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NONLINEAR PAPABOLIC BOUNDARY VALUE PROBLEMS WITH THE TШE 

DERIVATIVE IN THE BOUNDARY CONDITIONS 

J.Kačur , Bratislava 

The subject of this paper is motivated by the nonstationary,nonli­

near and mixed boundary value problem for Schrodinger"s equation con­

sidered in [2-4] .An approximate solution is constructed by solving a 

corresponding linearized boundary value problem. Construction of the 

approximate solution is convenient from the numerical point of view. 

Convergence and some properties of this approximate solution are inves­

tigated. Consider the equation 

(1> £ + t S3T< a±j< x>§.>* b°(t,xfuf vu)=o 
i,j=l 1 D 

fbr (xft)eax(OfT) where T O , si ( E N is a bounded domain with Lipschi-

tzian boundary 6ft and VUE(|^ ,...,|H \ # L e t r 1 fr 2 be open dis-
9xl 9 V 

joint subsets of 6ft and 1̂  uI^uA ̂  <$ft where AC 6ftf mes ,A=:0. Together 
with (1) we consider 

|£ -=- |^ - b!(tfx,u; for (xft)^r1x(0fT) 

(2) 
0 -" lv " b2(tfXfu) for (xft)^r2X(OfT) 

N 
where j ^ - 5~ a...(x) — cos(v,xi) and v is the outward normal 

i,j=l j 

to 6ft . The initial condition is 

(3) u(xf0) = (J)(x) 

where <\> is sufficiently smooth in ft" . 

Our concept of treating the problem (1) -(3) is based on Rothe's 

method developed in C5-<f] • 

Notation. We denote W = W2(ft) (Sobolev space) , (ufv)=:\u v dx , 
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c N c 
(u,v ) r - J u v ds and A [ U , V ] - £ J aij 3x."~x. dx-Bv m e a n s 

j r.. i,j=l ft 1 j 

of ALu,v] for u , v 6 W we define the linear operator A : W ->• W* 

tdual space to W ) . By ^g(t) (from L2C$ft)) we denote the trace of u (t) 

from W for fixed t K 0 , T ) , by ||. || , \\ . jj w , /| . j| fi and // . tf^ the 

norms in the corresponding spaces L2(ft), W , L2(r1)and L2(r2).The 

letter C will stand for any positive constant. 

Assumptions. We assume a. . 6 C°> 1( ft") for i, j - 1,. .. ,N and 

(4) £ aij^x> "i^j * CE m
2 ; 

i/j=l 

(5) |bj(t,x,5) - bj(t',x^*)l^ C(tt-t*|+lt-t*i Ul + IC-C*l) j = 0,l,2 ; 

(6) c()€W2(ft) and |4 ̂  - b 2(0 ,x,<|>) for x € r 2 ; 
o V 

(7f) l 3baCt,x,g) | < c < ̂  f o r C X f t)6r 2x(0,T) , U | < co f v/here Cj 
CI 

comes from the imbedding inequality II vj, (*0*-
cj, l|v|jw . 

We shall be concerned with a weak solution of (l)-(3) which we de­

fine in a following way. 

Definition. The function u€Loo(<0,T>, W )n C(<0 ,T>,L2 (ft)) is a weak 

solution of (l)-(3) if 

i) u(0)= <f> 

ii) ^tL r o(<O fT>, L2(fi))? -j---- l Loo(<0,T>,L2(r2)) ; 

iii) the identity 

, du it) 
(8) (^g^, v)+A[u(t) , v ] + ( " - ~ — , v ) F i + (b0(t,x,u(t), Vua)), v)+ 

+ 2 1 Cb-?(t,x,uB(t)), v ) r = 0 
j=l,2 " j 

holds for all v € W and a.e. t*(0,T) . 

Clearly, if a weak solution u(t) is sufficiently smooth, then it 

satisfies (1) -\3) in the classical sense. 

We define an approximate solution u (t) (see (10)) of (l)-(3) in the 
T following way.Let n be a positive integer, h~ — , t. •= ih and u. 6 W 

i-= 1,...,N solutions of the linear elliptic problems 

. u " ui-l U*) + A u + b0(ti,x,ui_1, Vu.^) = 0 
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u + Һ •--- rs !!___ - h hч C t ^ x , ^ ^ ) on Гi 

f£ = - b_(t_,x,u___) on r-

where u 0 - <J> . Precisely, successively for i= 1,...,N the elements 

u_€ W satisfy the identities 

ui" ui-l 

(9) ( H , v) 4- A £u_, v] + CboCti,x,ui_1,Vui_1) , v) + 

+ C^^'h1"1^ . v) r i^ £_ CVV^i-iV' v )r = o 
j=l,2 D 

for all v tW. Existence and uniqueness of u. is well known. Now,we 

define 

(10) unCt) =u i_ 1+(t-t i_ 1)h"
1Cu i-u i_ 1) for ti_1< t <t_ , i=l,...,N. 

Theorem 1. Under the assumptions (4)-(7) there exists the unique weak 

solution u S L C<0/T>, W n W , C fi)) of (1)-C3) and u (t) - u^t) 00 2, loc n 

in L2(ft) uniformly for t£<0,T>. 

Remark 1. Theorem 1 implies that u(t) satisfies (1) for a. e. Cx,t) 

from ftX<0,T> in the classical sense. 

Before proving Theorem 1, we prove some a priori estimates for u (t). 

Lemma 1. There exist C-, C 2 and n 0 such that 

,„, |_^l 2-|__£___l 2
+ i1^-...1,»*c1+c2h ip& 

]A W j=l 

holds for all n> n 0 , i-sl,...,n . 

The proof of Cll) is based on the identity C9), suitable application 

of Young's inequality (ab < 2" ( ea) ~»-(2e ) b ) and the assumptions 

(4)-17). We point out the basic steps of the proof.Subtracting(9)for 

i = j , i = j-l and putting v-u.-u._-. successively we obtain the re­

current inequality 

U2) u-c,h)(|(m_:i|| %|,_l^i____B(|
2
+ c JUi.Ui_i(| 2 } s 

I 1 W 

+ C
3
Һ žľ Цu.цJ ч- c

4
h 
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where (4)f(6) and (.7) has been used.Similarly, from (9) f or i= 1 and 

v = — — w e obtain 

ÜЗ) І І ^ Ç L | 2
+ | | ^ J Ç | | 2

 + Ş | l u i . ф | | 2 á c ( ł ) 

I 2 
W 2 (f i) 

exist 6>0 , K>0 such that (1-^h) 1 > 6 and C1 + C 2

h ) X < K hold for 

all n> n0 and i » l, . . . , n '.Thus, from (12) andU3) Lemma 1 follows. 

The estimate (11) implies 

(14) H u .II 2 < C 4- C h V | |u | | 2 , || u. R | | 2 < C,+ C h *> ||u j j 2 

for a l l n >n 0 and i = l , . . . , n . 
Lemma 2. Let e>0 . There e x i s t C , ( e ) f C~(^z) such t h a t 

i) A [ u ± f u . ] < C 1 (e)4C 2 Ce) £ h » u - H ^ + * f | u i - i l | 2 ? 

j - i 
W W 

id) i C b 2 ( t . , x , u . _ ) , u . ) | < C l C E ) + C 2 c e ) h ^ | | u || + e J u. J . 

From (9) for vfcCo(^) and (5) we conclude 

U5) I A [ u . , v ] | < (j ^ ^ i l |v | ( f C • + c 2 /I v i Hvll . 
w 

The estimate (15) takes place also for v6L2(fl) and hence from (11), 

(14) and (15) for v-u. Assertion i) follows. Similarly, from (9),U1), 

(14) and Assertion i) we obtain Assertion ii). 

Lemma 3. There exist C and n0 such that the estimates 

l]Ul'B7-1'Bl -c ; 
Ti 

i i i ) H-i-Ui-xll' * | 
W 

hold for all n > n0 , i-lf...fn. 

Proof. From (9) for v cu. , Lemma 1-2 and (4) we obtain 

-) 11-1:1-• 1 II < , . 

ü ) 
'"'"» 

< c 
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(16) C i |u . | |2 < C (e)fC (e) S h Iju )|2 •+- e ||u || 2 # 

W -̂ i w W 

The e s t i m a t e 

(17) i l u . . ^ 2 < 2 || u | | 2 + 2 | | u - u J 2 < 2 || u ft2 + C + C £ h || u \\ 2 

W W W W ._, w 

t ake p l a c e because of Lemma 1. The e s t i m a t e s (16) and (17) imply 

j | u . | | 2 < C]L+-C2 £ h || u (|2 

w 3 w 
from which we obtain (̂ see e.g. [8]) ]|u.[| < C and hence Lemma 3 follows. 

1 W 

From the regularity results (in the interior of the domain ft ) for solu­

tions of linear elliptic equations and Lemma 3 we obtain easily 

(18) i|u.|| 2 < C ( 0 for all n, i-=l,...,n 

w2(0 
where ft" i s an a r b i t r a r y subdomain of ft , w i th ft-" C ft . 

Proof of Theorem 1. Lemma 3 imp l i e s 

(19) ) |un(t)- un(OI |< c | t - t - | , l |unfB(t) - v B c O | l r i <- C | t - t ' | 

( 2„,II£^II,= . n ^ i r , * = , 
UD llunct)H < c . 

w ' 

C22) l|unlt)|| < C . 
W2Cft ) 

for all n , where --n- is the left hand derivative. From the compact­

ness of the imbedding W — L2(ft) and by the method of diagonalization 

we find outthat u Ct) - uct) in L2(ft) for all rational points t of 

<0,T>(here {u Ct)} is a suitable subsequence ofthe original {u (t)}). 

Hence using (19) we obtain that there exist u : <0,T> - L2ift) such 

that u (t) •* uct) for all t fc<0,T> . Using the Borel covering theorem 

we find out that this convergence is uniform in <0,T> . Reflexivity 
2 

of W , (21) and (22) imply u^L o o (<0 ,T>, Wn W io cA f i>) • T h e n , s i m i l a r l y 
we conclude u _, -* u_, i n t h e norm of t h e soace C « 0 ,T>,L 2 ( r i>) . n , a a 

Hence and from (19) we o b t a i n 

(23) | |uCt) - u t O l | < C | t - t * | , l \ u B ( t ) - u B ( t 7 H r i < C l t - f l . 
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Thus, applying the r e su l t of Y.Komura ( see e .g.[ l ] )from C23)we obtain 
du , duB 
dt * La,(<0'T>' L2(^)J and ^-~- $ Lm(<0 ,T>, LaCl*-!)) . Let us denote 

x
nCt)=u± for ti_1< t < t± , i = l,...,n , xn(0) = uo, 

b
jfnCt,x,^)= bj Ct±,x,U for ti-;L < t < t± , i = l,...,n , b_. ̂ n(0 ,x, £.)-= 

-bjC0,x,^) where S^E1**1, x * ft for j = 0 and SGE1, x e Y . for j*l,2. 

Using our notation the identity <9) can be rewitten into the form 

d~u t d"u „ t 
(24) C - ^ — , v)-K g ^ — , v) r i+ A[x n(t), v] + 

Hb0fnct,x,xnCt- | ) ,vxnct- I)), v)+ 5.Cb j f nct,x,xn f Bct- £)), v ; = 0 
j=l,2 J 

for all ttC-,T) and n . Integrating C24) over <̂ - ,t> and taking li­

mit for n — °° we obtain 
t 

(25) CuCt), v ) K u
B U ) , v ) r i -t+f v) - (•, v)ri4- ^ { A[U(S), V ] + 

0 

+(b0(s,x,u<j3) ,Vucj3>; , v) -4- £(b..^s,x,uB<j3)) , v)} ds = 0 

j-1,2 

for all v £ W since we have the a priori estimates 

"V^'w " C ' HV^Il 2 m < CCft"), ||
x
nCt)- u Ct)))< | and 

W (ft > 
2^ 

|\xnCt- £) -
 x
nCt)l|^ < £ . From C25)we find out that uCt) is a weak 

solution of (1)-C3). if u.,(t) , u2^t) are two solution of (kl)-C3)then 

uU)= Uĵ CtJ - u2Ct) satisfies 

j du„ 
( 2 6 ) l a E ' v ) + C g t ^ , v ) r i + A [ U , v] - c l̂uinivii - c2/| uilrii|V|iri -

- c 'lu , ,r2
, , v ,lr2 - ° 

for all vtW Cc is from C7)). Substituing u - v exp(Xt) into C26) 

for sufficient large X and using C7) we obtain 

I t «v»2+ at' l^H2 * ° 
Ti 

which implies uniqueness since vl0) = v CO) - 0 . From the uniqueness 
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we conclude that the original sequence {u (t)} converges to u(t) in 

Due to the a priori estimates for u (t) and x <.t) the stronger regu-
c n n 

CC<0,T>, L2(fl)) and the proof is complete. 

Due to the a priori estimates for u (t 
c n 

larity results for uCt) can be proved. 

Let X be a reflexive Banach space with its dual space X* and the pa­

iring (. , .) . I f Cw<t) , v)^C1(COfT)) and ^ (nit), v) = (g(,t), v ) 

(gCt)tX) holds for all v£X* then w is weakly differentiable in X 

(with respect to tfcCOfT) ) and we denote w*(t) - gCt). 

Lemma 4. Let uCt) be as in Theorem 1. Then 
1) The function u(.) is weakly continuous in V7 and the estimates 

||uU)IL, < C , ||u(t))| 2 < ccO 
V72 (n ~) 

hold for all t£COfT) ; 

2) The functions A [ u(^t) , v"] , (b0 Ctf xf u(.t) ,VuC.t)) , v ) and 

(b -CtfxfuBi,t)) , v ) r C J = l/2) are continuous in (0,T) for all v £ V7; 

3) The functions u(t) , u (,t) are weakly derivable in L2(fi) , L^T-)) 

respectively and u-^.) , uR"\.) are wekly continuous in the corres­

ponding spaces. The estimate 

(27) ||u\t)|| + ||uB'Ct)|| Fi < C 

holds for all teC0fT) ; 
dUR f r. 

4) u'- ̂  , uB*= - ^ hold for a.e. tf (0,T) ( ̂  is the strong 

derivative) ; 
, du R 

5) The i d e n t i t y (.8) ( w i t h u*f uR~ in s t ead of - ^ , ------ ) holds for 

a l l tfc(OfT) . 
Assertion 1) is a consequence of the a priori estimates for u Ct) , 

2 
reflexivity of the spaces W, W 2C^ ) , C.23) and the uniqueness of u(.t) . 

Assertion 2) is a consequence of Assertion 1) .From Assertion 2) and(25) 

we conclude (u(t) , v)6 C1((OfT))for all v£L 2(n) and (u^t) f v ) r e cHcO fT)) 

for all v £ L 2 (r-j) which implies the existence of u*(t) , u^Ct) . 

Hence and from (25) Assertion 5) follows. Due to (8) and C24) we conclu-

/ d"unC t> x 
<*e V - g t ' v ' •* ( u ( t ) , v) for a l l v £ L2 (ft) , « 1 0 , T ) and 

d"un B <t) 
\ / v ) - ( u ' ( t ) , v ) for a l l v£ LaC-N) , t*CO,TjLThus the 

dt 
. . d " U n ^ > d" un B(^t) 

a priori estimates of — - ^ — , ^ imply C27) . The identity (8) 

and Assertion 2) imply the weak continuity of u"(.) and u "#.) in 
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L2 Cfl) , L2Cri) respectively and Assertion 3) is proved.Asertion 4) is 

the well known result (see e.g. C6]) 

Using Theorem 1 ,Lemma 4 and a priori estimates for u Ct), x Ct) 

we can prove a stronger convergence results. 

Theorem 2. Suppose (4)-C7).Let uCt) , u ct) and x (t) be as in The­

orem l.Then 

i) x Ct) — uCt) in the norm of the space W uniformly in tt <0,T>; 

ii) u — u in the norm of the space C (<0,T>, W ) ; 

iii) u(t) is a Holder continuous function from <0,T> - W. The esti­

mate 

lluCt) - ucOllJ < C |t-t*| 

holds for all t,t~£ <0,T> . 

For the proof we subtract (8) and C24) for v= x (t) - uCt).Then, using 

Lemma 4 and a priori estimates for x Ct) , u ct) and uCt) we es­

timate 

(28) CE l|xnCt>- uct) l| J < Cx |!xnCt)- uCt)||+C2]|xn^BCt)- UgCt)!)^ 

+ C 3 h '>xn,BCt- 1) - uBCt)Hr/ C|| xn/BC,t- I) - uBCt)l|r2 l|xn/BCt)- u ^ t , ^ 

where C is from C7). Due to C7) and Lemma 3 £iii)) we obtain 

c K . B ^ " H> " V«l»r a ilxn,B^>- u
B

w « r a * c ci CHxn^>- u ^«w + 

f HXn,B^- 5> " Xn,BC ^ w K ^ " V ^ W * * C 4 Cll^Ct)- uct)||j + 

+ C \/h) . 

Hence, from Theorem 1,(7) and C28) Assertion i) follows. Assertion ii) 

follows from Assertion i) Lemma 3 (̂ iii)) and the estimate 

I(unCt)- uCt)l|w < 2 ||xnCt) - uCt)»J 2 |(xnCt) - unCt)||J < 

< 2 l|xnCt) - uCt))|J + C1 \fh . 

Finally, subtracting (8) for t = t and t-=t" and putting v= uCt) -

uCt') we obtain 

||uct) - uct*)| |j < c1 | t - t ' /+C 2 ||uCt)i| | t - t * | + C||uCt) - uCt*)lipa 

where C23) and Lemma 4 h a s b e e n u s e d ( C i s from C7)) .Hence and from 
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the estimate C ||u(t)- uct-)!^ < C C^ ||uCt) - uitjj* Assertion iii) 

follows. 

Remark 2. In [ll a similar result is proved for the case of A being 

a nonlinear, monotone and coercive operator and b.(t,x,£) j=0,l,2 

being monotone in £ . Howewer in that case u. Ci= l,...,n) are the 

solutions of a corresponding nonlinear elliptic boundary value problems. 

Remark 3. All results hold true If either r-j or T2 is empty. 
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