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DIFFERENTIAL SUBSPACES ASSOCIATED WITH PAIRS 

OF ORD.OIARY DIFFERENTIAL OPERATORS 

E. A. Coddington, Los Angeles 

1. Introduction. This is an account of some joint work in progress with 

H.S.V. de Snoo. It represents an attempt to place a study of boundary value and 

eigenvalue problems, associated with a.pair of ordinary differential expressions 

L, M, in the general framework of two earlier papers by E.A. Coddington and 

A. Dijksma [7], [8]. In the first of these we showed how to describe very general 

eigenvalue problems, for the case when M is the identity and L is formally 

symmetric, and to obtain eigenfunction expansion results for these problems. In 

the second we described abstractly the adjoints of subspaces (multi-valued opera

tors) in Banach spaces in terms of generalized boundary conditions, and applied 

these results to a study of boundary value problems with not necessarily formally 

symmetric differential expressions L. 

There is a large literature devoted to problems for two expressions L, M. We 

mention the recent work by F. Brauer [2], [3], [k], F. Browder [5], [6], A. Pleijel 

[9], C. Bennewitz [1], We deal with systems, not necessarily formally symmetric 

L, and we do not assume that the order of M is less than the order of L. From 

the point of view of subspaces, if a subspace S is associated with a right defi

nite M, then S" is a problem associated with a left definite case. The set 

of Hilbert spaces which we allow differ from those considered by Bermewitz in [1]. 

We settle some notation matters. Let IR, C denote the real and complex 

numbers. We consider an open real interval t = (a,b), and the set F (t) of all 

vector valued functions f : t -» C . By C(t) we denote the set of all continuous 

f є F (t), and 
m 

By -7 v 
loc

v 

c
k
(

L
) = {f €F m(0 I f

(k) ec(L)} , 

Ck(l) = (f e Ck(t) I support of f is compact} 

<$-) = 0 co(O • 

/ ]f| < °° , each compact sub in te rva l J c t 
' J 

2 •*• 
where |f| = f f, and we l e t 

L2(t) = {f eL2
oc(t) \J | f ) 2 <~} , 

2 2 
Lfj(l) = (f € L (t) I support of f is compact} 

If f,g e F (t), we use the notations 

(f>ê)2,J =Jj g*f > (f><£)2 =J S*f 
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if the components of g f are integrable on the compact subinterval J e t , or 

on i, respectively. Note that we do not assume f, g are in L (L) or 
p xoc 

-(l). 

2. Hilbert spaces associated with positive differential expressions. Let M 

be the formal ordinary differential expression of order v 

v
 k 

M = £ Q.J) , D = d/dx , 
k=0 

where the Q, are m x m complex matrix-valued functions whose columns are in 

C ( L ) , and Qv(x) is invertible for x e i . We want to associate an inner pro

duct with this M by first defining 

(2.1) (cp,1r) = (Mcp,i)2 , q>,* e C~(L) . 

If this is to be an inner product on C (L) we must have 

M = M+ = Б (-І)VQÎ , 
(2.2) k=0 K 

(Mф,ф)
2
> 0 , Ф є C~(

L
) , 

and we assume this. From this it follows that v is even, v = 2u, and 

(-1) Q
v
(x) > 0, x e i, in the sense that 

£*(-l)\.(x)| > c(x)6*| , 6 € C
m , 

for some c(x) > 0. We can wr i te such an M i n the form 

M j + 1 i 1 k 
M = E £ (- l ) JD aQ D , 

j=0 fcrj-1 JK 

where Q*fc = Q ^ , and Q ^ e CJ'(t), Q j + 1 ., e C
J * + 1 ( L ) , Q.. .+±e C J + 1 ( L ) . Using 

this form for M the formula (2.1) can be written as 

r V J+1 • * v 
(<P,*) = (Mcp,^)p = / E £ (DJMr )Q.,(D>) , q>,lr e c"(t) , 

2 J L j=0 k="j-l J k ° 

and the right side is denoted by (cp, \|r) , the Dirichlet inner product. 

. The definition (2.1) gives an inner product ( , ) on C Q ( L ) under the 

assumption (2.2), and || || = ( , y-' is a norm on C°°(L). Let fc denote the 

completion of C Q ( L ) ; it is a Hilbert space. In many cases £u can be imbedded 

into L ( L ) , and this is assured if we assume: 

(A ) for each compact subinterval J c L there is a c(j) > 0 such that 

I M I > < K J ) I M I 2 ^ > 9 e C~(L) . 

Then the identity map on C Q ( L ) has an extension which is an injection of &, 
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2 2 

into L-, (L), and we can identify $v. as a subset of L, (L). We have 

(f,cp) = (f,Mcp)2 , f € s^ , cp e C~(L) , 

| | f | | > c ( j ) | | f | | 2 ^ , f e ^ , , 
2 

and the injection $^ -> L (L) implies the existence of an injection G : 
LQ( L ) -+ gVj with the properties : 

(f,G^i) = (f,h)2 , f € t^, h e LQ(L) , 

00 

Gv,»P = <P • <P e C (t) , 
(2.3) * ° 2 

Hy. = h , h € l£(t) , 

(«(GM))
C = % ' 

where A denotes the closure of a set A, and 9t(G ) denotes the range of G . 

An important special case is obtained if instead of (A1 ) we assume 

(A|) ||cp|| > c||cp||2 , for some c > 0 . 

o 
Then £u c L (L) and G has an extension, call it G also, to an injection 

GM : L (L) -» &. such that (2.3) is valid with L Q(L) replaced by L (L) every

where. In fact, assuming (A-1) we can identify G more precisely. Let M̂^̂  be 

the operator in L (L) with domain £)(M ) = C (L) given by M cp = Mp. It is a 

symmetric operator which is bounded below by c > 0 if (A') holds, and thus has 

a Friedrichs extension which is a selfadjoint operator M_ having the same lower 

bound c. Its inverse ML exists on all of L (L) and one can show that GM = 

Mjj. , and that Ŝ j is the domain ©(My ) of the positive square root Mp of Mp. 

There exist other Hilbert spaces & having the essential properties of &̂ . 

Let & be any Hilbert space with inner product ( , ) and norm || || satisfying: 

CQ(I) C fccL^l) , 

(A2) (f,cp) = (f,Mcp)2 , f € ft , cp e C 0(L) , 

11*11 > c(J) l l f l l2 , j > f G & , c(j) > 0 , 

for each compact sub in te rva l J c L. We have (C ( L ) ) = &*, and in fac t 

an orthogonal sum, where 

Sf̂  = {f e C V ( L ) n & | Mf = 0} . 

2 
Clearly dim 9L. < VM. As before there exists an injection G : L 0(L) -» & such 

that: 
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(f,Gh) = ( f , h ) 2 , f € ft , h 6 L^(t) , 

GMcp = cp , cp e C^(t) , 

(2.1+) MJh = h , h € 1,2(0 , 

(<R(G))° = 6 , 

% = *#> 

where P is the orthogonal projection of $ onto &.. If instead of (A ) we 

have 

•CQ(L) c&cL
2(t) , 

(A!) (f,cp) = (f,Mcp)2 , f € & , cp e c£(l) , 

l l f l l > c | | f | | 2 , f e & , c > 0 , 

2 2 
then G has an extension to all of L (t) satisfying (2.1*-) with LQ(t) replaced 
by L2(t). 

2 
3. Examples. Let H be a positive self adjoint extension of 1VL in L (t) 

such that 

(3.1) (Hf,f)2 = (Mf,f)2 > (c(j))
2(f,f)2^ , f e ©(H) , c(j) > 0 , 

for each compact subinterval J c i, and let Si, be the completion of -D(H) with 

(f,g) = (Mf,g)2 , f,g e5)(H) . 

This i s a Hi lbe r t space, and i t w i l l be in L ( t ) i f the following i s assumed: 

(A ) f e 5)(H), ||f - f || -> 0, Ilf
nll2 j "* ° f o r e a c h c o m P a c t sub in te rva l 

J e t , implies HfJ - 0. 

2 
Then $ = Su satisfies (A2). As an example consider M = -D , m = 1, t = (O,00). 

The maximal operator M for M in L (t) has a domain -9 consisting of 
Q max max 

all f e L (t) such that tx is absolutely continuous on each compact subinterval 
2 

J c [0,°°), and Mf e L (t). The self adjoint extensions of MQ are obtained from 

M by imposing a homogeneous boundary condition at 0. Let H. be the self-

adjoint extension of MQ given by 

©(ly = [t e5)max | f'(0) = hf(0)} , h € H, 

= ff e Smax I f(°) = 0} > h = oo . 

We have for f,g e 2)(Hn) 
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(Hhf,g)2 = hf(0)i(0) + (f',g')2 , h e B , 

= (fSg')^ > h = oo . 

Only for 0 < h < ~ will H"h satisfy (Hhf,f)2 > 0 for f e 5)(Hh). In case 

0 < h < oo we can show that for each compact subinterval J c [0,oo) there is a 

c(j) > 0 such that 

(Hhf,f)J
/2 = ||f|| >_ c(j)||f | |2^ , f e sxiy , 

and (A ) is valid. Then the Hilbert space completion & of -E>(H.) is in 

L (t) and the form of the inner product persists, that is, 

<f,g) = hf(0)i(0) + (f',g')2 , f,g € fch , 0 < h < oo , 

(f,g) - (f',g*)2 > f,g e S^ , h = oo . 

Moreover it can be shown that *JL_ = span{l} if 0 < h < oo and !JL= {0} if 

h = oo. None of these & are contained in L (l), for there exists a sequence 

^n e C0(t) c5)(Hh) such that ll̂ n"2 = (Vn'VU "* ° but ^ 2 " **' ^ case 

h = 0 we get an inner product (f,g) = (f',g')2 on -£(HQ), but the completion &. 

of ®(HQ) is not contained in L_ (L). There exists a sequence 9 c -D(HQ) such 

that ||cp || _»0 but ||<P |L T-»°° on each proper compact subinterval J c [0,°°). 

There may exist positive selfadjoint extensions H of M in L (i) satis

fying a global inequality: 

(Hf,f)2 = (Mf,f)2 > c
2(f,f)2 , f € ©(H) , c > 0 . 

If $L is the completion of S)(H) with (f,g) = (Mf,g)2, f,g e ©(H), then 

S^ c L 2(L) and & = ̂  satisfies (A£). In fact S^ = ©(H1'2) and G = H"1 

in this case. 

Another method of constructing an § satisfying (Ap) is as follows. Let 
v 

2^ be any linear subset of NM = {f e C (i) | Mf = 0} with any inner product 

( , ) 0 such that 

ôllo >• co(J)llfo"2,j > fo e \ > 

for some cQ(j) >0 and each compact subinterval J e t , Let ( , )-., for the 

moment, denote the inner product on £• . Define & = &^ © SfL. with the inner 

product 

<f,g) = (fr
gi)i + (frygo)o > 

f = fl + f0 ' g = gl + g0 ' fl'gl G *H > V g 0 G \ • 

Then (A2) is valid. As an example we could use (f,g)0 = (f,g)2.» or (-̂ g)ft = 

(f,g)D-
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k. Maximal and minimal subspaces. Let M be as before, arid let L be 

another formal differential operator 
n k 

L= £ P,Dk, 
k.=0 K 

where the P are m x m complex matrix-valued functions on t whose columns 
k 

are in C (t), and P (x) is invertible for x e t if n > v. We consider any 
n 2 

Hilbert space $ satisfying (A2). In $ = § © § we define the maximal linear 

manifolds 

T -= t£f,g} e & 2 | f € Cr(t), g e CV(t), Lf = Mg} , 
T+ = {{f,g} € S2 | f e Cr(t), g e CV(t), L+f = Mg} , 

where r = max(n,v), and the minimal linear manifolds 

S = £{cp,GLcp} | 9 e C 0 ( t ) } , 

S + = {{cp,GL+cp} | 9 e C Q ( L ) } . 

Now S, S are (the graphs of) operators, whereas T, T need not be operators. 

In fact, 

T(0) = {g e & | {0,g} e T} = T+(0) = % , 

and this implies S, S are densely defined if and only if lit. = {0} . It is clear 

that S c T, S+ c T+, and if we put TQ = S
C, T^ = TG, T+ -= (S+)c, T+ * (T+)C, 

We have TQ <= T-, Tn c T-, and these are subspaces (closed linear manifolds) in $ . 
2 2 

On § X $ we introduce the form ( , ) given by 

(u,v) = (g,h) - (f,k) , u={f,g}, v={h,k} e fc2 . 

If Ju = £g,-f} then (u,v) = (Ju,v) = -(u,Jv). If A is any linear manifold 
2 •# 

in $ its adjoint A is the subspace defined by 

A"* = {v e &2 ) (u,v) = 0, all u e A} . 

The following re su l t describes the adjo ints of S, T, S , T and the i r propert ies . 

THEOREM. We have 

( i ) S* = {{f ,g} e fc2 | (g,Mcp)2 = (f,Lcp)2, a l l cp e c" ( t ) } = T+ , 

( i i ) T+ 0 T + = T+ n JT , 

( i i i ) (S + )* = {{f ,g} e <Q2 | (g,Mcp)2 = (f,L+cp)2, a l l cp e C~(t)} = T± , 

( i v ) T1 © TQ = T n JT+ , 

(v) T^O) = T+(0) = T(0) = T+(0) = 9^ , 

(v i ) v(T+ - JI) = v(T+ - 11) = {f e $ n C r ( t ) | L+f = iMf} , 

where Z e c, n > 21- , 

Z e C \ { 0 } , n < 2u , 
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i e c M t a cr(Q"J(x)P^(x)) , n = 2u , 

( v i i ) v(T - 41) = v(T - i l ) = {f e ft | f e C r ( L ) , Lf = 4Mf} , 

where I e c - n > 2u , 

I e C \ {0}, n < 2u 

* e C \ Licet ff(QiJ(-0-?2n(x)) ' n = ^ ' 

In the above theorem, I denotes the identity operator, V(A) represents the 

null space of a linear manifold A, 

v(A) = {f e ft | {f,0} e A} , 

and o"(B) is the spectrum of a matrix B, that is, the set of its eigenvalues. 
+ + -x- -x-

This result shows that T, T can be regarded as smooth versions of (S ) , S , 

respectively, and that the only nonsmooth elements in the latter subspaces come 

from T Q \S and TQ \ s , respectively. Although S, S are operators their 

closures TQ, T Q need not be; they are operators if and only if 3)(T ), 3)(T) are 

dense in ft, respectively. 

5. Boundary value problems. We are now in a position to apply the results in 

[8] to describe the subspaces A, A satisfying 

T c A c T , T C A+ c T . 

Let dim(T © T ) = dim(T 9 TQ) = t < 2mr. Then a sample result is the following. 

THEOREM. Let A be a subspace satisfying 

(i) TQ c A c T x , dim(A/T0) = d . 

Then 

(ii) T+ C A* C T+ , dim(A*/T+) = t - d , 

and there exist subspaces M-,, M-, such that 

M-_ c T^ 0 TQ , M| c T^ 0 Tj , 

(iii) dim K± = d , dim M£ = t - d , 

and 

A = T 0 © M L , A = T 0 © M ^ 

(lv) A = T X n (tfj;)* , A ' - T + O I ^ . 

Conversely, if M , M?" satisfy (iii) then A = TQ © K± satisfies (i), and (ii), 

(iv) are valid. 

y i y y _i_ -V 

The descriptions of A, A given via A = T., n (M^) , A = (T n - O show 

how A, A are obtained from T , T by the imposition of generalized boundary 

conditions. For example, we have 
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A = Tj_ П ( ф = {w є T^ | (w.m^) = 0} 

where miT = (IIL , • • -,IIL ) is a 1 X (t - d) matrix whose elements form a basis 

for M_. 

It is important to note that A, A will contain nonsmooth elements in general, 

for T
Q
, TQ contain such elements. This even occurs in cases when $ satisfies 

the more stringent assumption (A*). However, there exist smooth versions of A, 

A , for we can show that if 

..+x* r+ 
= T П (K^) , A = T П И^ , 

then (A)
C
 = A, (A

+
)

C
 = A*. Now A, A

+
 c C

r
(i) X CJ

V
(i) and are obtained by 

restrictions defined by elements in C (i)xC (i). In case (A*) holds the bound

ary conditions, in some cases, can be reduced to conditions of the usual type for 

L in L
2
(

L
) X L

2
(

t
). 

More general problems can be treated. Let B, B be subspaces in $ such 

that 
+ + 

dim B = p < oo , dim B = p < °° , 

and consider 
.,+•* 

where 

A
0
 = T

0
П ( B

+
) , A

+
 =

 T
;

П
B , 

A* = T+ + B
+
 , (A

+
)* = T

x
 + B 

are algebraic direct sums. If A.. = A
Q
, A = (A ) , then we have A

Q
 c A , 

A
n
 c A , and we can characterize those A, A satisfying 

+ #. + 
AQ c A c A

1
 , A c A c A , 

via generalized boundary conditions; see [8]. The major problem remaining is to 

see what these conditions reduce to in significant special cases. 

6. The symmetric case. The minimal linear manifold S is symmetric (S c S ) 

if and only if L = L , and we now assume this. Then S has self adjoint exten-
•x- 2 

sions H = H in $ if and only if 

dim v(T - ZI) = dim V(T - 7l) , some I e c\-R. 

•x- 2 * 

More generally, if A
Q
 = T

Q
 n B , dim B = p < °°, B c & , where A

Q
 = T + B is 

a direct sum, then AQ is symmetric and has self adjoint extensions in § if and 

only if S does. Now A
n
 always has self adjoint extensions H in a larger space 

2 2 
ft ID § , R a Hilbert space. If P is the orthogonal projection of ft onto $, 
then R(i) defined by 

R(i)f = P(H - il)
-1
f , f e ft , i e c\-R, 

is called a generalized resolvent of A
Q
 associated with the extension H. 
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We have 

{R(i)f, iR(i)f + f} e A* = T± + B , f € & , 

and we can show that R(^) is an integral operator on 91(G): 

R(i)Gh(x) =J K(x,y,i)h(y) dy , h e LJJ(I) . 

In the case Mf = f this fact has been used to obtain an eigenfunction expansion 

result and Titchmarsh-Kodaira formula for the extension H. The carrying over of 

this method to the present case seems to require a special choice of basis for the 

solutions of (L - M)f = 0 . A second method for obtaining the eigenfunction 

expansion result in the case Mf = f was presented in [7], and A. Dijksma and 

H.S.V. de Snoo have carried out this program in the present case, but a regularity 

result is required to complete the argument. We hope that both of these programs 

will be completed soon. 
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