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MULTIPLE SOLUTIONS OF SOME ASYMPTOTICALLY LINEAR ELLIPTIC 

BOUNDARY VALUE PROBLEMS 

P. Hess, Zürich 

In this note we shall apply the additivity property of the Leray-

Schauder topological degree in order to assure the existence of mul-

tiple solutions in two examples of nonlinear, asymptotically linear 

elliptic boundary value problems which both attracted remarkable in-

terest in recent years: 

I. Positive solutions of nonlinear eigenvalue problems, 

II. Nonlinear perturbations of linear problems at resonance. 

We do not bother here to state the results in the utmost generality 

possible. For detailed proofs the interested reader is referred to the 

forthcoming papers by Ambrosetti-Hess [l] (concerning example I) and 

Hess [2] (concerning example II). 

I. Positive solutions of nonlinear eigenvalue problems 

We consider the question of existence of positive solutions of 

the problem 

-Au = Xf (u) in ӣ 

u = 0 on Әíž , 
(1) 

where fi is a bounded domain in R (N > 1) with smooth boundary, 

X > 0 is a parameter, and f : 1R ->- 1R is a continuous function satis

fying the following conditions 

m > 0 and a bounded function g : lR -> lR such 
00 -* 

m s + g (s) v s > o , 
00 "* -= * 

led derivative f'(0) at s = 0 exists, and 

Of course (1) admits always the trivial solution u = 0 . For 

X varying in a certain interval we shall prove the existence of posi

tive (i.e. nonnegative and nontrivial) solutions. Let X > 0 denote 

the first eigenvalue of the Dirichlet problem 

(2) 

( f l ) f (0) = 0 , 

(f2) there exist 

that f(s) 

(fЗ) the right-s 

f! (0) < m 
+ ' 00 

-Au = Xu in ft 

u = 0 on Әfì 

it is known that the corresponding eigenspace is 1-dimensional and 



146 

spanned by an eigenfunction cf> which we may choose to be positive 

in ft . Let 
Xl 

X := — , X 00 m o 

X1/f|(0) if f|(0) > 0 

+ °° otherwise . 

If f is strictly monotone increasing, convex and f'(0) > 0 , 

Amann-Laetsch [3] prove the following: 

For X € [o,X ] U [X ,+°°) ,-problem (1) has the trivial solution 

only. It has at least one positive solution for X £ (X ,X ) . 

(For a uniqueness result cf. Amann [4], Ambrosetti [5].) 

Their statement follows from an abstract theorem on order convex 

maps in general ordered Banach spaces and uses results from bifur

cation theory (note that X is a bifurcation point from the tri

vial solution and X^ a bifurcation point from infinity). It seems 

that their method breaks down if f is allowed to admit also nega

tive values. We are interested in this case here. 

Theorem 1. Let (fl) - (f3) be satisfied. 

(i) _If X £ (X ,X ) , there exists at least one positive solu

tion of problem (1). 

(ii) Suppose in addition 

(3) liminf s^+oog(s) > 0 . 

Then for all X £ [X^X ) , problem (1) admits at least one positive 

solution. There exists e > 0 such that for X € (X^-e^X^) , problem 

(1) has at least two positive solutions. 

We briefly sketch the proof of Theorem 1, working in the Hilbert 

2 

space H = L (ft) . Let L be the positive selfadjoint operator in

duced in H by -A , with domain D(L) = H (ft) n H2(ft) . We extend 

the function f to ^ by setting f(s) = 0 v s < 0 , and denote by 

F : H •> H the Nemytskii operator associated with f : (Fu)(x) = 

f(u(x)) (x € ft) for any function u defined in ft . By the maxi

mum principle, any solution u of Lu = XF(u) with X > 0 is non-

negative in ft . Thus problem (1) is equivalent to the equation 

(4) u - XL_1F(u) = 0 

in H . Note that L : H -* H is compact. 

We now apply topological degree arguments to prove the existence 

Dntrivial solutions of (4). For R 

ball in H around 0 , with radius R 

of nontrivial solutions of (4). For R > 0 let B_ denote the open 
R 
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Lemma 1. To each 0 < X < X there exists Rn = R.(X) > 0 such _ = 0 ! i 
that deg(I-XL F,B_ ,0) = 1 . 

Rl 

Proof. The assumptions (fl) - (f3) imply the existence of a constant 

c > 0 such that |f (s) | < c|s| V S € I R . Let 0 < X < X .By the 

homotopy invariance of the Leray-Schauder degree, Lemma 1 is proved 

if we can show that for some R > 0 , 

u - tXL_1F(u) 7- 0 V||u|| = R1 , Vt e [o,l] . 

This is established indirectly, using measure-theoretic arguments 

and the variational characterisation of the first eigenvalue X of 

L . 

Lemma 2. Let X > X^ . Then deg(I-XL~ F,B ,0) = 0 for all 
°° " 2 

R̂  = R?(X) sufficiently large. 

In particular, if X^ < X < X , we can choose R~(X) > R (X) . 

Then, by the additivity property of the degree, 

deg(I-XL F,B \ B ,0) = -1 , and consequently there is a (nontrivial) 
2 1 -solution of (4; in B_ \ B . This proves Theorem l(i). R2 R1 

Idea of proof of Lemma 2. One shows, again indirectly, that to 

X > X^ , there exists K = K(X) > 0 such that 

(5) u - XL_1F(u) = T<|> , with T > 0=->||u|| < K . 

Since I - XL F is a bounded mapping, it then follows that there is 

a constant a > 0 having the property that 

u - XL_1F(u) f a* , Vu e B . 
K 

As, by (5) , 

u - XL~1F(u) ± tacf) V||u|| = K , V t € [ o , l ] , 

this implies that 

0 = deg(I-XL""1F-ac(),B„,0) 
-1 = deg(I-XL ^Y,B^,0) . 

The proof of Lemma 2 was inspired by a related argument used in 

Brown-Budin [6]; in our case however we are able to prove an a priori 

estimate of the form (5) only for this particular function cj) . 

Lemma 3. If in addition (3) holds, the assertion of Lemma 2 remains 

valid also for X = X 
I . .i i . n • oo 

Since the degree is invariant in connected components of 
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H \ (I-X L"1F) OB- , , J , t h e r e e x i s t s e > 0 such t h a t 
R2Uoo) 

degd-XL'^Bp n w O ) = O , V \£ ( A ^ - e , X ) . 
K 2 v °° ; 

Lemma 4. For O < X < X we have 
i oo 

deg(I-XL F / B R ,0) = 1 , provided R„ = R~(X) is sufficiently large. 

This is a simple consequence of the asymptotic behavior of the 

function f . 

Suppose now (3) holds, and let X € ^ocT 6'^^ ' B y L e m m a "-1 
there is R- > 0 such that deg(I-XL F,B_, ,0) = 1 . Further, Lemma 

1 -1 1 
3 implies that deg(I-XL F,B_ ,, .,0) = 0 , Hence there exists a 

R2 ̂ Aoo) __ 
nontrivial solution of (4) in B ,, ,\ B . Moreover, by Lemma 4 

R 2 lA^) R1 

we find R^ > R-(X^) such that 
deg(I-XL"1F,BT, ,0) = 1 . It follows that deg (I-XL_1F ,B _\ _L ,, w 0 ) = 1 

R
3
 R

3
 R2 ( Aco ) 

and thus the existence of a second nontrivial solution is guaranteed. 

Theorem l(ii) is proved. 

II. Nonlinear perturbations of linear problems at resonance 

The problem 

(6) 
(-A-X,)u + g(u) = h in íî 

u = 0 on ӘП 

is investigated. Here X denotes the k-th eigenvalue of the 

Dirichlet problem (2) , g : IR -»• -R is a continuous function having 

limits g, := lim , g(s) (€JR) and h is a given element in 
+ S"*"+°o 

H = L (fi) . Let again L be the realization in H of the operator 

-A with Dirichlet boundary conditions, and denote by G : H •> H the 

Nemytskii operator associated with g . Supposing in addition that 

(7) g_ < g(s) < g + V s € IR , 

it is well-known that condition 

(LL) (h,v) < J (g,v+- g_v~") V V € N(L-X.), v 7- 0 , 

is both necessary and sufficient for solvability of problem (6) (e.g. 

[7-12]). Moreover it follows that the range R((L-X,)+G) is open 

in H . 

We consider here problem (6) under conditions which are in a 

certain sense opposite to hypothesis (7) and imply a closed range of 

(L-Xk) + G . 

Let H be decomposed as H = N(L-X ) ® R(L-X,) . We set 

H. := N(L-X ) , H 0 := R(L-X ) , and denote by P. (i = 1,2) the ortho-
JL K _ K 1 
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gonal projection onto H. . Let h. : = P.h (i = 1,2) . 

We now suppose without loss of generality that g_ < 0 < g 

Let % <-- H, be the nonempty, closed, convex set defined by 

S := (h e H_ : (h ,v) < / (g v+- g v") V v € H.} . 
J - L L — O " 1 " " L 

The following condition is imposed on g 

(gl) There exists 6 > 0 such that 

g (s) > g V s > 5 

g(s) < g_ vs- < -6 

Let 

Y + := lim inf g^+oo (g (s) -g+) s (> 0) . 

Theorem 2. Suppose that either 

(a) k = 1 (perturbation in the first eigenvalue) and both 

Y_ > °* y+ > ° / 2£ 

(b) k > 1 and at least one of Y_ t Y, is positive. Then to 

each tu ^ H_ there exists an open set £ . in H , £. => £ , 

such that 

(i) if_ h.. ̂ ,5"^ / then (6) admits at least one solution for 

h = h 1 + h 2 ; 2 

(ii) i_f h £ ,ST, \ S , then (6) admits at least two solutions 

for h = h + h- . 2 

Employing the strong maximum principle, assumption (a) can be 

slightly weakened (cf. Fucik-Hess [l3_). Theorem 2 generalizes some 

results of Ambrosetti-Mancini [14,15]. A consequence is 

Theorem 3. Under either assumption of Theorem 2, the range of 

(L-X ) + G is closed in H . 

It follows that assertion (i) of Theorem 2 remains valid for 
nn ^ SZ • I n order that R((L-XV) + G) is closed in H , one can 
1 n_ K 

show by examples that in general conditions stronger than (gl) are 

needed. 

Idea of proof of Theorem 2. 

(i) Suppose h € H_ is fixed, and let h £ i . Obviously 

equation /T , » , _. . , 
^ (L-X,)u + G(u) = h 

is equivalent to the equation 

u + ((L-Xk) + P1)"
1(G(u) - Pxu - h) = 0 . 

Introduce the homotopy 

the 
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# ( t , u ) := u + t ( (L-X k ) + P 1 ) " 1 (G(u) - P l U - h) , t € [ 0 , l ] , u € H . 

I t can be shown t h a t t h e r e e x i s t s a r e c t a n g l e B = {u € H: || P u|| < c , , 

||P2u|| < c } i n H such t h a t ^ ( t , u ) 7- O Vt € [ o , l ] , Vu € 8B and 

t h u s 

d e g ( $ ( l , . ) , B, O) = d e g ( I , B, 0) = 1 . 

Moreover to each h.. € O there is an open neighborhood W'(h..) c H-. 

such that the degree remains 1 for h-, replaced by h € u(h ) . 
Hence V u := U li(h_) suffices. 

h2 h^ff X 

(ii) Let still hu £ H~ be fixed, and suppose now 
hl € S h N £ • The* 3v € H;L: 

(h. ,v) > f (g, v+- g *v") (̂  O) 

and consequently h.. f 0 . Since R(G) is bounded in H , (1+K)h 

% R((L-A ) + G) for sufficiently large K . Set 
K 

X (t,u) := u + ((L-Ak) + P1)"
1(G(u)- P^u - (l+t)h), 

t € [O,K], U £ H . We can find a rectangle C -̂  B (where B is a 

rectangle as obtained in the proof of part (i)) such that 

^C(t,u) JP- 0 Vt € [O,K] , VU € ac . Hence 

deg(3f(l,.) ,C,0) = deg (-X(0, .) ,C,0) 

= deg(3C(K,.) ,C,0) = O . 

By the additivity property of the degree, the existence of a further 

solution in C\B follows. 
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