a denumerable set of denumerable sequences of 
points on the manifold of the section. 

2 A topological classification of systems of Poincaré-Lyapunov's type 

Systems of the type 

dx n 

(1) -~2 = Yaikxk +Uxux2,...,xn) (i = 1, 2, ..., n) 
dt k=i 
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where f{ fulfils a Lipschitz condition with a sufficiently small constant, are usually 
called the systems of Poincare-Lyapunov. Reading the papers of O. Perron [11] and 
especially that of I. G. Petrovskii [12] one can have the impression that a complete-
classification of behaviour in a small neighbourhood of a singular point was given. 
As usual, their results are formulated as follows: If the roots of the characteristic 
equation have real parts different from zero, then the behaviour of the integral curves-
of (1) is the same as that of the reduced system 

(2) ^ = taikyk (f = l,2,...,n). 
at fc=i 

In this formulation there is the indefinite expression "the same behaviour". First,, 
both I. G. Petrovskii and O. Perron investigated only the behaviour of 0-curves, i.e. 
of integral curves entering the origin, and the words "the same as" meant that the 
dimension of the set of 0-curves which possess a certain asymptotical behaviour at the 
origin is the same for both the systems (1) and (2). However, it is well-known that the-
dimensions does not represent a full system of invariants and, accordingly, the problem 
was not solved completely from the point of view of topological classification. At the 
end of the forties I began to suggest to my pupils that they should pay attention to the 
investigation in the whole. V. A. Yakubovic [13] proved that there is a topological 
correspondence between the families of 0-curves of systems (1) and (2); however, it 
remained unclear whether there exists any one-to-one correspondence between integral 
curves of other types. 

Before giving an answer to this problem let us turn to the linear systems with con
stant coefficients. E. M. Vaisbord [14] showed that if the roots of the characteristic 
equation have real parts different from zero, then the number of topologically different 
types in the whole Rn will be finite for a given n and each of these types is defined by 
the number of positive and negative signs of the real parts of characteristic roots. This, 
simple remark presents the first exact classification for the regular case of systems with 
constant coefficients. 

What about the case where some of the real parts are equal to zero? One is easily 
convinced that the principle of topological classification can hardly be preserved. As 
a matter of fact, if one considers e.g. a system with two pairs of imaginary roots, then 
the set of topological types has the power of a continuum, since every ratio of coef
ficients in the imaginary case (except when it is rational) defines a topological class. 
Obviously, here one has to use a rougher classification of solutions than the topolo
gical one. 

Now let us turn to the systems of Poincare-Lyapunov's type in the case when imagi
nary roots are absent. First Vaisbord [14] and Mine [15], then Grobman [16], [17] 
and P. Hartman [18] stated the following final theorem: 

Theorem of D.M. Grobman. If the real parts of all eigenvalues of the matrix A are 
different from zero and if in a domain Gt containing the point x = 0 the vector 
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/(*)>/(°) = °> satisfies a Lipschitz condition with a sufficiently small constant, then 
the trajectories of the systems 

at 

(2) % - Ay 
at 

are homeomorphic in the domains Gt and G2, where G2 is some domain containing 
the point 0. 

Let us say several words about the methods used in the proofs of this theorem. 

First of all system (l) has to be also defined, if necessary, in the whole space; further 
D. M. Grobman applies his following result [19]: 

If the Lipschitz constant of the vector f(x) is sufficiently small, then system (1) will 
possess only two types of trajectories: the parabolic ones(0+ — and O" — curves) 
and the hyperbolic ones (tending to infinity in both directions). From this it follows 
that there are no elliptic trajectories. Let the completed system be denoted by 

<1') — = Ax + F(x) . 
dt 

The following transformation concerns the systems (1') and (2) where matrix A is 
.already written in the cannonical form. First, the following relation is proved: 

y(t) = X(t) - P Yt(t - T) F(X(T)) dT + f°V2(f - T) F(X(T)) dT 
J -oo J t 

i.e. if x(t) is a solution of equation (1), then y(t) defined by the latter equation is 
a solution of equation (2). In view of this it can be proved that the mapping y0 = 
= #(x0) of the space (x) into (y) given by the formula 

y0 = x0 - f YX(-T) F(X0(T)) dT + f°V2(-T) F(X0(T)) &T 

J -oo J 0 

transforms the solutions of equation (1') satisfying the initial condition x0 into the 
solutions of equation (2) with the initial condition y0 and that there exists an inverse 
mapping. P. Hartman states some time later than D. M. Grobman a less general 
theorem, as he assumes that the vector F(x) belongs to the class C2. 

In his proof he uses what is undoubtedly a very interesting lemma: 

Lemma of P. Hartmann. Let A be a constant matrix with the eigenvalues al9...9aN 

satisfying the conditions 
0 < \at\ < 1 . 
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Let X(x) be a vector function of class C1 for small \x\ and let 

dxt dxn 

for x = 0; in the neighbourhood of x = 0 let X have partial derivatives fulfilling? 
a Lipschitz condition. Then to the mapping 

T:x' = Ax + X(x) 

there exists the mapping 
R : u = x + <p(x) 

which belongs to class C1 for small x and satisfies the conditions 

cp = ^- = . . . = ^ = 0 for x - 0 . 
dx1 dxn 

Moreover, RTR'1 can be written as 

RTR-1 :u' = Au 

i.e. 

Au = R(Ax + X(x))R~1. 

Naturally one can ask whether or not it is possible to state a theorem analogous to 
that of D. M. Grobman for the whole space. Generally speaking that is not possible 
without additional assumptions, as e.g. that the saddle point at infinity cannot occur 
in a bounded domain. In the case of the plane this difficulty can be surmounted. E.g 
the following theorem of mine [20] is valid: Let a system of the Poincare-Lyapunov's 
type be given, the matrix of the linear part of the system possessing the Jordan form. 
If the Lipschitz constant of vector X(x) is smaller than ^ m i n /2 v '2, where Xm{n = 
= min (lA^2, |A2 |

2), then the topological character of integral curves in the whole 
plane will be the same as in the case of the linearized system. Generally, if there 
exists a function V(x, y) such that 

— P + — Q = mo 
дx õy 

for x2 + y2
 = Q, then the system 

df dt 

has no saddle point at infinity. 

No theorems of this type are as yet available for spaces with more dimensions. 
Observe that for n > 2 there exists another phenomenon which has not been studied 
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at all and which may complicate the situation: the curves tending to infinity may be 
knotted. As a matter of fact, no examples of systems of differential equations have 
been constructed up to now where such knots should occur; however, it is apparent 
that they can be constructed. In the case of linear equations such knots cannot occur. 
This follows from the mapping of E. M. Vaisbord [14], but the theorem of D. M. 
Grobman does not imply that they do not occur in the case of systems of Poincare-
Lyapunov. 

Is it possible to suppose that the problem of classification of solutions for systems 
of the Poincare-Lyapunov's type has been completely solved by the theorems of 
Grobman or Hartman? In a certain sense the answer is in the affirmative. However, 
there is a circumstance which must be taken into consideration. Namely the conti
nuous mapping of D. M. Grobman must not be considered as a transformation of 
variables, since it is not differentiable in the general case. For the analytical right-hand 
sides the following remarkable theorem of C. L. Siegel [21] is known: 

With the exception of a zero measure set of eigenvalues every analytical system 
with eigenvalues different from zero can be analytically transformed to a reduced 
system. 

Let the right-hand sides be differentiable or even analytical. Is it possible to make 
the mapping of D. M. Grobman differentiable with the determinant different from 
zero? This problem was solved in the paper of P. Hartman [18] the answer being in 
the negative: the system 

x' = ocx , y' = (a — y) y + sxz , z' = — yz 

was considered and it was proved that there exists no differentiable transformation of 
variables reducing this system to a linear one of the form 

x' = ax , y' = (a — y) y , z' = — yz . 

From this it follows that from the point of view of the invariants of differentiable 
transformations a larger number of types will exist which makes the problem more 
complicated. 

However, on the manifolds filled by 0-curves this transformation can be made 
differentiable; these manifolds being smooth the differential transformation can be 
realized in the special case when all of the roots of the characteristic equation have 
negative real parts. This was proved by Lojasiewicz [22] under some additional hypo
theses. Since in this case the transformation is differentiable for linear systems, such 
a transformation can be made especially for the singular node (a bundle of rays). If 
not all of the roots have real parts of the same sign, the differentiable transformation 
can be realized if the nonlinear perturbations have a sufficiently high order of small-
ness. A theorem of this sort was proved by M. Nagumo [23]. What to do in the case of 
imaginary roots remains an open question. 

I l l 



3 The Case of General Systems in the Plane 

Consider some results concerning the general case, i.e. not systems of Poincare-
Lyapunov's type. 

For the case n = 2 the problem of topological classification has made considerable 
progress. I have already mentioned the paper of E. A. Leontovic and A. G. Maier in 
1937. This problem was further studied by E. A. Leontovic, L. Markus and I. Maiercik. 
The basic idea of these papers consists in considering a special class of trajectories the 
homeomorphism of which defines the homeomorphism of all trajectories. If these 
singular trajectories form a one-dimensional graph, then evidently the problem beco
mes easy. This idea was published in 1937 [9]. 

E. A. Leontovic and A. G. Maier [25] took the orbitally unstable trajectories as the 
mentioned class of singular trajectories. Let L be a trajectory completely contained in 
the examined domain and let M be any point on it. The point M divides trajectory L 
in two half-trajectories LM and I7M respectively. Trajectory Lis called orbitally stable 
as t ->oo, if for any point M and every s > 0 there is a 5 > 0 such that all trajectories 
passing at t = t0 through the ^-neighbourhood of point M do not leave the ^neigh
bourhood of the half-trajectory LM for t > t0. An orbitally stable trajectory for 
t -» — oo is similarly defined. 

It is easy to prove that orbital stability is a topological invariant. As early as 1937 it 
was proved that if the sets of orbitally stable trajectories are homeomorphic, then the 
sets of all trajectories are homeomorphic. 

In his remark from 1955 and in his dissertation E. A. Leontovic present the way to 
describe the family of orbitally stable trajectories for the case that the number of 
orbitally stable trajectories is finite. This way of description is called a scheme and the 
following fundamental fact is established: If the schemes of two systems are identical, 
then both systems are homeomorphic. In particular this description shows that for 
polynomial righthand sides, the degrees of the polynomials not exceeding w, there is 
only a finite number of topological types, if one considers bounded domaines with 
a specially selected boundary. (The latter assumption is not essential.) The bounded-
ness of the domain plays a well-known role. 

The things are a little more involved in the case of an unbounded domain where the 
number of orbitally stable trajectories may be unbounded. I. Maiercik [27] using one 
of the results of L. Markus [26] established that the number of topological types on 
the whole sphere of Poincare is finite. 

Not that I. Maiercik using essentially the result of Markus [26], showed that form
ing the family of singular curves on the whole sphere one has to add even the limits of 
orbitally unstable trajectories to the orbitally unstable trajectories. Consequently, if 
the number of orbitally unstable trajectories in the whole plane is finite, then their con
figuration, i.e. one-dimensional graph consisting of these trajectories, defines the 
topology in the plane. 
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In my recent paper [28] I pointed out a class of systems called systems similar to 
the homogeneous ones for which this graph can be defined very easily and the topology 
of the family of integral curves is determined by enumerating in a cyclic order both the 
hyperbolic and elliptic domains. 

This class of systems fulfils the three following conditions: 

i) There is only one singular point. 

ii) There are no points except the singular one which should be either a or co limiting 
points for other trajectories. 

iii) Neither the system itself nor the system obtained from the given one by means 
of radius-vectors contains saddle points in oo. 

Also it should be mentioned that Bratkovskii [29] presented a classification of 
trajectories for systems with polynomial right-hand sides. Particularly, he considered 
systems with the only singular point in the origin of coordinates of the Poincare's 
sphere and showed that in the "general case" it is possible to find such a neighbour
hood of the equator that the topological structure of the family of the trajectories in 
this neighbourhood also defines the topological structure of the whole system of 
trajectories. 

One has to keep in mind that the construction of the graph of orbitally unstable 
trajectories representing a verification of the conditions for the scheme of E. A. Leon-
tovic cannot always be carried out by means of a finite number of operations. This 
concerns not only the well-known difficulties connected with determining the number 
and location of limit cycles, but also some difficulties of a fundamental character. 
M. I. Voilokov established recently that by a finite number of operations, in general, it 
is only possible to define the topological character of structurally stable system (this 
concept will be defined below). As to this class of systems A. N. Bellyustina [30] and 
M. I. Voilokov showed that an effective verification of the above mentioned condi
tions can be made, if one uses the method of qualitative integration with the help of 
piece wise linear lines of Euler which was presented by myself [31]. However, this 
does not mean that it is possible in fact to carry out the examination of the topological 
structure for a wide class of analytically given systems, since to establish that an analy
tically given system is structurally stable does not represent an effective operation. 

Now the results of the theory of structurally stable systems will be briefly examined. 

The concept of structurally stable system was introduced by A. A. Andronov and 
L. S. Pontryagin in 1937 [32]: The system of two equations dxjdt = Pt(xl9 x2) is 
called structurally stable in the domain G, if to any e > 0 there is an r\ > 0 such 
that for any Pi(xl9 x2)9 i = 1, 2 from the class C1 satisfying the conditions 

\Pfai, x2)\ < v , õP, 
ÕXj 

<ц (i,j = 1,2) 
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there exists a homeomorphic mapping T of the domain G satisfying the following 
conditions: 

i) the distance of the corresponding points is smaller than s > 0; 
ii) the points of the trajectory of the given system are transformed into the points 

of the trajectory of the system 

dx- _ 
— ' = pt(xi> x-0 + Pfau x2), i = 1, 2 . at 

In other words, in these systems "small" perturbations do not change the topologic
al character of the pattern of trajectories in the plane. 

L. S. Pontryagin and A. A. Andronov established the following necessary and 
sufficient conditions for a system to be structurally stable: 

Aj. There is a finite number of singular points and they are simple. (The roots of 
characteristic are simple and they have real parts different from zero.) 

A2. The trajectories contained in G cannot pass from one saddle point to another-
A3. There is a finite number of periodic solutions and every limit cycle has index 

%)= ľd. div X dí Ф 0 , 

The proofs of the theorems of L. S. Pontryagin and A. A. Andronov remained 
unpublished for 15 years and as late as in 1952 H. F. De Baggis [33] published a full 
treatment of the problem omitting at the same time the superfluous assumptions on 
the analycity of perturbations Pj(xl9 x2). Besides L. S. Pontryagin, A. A. Andronov 
and H. F. De Baggis assumed that the domain under consideration has the boundary 
which is an arc without contact, all of the trajectories crossing it inside G. Further the 
structurally stable systems in the plane were examined by M. M. Peixoto and M. C. 
Peixoto [34] and [35]. They showed that it is possible to omit this latter restrictive 
condition and to examine more general boundaries of domains. Besides they showed 
that for n = 2 the set of structurally stable system is everywhere dense in the set of all 
systems of class C1. This theorem makes a little less unsymmetrical the assertion of 
M. I. Voilokov that only for structurally stable system is it possible to find the topo
logical structure by means of a finite number of operations. For n > 2 the investiga
tion of structurally stable systems is in its initial stage. Definitions and several examples 
of w-dimensional structurally stable systems were given by M. M. Peixoto [34]. Some 
further advance in this field was made by L. Markus [36], [37]. 

Consider the system: 
xi = fi\XU X2> •••> Xn) 

and a space with the norm 

||5| | = max \\fiP)\\ + max \\gradf,{P)\\ . 

Two systems S and S' are called homeomorphic, if there exists a homeomorphism # 
of manifolds where these systems are defined satisfying the following conditions: 
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i) $ transforms the curves of the system S into curves of S' and $ l transforms the 
curves of S' into the curves of S; 

ii) every point is displaced by <P not more than an e > 0. 

Definition. A system S is structurally stable on M(n), if to any e > 0 there exists a 
<5 > 0 such that condition ||S — S'|| < 5 implies that S' and S are homeomorphic. 

L. Markus established several necessary conditions for a system to be structurally 
stable. E.g. all singular points are to be simple, periodical solutions isolated and, 
consequently, the periodical solutions may form at most a denumerable set. In paper 
[37] there is another group of necessary conditions the proofs of which have not yet 
been published. 

A further investigation of structurally stable systems for n > 2 is an open problem. 
It seems to me that it is necessary to relax the definition of structural stability a little 
in order to obtain sufficient conditions. 

4 Systems of Differential Equations with Elementary Structure 

(Method of Lyapunov Funct ions) 

What has been said above shows in a sufficiently convincing manner that a qualita
tive investigation in the whole is impossible in more complicated cases if one insists on 
topological principles of classification. Consequently, one has to choose from two 
possibilities: either to roughen the desired classification or to take into account some 
elementary classes of systems only. In the following I suggest a method called the 
method of Lyapunov functions, in which both of these possibilities are used. 

Now turn to the second method of Lyapunov to examine it from a geometrical 
point of view. The following classification of trajectories will be presented: 

1) Tending to infinity in both directions (hyperbolical trajectories). 
2) Tending to infinity in one direction and to a singular point in the other (para

bolical trajectories). 
3) Tending to a singular point in both directions (elliptic trajectories). 
4) Singular points. 
5) Complex trajectories. 

In the latter class all the remaining trajectories will be included. 

Consider the system 

——- = fi\xl> x2-> • • •? Xn) • 

at 

N. N. Krasovskii established a sufficient condition in an analytic form for the 
system not to possess complex trajectories. 
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Theorem of N. N. Krasovskii [38]. A necessary and sufficient condition that in a 
bounded domain containing at most one singular point there are no trajectories 
(different from the singular point) completely contained in this domain, is that there 
exists a continuous function V(xl9 x2,..., xn) whose time derivative with respect to 
the given system, i.e. the expression 

~7~ = £j~Z fi\Xu X2> •••> Xn) 

dt i dx( 

is positive everywhere except at the singular point where it vanishes. 

If the conditions of this theorem are fulfilled, only hyperbolic and parabolic trajec
tories may occur in the system and the classification of such systems is related to the 
structure of the set of zero points and of the domains where function V(xl9 x2,..., xn) 
is positive or negative respectively. 

From all possible situations of zero points of V I selected three of them by means 
of the following definitions: 

1) V(x9 y) is called an elliptic function, if V(0, 0) = 0, V(x9 y) 4= 0 for x2 + y2 + 
-# 0, V = c representing simple closed lines. 

2) V(x9 y) is called a hyperbolic function, if the curve V(x9 y) = 0 represents a 
finite number of curves coming out of the origin and dividing the plane into a finite 
number of unbounded regions. In neighbouring regions V(x9 y) has different signs. 
The remaining level curves V(x9 y) = const, consist of a finite number of branches 
each of which divides the plane in two regions. 

3) V(x9 y) is called a parabolic function, if it has no zero points at all and the level 
curves V(x9 y) = const, represent one-to-one images of direct lines dividing the plane 
into two regions. 

Assuming a priori that there exists a Lyapunov function of one of the above men
tioned types, it is possible to characterize the situation of integral curves; e.g. in the 
case of a hyperbolic function the pattern of integral curves is of saddle point type. In 
any angular region bounded by the branches of V(x9 y) = 0 there is at least one para
bolic domain. If one makes an additional assumption that 

dV n dV „ 5V 
— = P — + Q — ^ mK > 0 
dt dx By 

outside the circle of radius JR, then the number of parabolic domains will be exactly 
equal to the number of branches of the level curve V(x9 y) = 0 and there will be no 
saddle points at infinity. 

From this theorem it can be seen that even in the plane the Lyapunov function 
yields rougher results than the topological characteristics, as the case of parabolical 
sectors will not be discerned from the case when these sectors reduce to curves. For a 
higher-dimensional space the results obtained will probably be still rougher. Such an 
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elementary approach allows one to solve e.g. the problem of whether or not the 
pattern of integral curves of a linear system in the whole plane will be preserved under 
nonlinear perturbations. It is also possible to proceed in a slightly different way. 

Only positive definite functions V(xu x2,..., xn) will be taken into account; how
ever, the derivative of such a function with respect to the system will be allowed to 
vanish and change the sign on certain manifolds called neutral manifolds. These ideas 
are explained in the paper of P. N. Papus [39]. It is assumed that the investigated 
domain contains only one singular point and can be divided by topological cones 
Hh I = 1, 2 , . . . , m with the vertices in the origin in cos domains, 5 = 1, 2 , . . . , m. 
These manifolds represent neutral manifolds on which dV/dt = 0. To obtain certain 
results it is assumed that the second derivative of z = V(xl9 x2,..., xn) with respect to 
the given system has the same sign on the whole neutral manifold. 

The sign of the second derivative d2V/dt2 allows one to determine whether the 
system is elliptic, i.e. such that all integral curves are either elliptic or parabolic, or 
whether it is hyperbolic, i.e. such that the integral curves are either hyperbolic or 
parabolic. It is interesting to remark, as noted by M. B. Kudaev [40], that the con
ditions in the theorem of P. N. Papus also represent necessary conditions for suffi
ciently smooth systems. In order to describe mixed systems of elliptic-hyperbolic type 
by means of the Lyapunov functions it is necessary to admit that the second derivative 
has different signs on different cones. 

M. B. Kudaev showed one of the principles for distribution of signs for which such 
systems can be obtained. As yet such systems have been examined which possessed 
no bounded trajectories except singular points and elliptic trajectories. 

The question arises whether the method of Lyapunov functions cannot be used also 
in these cases. As yet two approaches appeared in this direction. 

In the first one the same Lyapunov functions were used as by P. N. Papus, but it is 
necessary to assume that the manifolds on which such a function changes its sign are 
closed and are the boundaries of domains containing a singular point. This method is 
widely used by Yoshizawa [41] to establish conditions implying that the solutions are 
ultimately bounded i.e. that every solution enters earlier or later some bounded do
main (Levinson's class D). 

Evidently, if it is now guaranteed by some condition that the unique singular point 
in the origin is of a repelling type, then one obtains conditions for the existence of a 
recurrent family of motions. 

In the case of the plane this idea was realized by B. I. 2eleznov [42] who established 
conditions for the existence of limit cycles for the systems of the type 

— = /i(*) + ay > 
dt 

^ = bx+f2(y). 
at 
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Essentially the same method was used by E. M. Vaisbord [43] to establish the exis
tence of a periodic solution of nonlinear equations of the third and fourth orders. In 
this connection one should not forget the more refined methods of section manifolds 
and point transformations developed by H. Poincare and G. Birkhoff and employed 
under difficult and complicated circumstances by A. A. Andronov [44] and V. A. 
Pliss [45]. 

Another approach to this problem was suggested by myself [46]. It is the method of 
a rotating Lyapunov function consisting in considering functions V(xl9 xl9..., xn) 
posessing properties of a tangent, the level manifolds of which represent a family of 
manifolds with a common axis. As yet this method has not been sufficiently employed. 
Perhaps a recent paper of A. Halanay [47] could be mentioned in this connection. 
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