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NONLINEAR PARABOLIC BOUNDARY VALUE PROBLEMS WITH THE TIME
DERIVATIVE IN THE BOUNDARY CONDITIONS

J.Kadur , Bratislava

The subject of this paper is motivated by the nonstationary,nonli-
near and mixed boundary value problem for Schrddinger”s equation con-
sidered in [Z—Q .An approximate solution is constructed by solving a
corresponding linearized boundary value problem. Construction of the
approximate solution is convenient from the numerical point of view.
Convergence and some properties of this approximate solution are inves-
tigated. Consider the equation
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1y 5 ¢+ _axi( a;5(x) Ej) + bo(t,x,u, Vu) =0

for (x,t)eqx(0,T) where T<= , Q( EN is a bounded domain with Lipschi-
. _, 90U Ju .
tzian boundary 6@ and Vu:(g— reeersy ) . Let Tq,T2 be open dis-
. X, ARy =

joint subsets of §2 and I, Ul ul=380 where AC §2, mes A=0. Together

N-1
with (1) we consider

Ju au
3t =- v b1(t,x,u) for_ (X,t)€r1 x(0,T)
(2)
0 =-2 _po(e £
=- 55 2(t,x,u) for (x,tye€r>x(0,T)
Ju N du
where > = 2{: aij(x) gij cos(v,xi) and v is the outward normal
i,j=1

to 692 . The initial condition is
(3) u(x,0) = ¢ (x)

where ¢ is sufficiently smooth in Q .
Our concept of treating the problem (1) -(3) is based on Rothe“s
method developed in [5-?] .
Notation. We denote W = Wi(Q) (Sobolev space) , (u,v):Stxxr dx ,
Q



1M

N
Vv oJu
(w,v), = S uv ds and Alu,v]= Z S 35 5%, 3%, dx.By means
Joor i,9=1 @ i

. J=

J
of A[u,v] for u,veéW we define the linear operator A : W - w*
Qiual space to W). By Up(t) (from L2(6R)) we denote the trace of u(t)
from W for fixed t¢(0,T) , by jj.ll , -1 W r. "F1 and | . "Fz the

norms in the corresponding spaces La(Q), W , La(Fq)and Lx(T2).The
letter C will stand fOr any positive constant.
Assumptions. We assume aije co»1(Q) for i,j=1,...,N and

N
: 2
(4 2 aj5ex) E3E5 2 Cplel”
i,j=1

(5) ij(t,x,g) - bj(t‘,x,s’)ls C(it-t |+ 1t-t7ijgl+1e-€"1) j=0,1,2 ;

(6) ¢¢€Wa(2) and 2 2 - bat0,x,4) for xer, ;

c

%)) ILZB(E—'X'—QI <cC < % for (x,t)€rax(0,T) , 1&| < = , where C,
c
I

comes from the imbedding inequality "v"Lz(SQ)SCIuvaW .
We shall be concerned with a weak solution of (1)-(3) which we de-
fine in a following way.
Definition. The function ue€L_(<0,T>, W)NC(K0,T>,L2(2)) is a weak
solution of (1)-(3) if
i) ud0)= ¢
..y du duB
ii) g €L, (<0,T>, L2(R)) ; I ¢ L_(<0,T>,L2(T2)) ;

iii) the identity

du (t) duBtt)
®) (g v+afue) » vI+(gE— + v) o+ (bott,x,uce), Vuw), v)+

+ Z (bj(t,x,uB(t)), V)r.= 0
j=1,2 J
holds for all veéeW and a.e. t¢(0,T) .
Clearly, if a weak solution wu(t) is sufficiently smooth, then it
satisfies (1) -(3) in the classical sense.
We define an approximate solution un(t)(see (10” of (1)-(3) in the
following way.Let n be a positive integer, h= %— ’ ti= ih and u, € W
i=1,...,N solutions of the linear elliptic problems

ey T
(1°) — g t Au + b°(ti’x’ui-l'vui—l) =0
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Ju
u+h == = u;_; = hbilt;,x,u; ;) on T,
2)
ou
v - bz(ti,x,ui_l) on Iz

where uo= ¢ . Precisely, successively for i=1,...,N the elements
u;€w satisfy the identities

u. .
-1
(9) (—LTl—- s v)+ ALy, v)+ (bolty,x,uy_;,Vuy_ 1) , V) +

u, L-u. .
i,B "i-1,B Z _
+ (_h'__ Y )T1+ (bj (tilxlui_]_,B)r v )I'. = 0
j=1,2 J
for all v eW. Existence and uniqueness of uy is well known. Now,we

define

-1 .
10) u () =u;_, +(t-t;_,)h (u;-u; ;) for t, < t sty , i=1,...,N.
Theorem 1. Under the assumptions (4)-(7) there exists the unique weak
2
solution ué€¢L (<0,T>, WaW (2)) of (1)-(3) and u_(t) - uct)
bl 2,1loc n

in L2(Q) uniformly for +t€<0,T>.

Remark 1. Theorem 1 implies that u(t) satisfies (1) for a. e. (X,t)
from @X<0,T> in the classical sense.

Before proving Theorem 1, we prove some a priori estimates for un(t).
Lemma 1. There exist Cl, 02 and noe such that

u,-u, 2 u;, ,-u; 2 i
i 7i-1 i,B "i-1,B 1 2 2
ay 22 e | 2B+ Ly 2 s cprcy n 2 Nuyly

q W .

j=1

holds for all n2no , i=1,...,n .
The proof of (11) is based on the identity (9), suitable application
of Young~”s inequality (ab < 2_1(€a)2+(2€)_2 b2) and the assumptions
(4)-(7). We point out the basic steps of the proof.Subtracting(9)for

i=3j, i=3j-1 and putting v=ug-ug successively we obtain the re-

1
current inequality

_ us-us_q 02 Ui, Yi-1,8 2 c 2
a2y ey (PRI ) BB ) €, ) s

Ui_gtus_, 2 U_1,5"%5-2,8 2 c 2
s Qiep)(I == 1+ ) =5 =2 "r1+ R e D e

3
2 .
+C3h iZ___I“"i“w + Cyh
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where (4),(6) and (7) has been used.Similarly, from (9)for i=1 and
u,-¢
1

iy we obtain

V=

u,-¢ ,2 u -4 2
as | 1h I+ l'Bh |+ € lu, -6 ”; < C(9)

T4

=g

where (6) has been used. The constant C(¢) devends on Il ¢j , .There
Wa

exist 6>0 , K>0 such that (1—c1h)l > § and (1+C2h)l < K hold for
all n>no and i=1,...,n .Thus, from (12) and(l13) Lemma 1 follows.

The estimate (l11) implies

2 L 2 2 i 2

14) flu;l° < ¢+ c,h Z"uj”w N > W
— T b W
j=1 j=1

for all n 2no and i=1,...,n .

Lemma 2. Let €>0 . There exist Cl(e), Czu-:) such that

. i 2 2

i) afu;, uy;] sc(e)ycye) 2 h l!ujllw + e Ilui_lﬂw i

j=1

ij)l(b(t X,u u,), | <c +C ehiu2+e[u 2
2(tg,%,uy 1y p)r Uy | S C(e)+Cyen | il | -1l

j=1

From (9) for v €Ca(R) and (5) we conclude

YiTYi-y _ .
as) |a [ui, vl <] 5 livj+ cp*+cyll ui—lllw vl .

The estimate (15) takes place also for v € L,(Q) and hence from (1l1),
(14) and (15) for vsuy Assertion i) follows. Similarly, from (9), (11),
(14) and Assertion i) we obtain Assertion ii).

Lemma 3. There exist C and no such that the estimates

u,-u, U, L-u._
i) Il—l—h—l'l” <c, ”LB—HM—”F <C ;
1
ii) | ui“W < C
cs s 2 C
iii) “ui—ui_l“ . < o

hold for all n >2no , i=1,...,n.

Proof. From (9) for vsuy o, Lemma 1-2 and (4) we obtain
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(16) cC “ui"vzv C le)+Cy(e Z h lju, ;( 1|ui_l\| 2 .
j=1 w

The estimate

(7) nui_luvzq <2 ||ui||:] + 2 "ui—ui_lué <2 lluiﬂ +C ¥ C, Zh hu )
- j=

take place because of Lemma 1. The estimates (16) and (17) imply
hagh? s e v Zhuun
i W 2

j=1
from which we obtain (see e.g.[8]) Huiuw < C and hence Lemma 3 follows.

From the reqularity results (in the interior of the domain Q) for solu-

tions of linear elliptic equations and Lemma 3 we obtain easily

(18) “uiH 2 _ % c(e”) for all n, i=1l,...,n
w2 (07)

where Q7 is an arbitrary subdomain of @ , with R°cCQ .

Proof of Theorem 1. Lemma 3 implies

(9) llu (&)= u (M)l c | e-t7], ][un,BLt) - un,Bu:‘)lll,1 < C |t-t7|

( ) d"u t
(20) ]l hsc, |—5&—0,sc;

(21) ]luntt)l\w sc,

- U

(22) Ju )] - <C .
W2 (

for all n , where %E is the left hand derivative. From the compact-
ness of the imbedding W - L2(Q) and by the method of diagonalization
we find outthat unLt) - u(t) in L2(Q) for all rational points t of
<0,T> ( here {unLt)} is a suitable subsequence ofthe original {un(t)}).
Hence using (19) we obtain that there exist u : <0,T> - Lz(Q) such

that un(t) - u(t) for all +t €<0,T> . Using the Borel covering theorem
we find out that this convergence is uniform 1n <0,T> . Reflexivity

of W, (21) and (22) imply ue€L_(<0,T>, Wr\W ,1oc
we conclude un,B B in the norm of the space C(L0,T>,L2(T4)) .
Hence and from (19) we obtain

(Q)). Then,similarly

-+ u

23) flut) - ueI)ls C | t-t7|, I\uB(t)— uB(t')l[r1 <C |t-t7y .
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Thus, applying the result of Y.Komura ( see e.g.[1]) from (23)we obtain
du

d )

—dlé € L _(<0,T>, La(Q)) and FB € L_(<0,T>, L2(T4)) . Let us denote

xp(t)=u; for tja<tsty ,di=1,...mn, x,(0)=uo,
bj’n(t,x,€)= bj (ti,x,E) for t; , <t<t;,i=l,...,n, bj,n(O,x,g)z
=b. (0 ) h N+1 ) . _ 1 .

j 1X,8 where ¢ ¢E , XxX€Q for j=0 and E€eE , xe¢ I'j for j=1,2.

Using our notation the identity (9) can be rewitten into the form

du t du, ot
r -
(24) (T , v)+{-—at——- , V)I‘1+ Aan(t), v] +
T T ' _T -
*r(bo'n(t,x,xn(t- ) Vx (t- H))' v) + Z(bj’n(t,x,xn’B(t n)), v)l,j 0
j=1,2
for all t(-(%,T) and n . Integrating (24) over <%— ,t> and taking li-
mit for n - * we obtain
t

(25) (uv), WI+Qugtty, v)p —(o, V) = (o, V) 4 (S) { Afugs)y, v] +
+bo (s,x,u(s) ,Vues) ), v) + Z(bj(S:XIUB&S)) , V)1 ds=0

j=1,2

for all vé€W since we have the a priori estimates

Ix (Bl < C o lix ()| o

s c@, [ x (- unLt)"S % and
W27

“xn(t- g-) - xntt)\\é < % . From (25)we find out that u(t) is a weak
solution of (1)-Q3). If wu;(t) , u,(t) are two solution of (1)-@3)then
ult)= ul(t) - us(t) satisfies

du
@26) (§2.v)+ (g2, v)p,+ alu, v] - cplulivr - cylluly vl -

-c ||u||1.2|\ vip, <o

for all veéwW (C is from (7)). Substituing u = v exp(At) into (26)
for sufficient large A and using (7) we obtain

d 2.4 2
aE v~ EE“VBHF <0
1

which implies uniqueness since v(O):vB(O) =0 . From the uniqueness
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we conclude that the original sequence {un(t)} converges to u(t) in
Cc(0,T>, L2(Q)) and the proof is complete.
Due to the a priori estimates for un(t) and xn\t) the stronger regu-
larity results for wu(t) can be proved.
Let X be a reflexive Banach space with its dual space x* and the pa-
iring (. , .) . If (w(t), v)ec*(0,T)) and %E (wity, v)=(gy, v)
(g(t)eX) holds for all veXx* then w is weakly differentiable in X
(with respect to t¢l0,T)) and we denote w~(t) = g(t).
Lemma 4. Let u(t) be as in Theorem 1. Then

1) The function wu(.) is weakly continuous in W and the estimates

llutt)llwsc » luw)) . < c@?)
Wa(")

hold for all te¢(0,T) ;

2) The functions A [ u(t), v] , (bolt,x,ult),Vult)), v) and
(bj(t,x,uB(t)), V')r‘ ( j=1,2) are continuous in (0,T) for all ve€ V;

3) The functions u%t) ; Uglt) are weakly derivable in Lz2(®), Lz(rﬂ

respectively and u”(.) , ug”(.) are wekly continuous in the corres-
pondina spaces. The estimate

(27) fu @l +ug“ )l =< c

holds for all tel(0,T) ;
du
4) u’= g% , uB‘: EEE hold for a.e. te€ (O,T)( %E is the strong

derivative ) ;

Q
(o2}

u
5) The identity (8) (with u”, uy” instead of d—‘t‘ R

) holds for

Q

all te(,T) .

Assertion 1) is a consequence gf the a priori estimates for un(t) ’
reflexivity of the spaces W, W2(2°) ,(23) and the uniqueness of u(t).
Assertion 2) is a consequence of Assertion 1) .From Assertion 2) and(25)
we conclude (u(t), v)e¢ Cl((O,T» for all v¢L2(Q) and (uét),v)rf'ckkO,T))

for all véL, (T4) which implies the existence of u”(t) , uB'(t) .
Hence and from (25) Assertion 5) follows. Due to (8) and (24) we conclu-

d_unLt)
de (————dt , v) = (u°(t), v) for all veLa(R), t€(0,T) and
d_un g(t)
’ -
( " » V) = (u'(t), v) for all v¢La(l4), t€O,TAThus the
) ) d-un(t) d_un NG
a priori estimates of Pt ’ dé imply (27). The identity(8)

and Assertion 2) imply the weak continuity of u’.) and uB‘(.) in
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Lz (Q) , L2(r4) respectively and Assertion 3) is proved.Asertion 4) is
the well known result (see e.g. el) .

Using Theorem 1 ,Lemma 4 and a priori estimates for un(t), xn(t)
we can prove a stronger convergence results.

Theorem 2. Suppose (4)-.7).Let ut(t) , unLt) and xn(t) be as in The-
orem 1.Then

i) xn(t) -+ u(t) in the norm of the space W uniformly in té <0,T>;

ii) u = u in the norm of the space C (<0,T>, W) ;

iii) u(t) is a HOlder continuous function from <0,T> - W. The esti-
mate

lluee) - w2 < c t-t”

nolds for all t,t"¢ <0,T> .

For the proof we subtract (8) and (24) for v= xn(t) - u(t) .Then, using
Lemma 4 and a priori estimates for xn(t) y unLt) and u(t) we es-
timate

2
(28) Cg lenLt)— uLt)IlW <c l x, (t) - utHl]+ c2]| xn,Bm— uB(t)||r1+
T T i '
+c;n ) xn p(t= £) = ug® L+ clxy pCe= D - ugw il lx, pie)- upeoly
where C is from (7). Due to (7) and Lerma 3 ( iii)) we obtain
cllx, ote- Iy - uptoll,, Ix, g0)- ugoll, < ccZ(fx - uwlli+
n,B n B Ta n,B B T, ~ I n w

H‘Xn,BU:' §) - %, gt oll | X5,B'®? ~ugeolly)

IA

o] ci (ﬂxn(t)- u(t)ll§+

+c Vn).

Hence, from Theorem 1,(7) and (28) Assertion i) follows. Assertion ii)
follows from Assertion i) Lemma 3 (iii)) and the estimate

lu cer- wrlly < 2 Ix () - w2 2 fx (&) - u w2 <
< 2 x ey - ukt)l\% +c, Vh .

Finally, subtracting (8) for t =t and t=t° and putting v=u(t) -

- u(t”) we obtain

) . : . _ .2
Jucty = ucenlly < ¢ et c, nu(t)llwlt—t b+ clute - uesiy,

where (23) and Lemma 4 has been used (C is from (7)) .Hence and from
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the estimate C flu(t)- u(t?ﬂ%z <c C% JJucty - u(t}"% Assertion iii)
follows.

Remark 2. In [1] a similar result is proved for the case of A being

a nonlinear, monotone and coercive operator and bj(t,x,g) j=0,1,2
being monotone in £ . Howewer in that case u; (i=1,...,n) are the
solutions of a corresponding nonlinear elliptic boundary value problems.

Remark 3. All results hold true if either TI'y or T: is empty.
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