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A FORCED QUASILINEAR WAVE EQUATION WITH DISSIPATION 

J. A. Nohel, Madison, Wisconsin 

1_. Introduction. We study the global existence, uniqueness and continuous depen

dence on data of smooth solutions of the initial value problem 

(1.1) yt + ayt - (a(yx)) = g (0 < t < °°, x e JR) , 

(1.2) y(0,x) = y n ( x ) , yt(0,x) = y^x) (x e HR) , 

where the subscripts t, x denote partial differentiation, a > 0 is a fixed 

constant, a : HR -+TR, g : [0,°°) x ]R -> JR and y , y : TR ->• HR are given smooth 

functions. We shall assume throughout that 

(a) a e C 2(H), a(0) = 0, a' (£) >_ e > 0 (£ e M; e > 0) ; 

the case a"(£) £ 0 is of primary interest. 

If a = 0, g E 0 it is known [4], [7] that solutions of the Cauchy problem 

(1.1), (1.2) will in general develop singularities in the first derivatives even 

for smooth data, and smooth solutions will not exist for large t. If a > 0, 

g = 0 Nishida [10], has established the existence and uniqueness of global smooth 

solutions of (1.1) for smooth and sufficiently small data (1.2) by a remarkably 

simple method. 

It is the purpose of this note to (i) extend Nishida1s method to obtain the 

global existence and uniqueness of smooth solutions of (1.1), (1.2) with g £ 0, 

and (ii) study the continuous dependence of solutions of (1.1), (1.2) on the data 

Ynt y, i g. The result (i) is implicit in a recent paper of MacCamy [5]; however, 

his proof of the analogue of the important Lemma 2.3 below is not entirely complete. 

The result (ii) is new. 

We remark that our results (i) and (ii) can be used to obtain a local existence 

and uniqueness result for smooth solutions of the functional differential equation 

(1.3) y + ayt - (a(yx))x = G(y) (0 <_ t < T, x e M) , 

subject to the initial condition (1.2), for some T > 0. In (1.3) G is a given 

mapping defined on a suitable function space, and G satisfies a Lipschitz type 

condition. While limitations of space do not allow us to present this problem in 

detail, we point out that if F(g) denotes the solution of (1.1), (1.2) on 

[0,T] x TR, then a solution of (1.3), (1.2) is a fixed point of the composition 

map K defined by K(y) = F(G(y)) . Such a fixed point can be found with the aid 

of our continuous dependence result for smooth solutions of (1.1), (1.2) for 

sufficiently small data in a manner similar to the method we used with Crandall 
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in [1] to solve a functional differential equation in which, however, the under

lying problem was an evolution equation of parabolic, rather than hyperbolic 

type. The details will be presented in a forthcoming joint paper with C. Dafermos. 

The Cauchy problem (1.3), (1.2) has arisen in certain applications in heat 

flow and viscoelastic motion for "materials with memory" studied by MacCamy [5], 

[6]; the functional G has the form 

t 
(1.4) G(y)(t,x) = Y(t,x) + 3y(t,x) + / b(t-T)y(T,x)dT , 

0 

where T is a real smooth function on [0,°°) x j* such that 

sup |¥(t,x)| e L1(0,«>) nL°°(0,co), sup |Y (t,x) I e L°°(0,~) , 
xe]R xe HR x 

3 > 0 is a constant, and b e L (0,-°;nR), the value of G at (t,x) depends 

on the restriction of y(-,x) to [0,t]. In [5], [6] the interest is in the 

existence of global smooth solutions of the Cauchy problem (1.3), (1.4), (1.2); 

this is carried out by combining Nishida's method with certain delicate a priori 

estimates obtained by energy methods. However, the proof in [5], [6] appears to 

us to be incomplete, because the local existence problem for (1.3), (1.4), (1.2), 

which can be handled by the method outlined above, is essentially ignored. 

In Section 2 we obtain the desired results for a "diagonal" strictly hyperbolic 

system of first order equations equivalent to (1.1), (1.2); the results for (1.1), 

(1.2) follow as an easy corollary and these are stated in Section 3. We acknow

ledge useful discussions with M. G. Crandall, C. Dafermos, and R. J. DiPerna during 

the preparation of this paper. 

Finally, we mention related work of Matsumara [8], [9] received after the 

completion of this paper; the author generalizes Nishida's results for (1.1), (1.2) 

with g = 0 from one space dimension to quasilinear hyperbolic equations in 

several space dimensions, and he obtains global existence of weak solutions and 

results concerning their decay (Nishida's method does not apply in this case). 

2. Equivalent Systems and Preliminary Results. We assume that a in (1.1) 

satisfies assumptions (a). In addition, assume that g, and the initial func

tions y , y in (1.1), (1.2) satisfy: 

(g) g, g € C([0,°°) x JR) , g(t) = sup |g(t,x)| e L°°(0,°°) n L (0,~) , 
x xe]R 

g, (t) = sup |g (t,x) | e L°°(0,oo) , 
1 xeiR x 

(I) yQ e 3 2OR), Y1 * 3*
L(-R) , 

where 3 m denotes the set of real functions with continuous and bounded deriva

tives up to and including order m. 

Following Nishida [10] we reduce the Cauchy problem (1.1), (1.2) to the 

equivalent system (2.3) below. Putting y = v and y = w in (1.1), (1.2) 
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yields the equivalent Cauchy problem 

w = 0, w - a'(v)v + aw = g (0 < t < », x e E) 

(2.1) 
v(0,x) = У Q ( X ) , W(0,X) = y^íx) (x є ПR) 

The eigenvalues of the matrix of (2.1) 

, ° 1 
\-a'(v) 0/ 

are X = -/a' (v) , y = ^a' (v)'; by assumptions (a), X and y are real and dis

tinct so that (2.1) is a strictly hyperbolic problem in the region 

{(v,w) : v e 3R, w e m}. To diagonalize (2.1) introduce the Riemann invariants 

v 

(2.2) r = w + <J)(v), s = w - <j>(v), * (v) = / /a' (£)' d£ ; 

0 

by (a) the mapping (v,w) •+ (r,s) defined by (2.2) is one to one from UR x ]R 

onto 1R x ]R. A simple calculation shows that (2.1) is equivalent to the Cauchy 

problem for the diagonal, strictly hyperbolic system 
r + Xrx + | (r+s) = g 

(0 < t < «>; x e ]R) 

(2.3) { St + y Sx + 2 (r+S) = g 

r(0,x) = r0(x)* s(0,x) = sQ(x) (x e UR) , 

where by (2.2) X = X(r-s), y = y(r-s) e C'(UR) , and where by (2.1) 

(2.4) rQ(x) = y^x) + • (y£(x)), sQ (x) = y^x) - 4><y£(x)) (x e 1R) ; 

by assumptions (a) and I, the initial data r , s e 3 (UR) . It is also seen 

that if r, s is a smooth (3 ) solution of the problem (2.3) for 

(t,x) e ft C ([O,00) x JR) , then y, determined by the relations y = w(r,s) , 

y = v(r,s) (where v, w are uniquely determined by (2.2)), will be a smooth 
x2 

(3 ) solution of the Cauchy problem (1.1), (1.2) and conversely; we shall there

fore deduce our results for (1.1), (1.2) from (2.3). 

The following local result for (2.3) is known [2; Sec. 8], [3, Theorem VI]: 

Lemma 2.1. Let r , s e 3 (UR), let assumptions (a) hold, and assume that 

g, g e 3 for (t,x) e [0,T] x HR, where T > 0. Then there exists a number 

0 < T <_ T such that the Cauchy problem (2.3) has a unique smooth solution 

r, s e 31([0,T1] x JR) . 

The objective of the next two lemmas is to obtain apriori estimates on r, s, 

r , s (and hence by (2.3) on r , s ), independent of T, which enable us to 

continue the local 3 -solution in t by a standard method. 

Lemma 2.2. Let the assumptions of Lemma 2.1 hold. In addition, assume that 

g(t) = sup |g(t,x) | e L (0,«>) . Define the a priori constant M > 0 by 
xeiR 

oo 

M0 = r0 + S0 + 2 f 9(£>d£' r0 *
 sup lrn(x)l' S0 = SUP IS0(X)I ' 

0 xe H xe UR 
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For a s l o n g a s t h e 3 - s o l u t i o n r f s of (2 .3 ) e x i s t s one h a s 

(2 .5 ) sup | r ( t f x ) | <_M , sup | s ( t , x ) | <M . 
xeUR x e i ° 

Sketch of Proof. The proof is similar to that of [10, Lemma 1], [5, Lemma 6.2]. 

Define the X and u characteristics of (2.3) respectively by 

t t 
(2.6) x = x (t,3) = 3 + / Adx, x = x (t,Y) =- Y + / ydx (3,Y e -R) , 

0 ^ 0 

where X = X [r (t,X;L (t, 3)) - s (t,X;L (t,3)) ] , y = y [r (tfx (tfy)) - s (t,x2(t,Y)) ] -

8 , 9 ^ 8 9 
Let = — + Xr— , = — + y — denote differentiation along the X and y 

characteristics respectively, thus r'(t,xj = —- r(t,x,(t,3)), 
1 dt 1 

sv(t,x2) = — s(t,x (t,Y)). Equations (2.3) become the ordinary differential 

r(t,X;L(t,3)) + | (r(t,x1(t,3)) + s(tfx (tf0))) = g(t,X;L (t, 3)) 

^ s(t,x2(t,Y)) + | (r(t,x2(t,Y)) + s(t,x2(t,Y)))= g(t,x2(t,Y)) ; 

note that solutions of (2.7) will exist for as long as the slopes X, y of the 

characteristics x (t,3) and x_(t,Y) remain bounded. Put 

hr 
R( t ) = e [ sup | r ( t , x ) | + sup | s ( t , x ) | l 

xeE xen 

r = sup | r ( x ) | , s = sup | s ( x ) | . 
x€ TR x€TR 

Integrate each of the equations (2.9) using r(0,x (0,3)) = r
Q(3)/ 

s(0,x (0,Y)) = s
n(Y) (see (2.3), (2.6)), add the resulting equations and take 

absolute values; a standard argument yields the inequality 

t t fe 
(2.8) R(t) < rQ + sQ + | / R(£)d5 + 2 / e g(Od? . 

G r o n w a l l ' s i n e q u a l i t y a p p l i e d t o (2 .8 ) g i v e s 

a a 
2 f c l f c rfc 

( 2 . 9 ) R ( t ) < ( r Q
+ s

0 ) e + 2 e J g (^ )dC , 

and t h u s f i n a l l y 

(2 .10 ) sup | r ( t , x ) | + sup | s ( t , x ) | ^ ILj 
xe-R xeB 

and the proof is complete. 

Lemma 2.3. Let the assumptions of Lemma 2.1 and (g) be satisfied. Define the 

constant D > 0 by 
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D l = r 0 + S 0 + SUP l r 0 ( x ) I + SUP I S 0 ( X ) I + llgH 1 + Hgll « + H^l l «, 
xe_R xe_R L (0,«) L (0,») L (0,») 

For as long as the 3 -solution r, s of_ (2.3) exists and i_f D is_ sufficiently 

small, there exists a constant M = M (D ) > 0 where M (D ) -> 0 as D -> 0, 

such that 

(2.11) sup |rx(t,x)| <Mlf sup |sx(t,x)| < M^ 
x€ 3R xe ]R 

Sketch of Proof. (Compare [10, Lemma 2], [5, Lemma 6.3].) Differentiate the first 

equation in (2.3) obtaining (recall X = X(r-s)) 

(2.12) r + k = -X r 2 - X r s - ^ (r +s ) + g . 

x t xx r x s x x 2 x x x 

We remark that although Lemma 2.1 does not assert the existence of r and r , 

note that the left side of (2.12) is r̂  and this does exist for as long as the 
1 X 

3 -solution r, s of (2.3) exists. This observation also justifies the validity 

of equations (2.12)-(2.18) which follow. Since y = -X the second equation in 

(2.3) gives 
(2-13) sx = _x + i x ( r + s ) -_V < ' - _ W i _ - > -
Define 

(2.14) h = ^ log(-X(r-s)) . 
Differentiating h along the X-characteristic and using X = -X gives 

X 
(2.15) h' = -^ (- | (r+s) + g - s') . 

Substitution of (2.13), (2.15) into (2.12) yields 

rx + (f + V x + h')rx = - i x S ' - i X (r+S) + i A g + g x ' 

or equivalently 

(2.16) (ehrx) ' + <§ + Arr„)e
hr_ -(-£-'-§- (r+s) + ̂  - + ̂  " 

Define the function z by 

r-s -h(F\ 
(2.17) z(r-s) = / ^-j-"enU,d£ ; 

.. .- en h. . a h a h . _ ._ __. , 
then z = - — e (r+s) + — e g - -jr- e s and (2.16) becomes 

(2.18) (ehr ) ' + £ + X r )ehr = TT + ehg . 
x 2 r x x x 

To integrate (2.18) along the X-characteristic put 

k(t) = | + Xr(r(t,Xl(t,3)) - s(t,x1(t,3)))rx(t,x1(t,3)) 

(2.19) { p(t) = rx(t,x1(t,3))exp[h(t,x1(t,3))] 

p(t) = z*(t,x (t,0)) + gx(t,x1(t,3))exp[h(t,x1(t,3))] . 
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Then 

t t t 
(2.20) p(t) =p(0)exp[-/ k(T)dr] + / p(C)exp[- / k(r)dT]d£ . 

0 0 £ 

Suppose we can show that for any solution r, s of (2.3) 

(2.21) |X r | < -J- . 

1 r x1 — 4 

Then k(t) = - + A
r(")rx(-) >_ j and by an easy calculation 

(2.22) |p(t)| < |p(0)| + 3 sup |z(T,x (T,3))| 
0<T<t 

+ ~ sup |g (T,X (t,3))exp h(T,x (T,3)| . 
0<r<t ± L 

We next show that (2.21) holds for any solution r, s of (2.3), provided the 

constant D > 0 is sufficiently small. Indeed, at t = 0 and for any 3 e HR 

Xr(r(0,3) - s(0,3))r (0,3) satisfies 

(2.23) |r^(3)Xr(ro(3) - sQ(3))| < sup |r^(x) Xf (rQ (x) - sQ(x))| < | 

provided D > 0 is sufficiently small. By (2.19) X r = X e p and by (a), 

(2.14) and Lemma 2.2 |X e | is uniformly bounded in (t,x) by a constant 

K (D ) > 0, where K (D ) -»• 0 as D -> 0, for any solution r, s of (2.3). By 

(2.14), (2.17), (2.22) and Lemma 2.2 the quantity p is uniformly bounded for any 

solution r, s of (2.3) as follows: 

(2.24) |p(t)| < |p(0)| + 3 sup |z[r(T,x) - S(T,X)]| 
0<_T<t 
xeE 

+ - sup /-X[r(T,x) - s ( T , x ) ] ' | g ( T , X ) | 
0<T<t X 

xejR 

<_ K (D ) , where K (D ) -»• 0 a s D -> 0 . 

Therefore |X r | <_ K (D )K (D ) uniformly in (t,x) for any solution r, s of 

(2.3). The assertion (2.21) holds at t = 0, for D sufficiently small (by 

a 

(2.23)). Choosing D smaller if necessary so that K (D )K (D ) <_ —, we con

clude that (2.21) continues to hold for as long as the solution r, s exists. 

Returning to (2.22), (2.24) and using r = pe establishes the estimate for r 

in (2.11); a similar argument yields the estimate for s and completes the proof 

of Lemma 2.3. 

The a priori estimates of Lemmas 2.2 and 2.3, together with ||g|| m < «> 

L (0,«) 
yield uniform a priori estimates for r , s , for any solution r, s of (2.3), 

provided D > 0 is sufficiently small!. Then Lemmas 2.1, 2.2, 2.3 and a standard 

continuation argument give the first part of the following global result for the 

Cauchy problem (2.3). 



324 

Theorem 2.1. Let the assumption (a), (g) be satisfied, and let the initial data 

r , s є 3 (Ж) . If the constant D (see Lemma 2.3) is sufficiently small, then 

the Cauchy problem (2.3) has a_ unique 3 -solution r, s for 0<_t<°°, x e Ж 

and the a_ priori estimates (2.5) , (2.11) are satisfied for 0 <_ t < -. 

Let the above assumptions be satisfied by initial data r , s and r , s 

and forcing functions g, g; denote by r, s and r, s the corresponding 3 -

solutions of (2.3) on [0,
00
) x ]R. Define 

ГДt) = sup |r(t,x) - ř(t,x) | + sup |s(t,x) - i(t,x)| . 
xЄЖ xЄЖ 

Then there exists a_ constant M = M (a,M ) > 0 such that 

2M M t t -2M M т 

(2.25) ç ( t ) < e (C(0)+J e 2 X sup |g(т,x) -g(т,x) |dт) (0 < t < -) , 

0 xЄЖ 

where M , M are the bounds in (2.5), (2.11) respectively. 

Remark. The continuous dependence result (2.25) also holds for local solutions 

r, s and r, s on [0,T ] x [o, ) of the Cauchy problem (2.3) (see Lemma 2.1), 

but only for 0 <_ t <_ T . 

Proof of Theorem 2.1. Tt remains only to prove (2.25). If r, s and r, s are 

3 -solutions of (2.3) for the situation in the theorem, one has 

Г(r-ř) t + Xr x " Ãřx = - | [(r-ř) + (s-i)] + g - 5 o < t < -

(2.26) < _ __ _ _ _ x є ж 

1 (s-s)
t
 + ys^ - ys^ = ~ _ŕ t(r-r) + (s-s)] + g - g 

subject to the initial conditions 

(2.27) r (0 ,x) - ?(0,x) = r Q (x) - ř 0 ( x ) , s(0,x) - i (0 ,x) = s Q (x) - i Q (x) (x e ж) 

where X = X(r-s) , y = y ( r - s ) , X = X(r-s) , y = y ( r - s ) . But 

Xr - ïř = X(r-ř) + (X-X)ř* 
X X X X 

ys - ys = y(s-s) + (y-y)s ; x x x к к x 

Therefore (2.26) can be w r i t t e n as 

>t + X(r-ř)x = - f - - „ . , , x ( r - ř ) ^ + X ( r - ř ) v = - ^- [ ( r - r ) + (s-s)] + g - g - (X-X)r 
(2.28) 

(s-i) + y(s-s) = - — [ ( r - r ) + (s-s)] + g - g - (y-y)s 
' t K X ' x 2 

Recalling the definitions of X, y and using (a) and the mean value theorem 

one has 

X - X = X(r-s) - X(r-i) = f£- (r - i + 6. [r - s - (r-i) ]) (r - s - (r-i)) 

dE, 1 

y - y = y(r-s) - y (r-i) = |̂ - (r - i + e^r - s - (r-i)]) (r - s - (r-i)) , 

for some 0 < 0 , 6 < 1. Therefore, (2.28) becomes 
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where = 7-7- + X Э . Э 
9t 9x ' ~ 3tT

 +
 ^ 9x "

 W e n e x t n
°te that assumption (a) and 

Lemmas 2.2 and 2.3 imply the existence of a constant M = M (a,M ) such that 

(-•30) | t < ^ X | ± M 2 M l ' | t < - > * x U M 2 M l ' 
uniformly in (t,x) e [0,<») x ]R where M is the bound in Lemma 2.3. Integrat

ing the first equation in (2.29) along any A-characteristic and the second along 

any u-characteristic and making simple estimates one obtains the pair of inequalities 

1*. ^ a 

e sup |r(t,x) -r(t,x) | <_ sup |r (x)-r (x)| + / e sup |g(T,x) - g(T,x) |dr 
xenR xeUR 0 xe]R 

*_ a a 

2T - t
 2

T 

+ / e ( f
+ M

2

M
- )

 S U
P |S(T,X) -S(T,X) |dT + M M / e sup |r(T,X) - r(x,x)|dx , 

0
 x

 xeUR
 L z

 o xem 

ex . a 
2t - t 2 T 

e s u p | s ( t , x ) - s ( t , x ) | <_ s u p | s ( x ) - s ( x ) | + / e s u p | g ( x , x ) - g ( T f x ) |dx 
xeiR xen o xenR 

t — T _ t — T 

+ / e (f+MoMJ
 S U

P |r(T,x) -r(T,x) |dr + M M / e sup |S(T,X) - s (T,X) |dx . 

0 xeiR -
1
 0 xeiR 

Adding these inequalities one obtains on using the definition of r, 

a ̂  . a 

2"
t
 2*

T 

(2.31) C(t)e < C(0) + 2 / e sup |g(T,x) - g(T,x)|dx 

0 xe:R 

a 

2*
T 

+ / ( ; + 2 M M ) e C(T)dx (0 < t < oo) . 

0 

Finally, applying Gronwall's inequality to (2.31) yields the result (2.25) complet

ing the proof. 

3^ Global Existence, Uniqueness, and Continuous Dependence for the Cauchy Problem 

(1.1), (1.2). As an immediate consequence of Theorem 2.1 and of the equivalence 

of the Cauchy problems (1.1), (1.2) and (2.3), (2.4) we obtain the main result of 

this paper. 

Theorem 3.1. Let the assumptions (a), (g) , (I) be satisfied. Define the constant 

( 3 . 1 ) D-=sup | y ' ( x ) | + s u p | y ( x ) | + s u p | y " ( x ) | + | | g | | + | | g | | w

 + l k 1 l l c o 

xejR xeUR xeUR L (0,«>) L (0,oo) L (0,oo) 

I f D i s s u f f i c i e n t l y s m a l l , t h e n t h e Cauchy p r o b l e m ( 1 . 1 ) , ( 1 . 2 ) h a s a u n i q u e 

3 2 - s o l u t i o n y on [0,oo) x ]R, and t h e s o l u t i o n y s a t i s f i e s t h e a p r i o r i 

e s t i m a t e s : 
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( 3 . 2 ) sup | y x ( t , x ) | , s u p | y t ( t , x | < sup | y ^ ( x ) | + s u p | y 1 ( x ) | + 2 / g ( £ ) d £ - MQ 

x e n xenR xe]R xe_R 0 

(0 <_ t < «>) , 

and there exists a_ constant M = M (D) > 0 (which •+ 0 as D -*• 0) such that 

(3.3) sup [y (t,x)|, sup |y (t,x) | , sup | y . . ( t , x ) | <_ M (0 < t < -) . 
_ --. XX Xt tt JL 

xe HR xe IR xe JR 

Let, in addition, the assumptions (g) and (I) be satisfied also by func

tions g and y , y and let y denote the corresponding 3 -solution on 

[0,00) x IR. Define 

C(t ) = s u p | y ( t , x ) - y ( t , x ) | + sup | y . ( t , x ) - y . ( t , x ) | ; 
— •.—. X X _ __ u t 

xe H xe 1R 
t h e n t h e r e e x i s t s a c o n s t a n t M2 = (a,M ) > 0 s u c h t h a t 

2 M M t t -2M M T 
(3 .4 ) rA t ) <_ e 1 (C(0) + / e s u p | g ( T , x ) - g ( T , x ) |dT) (0 <_ t < «>) , 

0 xen 
where M , M a r e bounds i n ( 3 . 2 ) , ( 3 .3 ) r e s p e c t i v e l y ; moreover ( u s i n g 

t 
y ( t , x ) = y (x) + / y (T ,x)dT)) 

0 Z 

sup | y ( t , x ) - y ( t , x ) | <_ sup | У 0 ( X ) - 0 ( x ) | 
x e ж x e ж 

2M,M t 

e 1 2 
+ -jj-g { sup | y ' ( x ) - y ^ ( x ) | + s u p | y 1 ( x ) - y ^ x ) ! 

1 2 xeaR xenR 

t -2M M T 

+ / e s u p | g ( T , x ) - g ( T , x ) |dT> (0 <_ t < ») . 
0 xenR 
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