EQUADIFF 4

Paul H. Rabinowitz
A priori bounds for a semilinear wave equation

In: Jifi Fabera (ed.): Equadiff IV, Czechoslovak Conference on Differential Equations and Their
Applications. Proceedings, Prague, August 22-26, 1977. Springer-Verlag, Berlin, 1979. Lecture
Notes in Mathematics, 703. pp. [340]--347.

Persistent URL: http://dml.cz/dmlcz/702234

Terms of use:

© Springer-Verlag, 1979

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz


http://dml.cz/dmlcz/702234
http://project.dml.cz

A priori bounds for a semilinear wave equation

Paul H. Rabinowitz

The purpose of this note is to describe some recent results on the
existence and regularity of solutions of semilinear wave equations of the

form

utt—uxx+f(u)=0, 0<x<mTm, teR

1)
u(0,t) = 0 = u(m,t)

where f(0)= 0 . Of interest is the existence of time periodic solutions of
(1) . Note that u= 0 is a trivial such solution; nontrivial solutions are
often called free vibrations for (1) . The same methods we shall describe
below can be used to treat the forced vibration case where f also depends
explicitly on t in a time periodic fashion.
There is a substantial literature on forced and free vibration problems
for (1) , mainly for the former case with f being a perturbation term,
i.e. f= egg(x,t,u) where ¢ is small. See e.g. [1-8] and the references
cited there. The work to be discussed here can be found in detail in [9].
Our main result for (1) is:

Theorem 2: Suppose f € Ck , k=2, and satisfies

(1) f is strictly monotone increasing with £(0)= 0,
(f2) f is superlinear at 0 and », i.e.

(i) f(z)=o(|z]) at z=0

z - 1
(i) F(z)= {) f(s)ds = zf(z) for |z| =Z where 6¢[0,5) .

Then for any period T which is a rational multiple of m , (l) possesses a

nontrivial T-periodic solution u ¢ Ck .
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2 2 2
”U”E= ffD (uy +u)dx dt

where D=[0,7] X [0,27] . Ignoring questions of where it is defined,

formally critical points of

(3) S Gw? - dd) - Fw) ax at

D
in E are weak solutions of (1) . Unfortunately we know of no direct way
of determining nontrivial critical points of (3) . However if a finite

dimensional approximation argument is used, i.e. (3) is restricted to
E, = span {sin jx sin kt, sin jx cos kt|0 = j,k = m} , the form of (3)
and hypotheses on f imply the existence of a nontrivial critical point.
The problem then becomes that of finding bounds for this critical point

Before sketching the proof, a few remarks are in order. We do not
know if the restriction on T is essential. The reason for this assumption
here is that for such t, the spectrum of

2 2

- -a—z in the class of T periodic functions in t satisfying the
ox

(S5

o=

oo

9
boundary conditions in x is discrete with 0 being an isolated point in
the spectrum while if T is irrational, the spectrum is dense and 0 is an
accumulation point of the spectrum. Condition (f2) (i) can be eliminated
provided that (fl) is retained. We do not know if the monotonicity of f

can be relaxed in any essential way. See however [7] . Lastly condition
1

(£2) (ii) implies |f(z)| = 3 |z|® - a, : hence the terminology
superlinearity at o .

Turning now to the proof of Theorem 2, the basic idea is to try to
find a solution of (1) as a critical point of a corresponding functional.
For convenience we take T = 27 . Consider the set of smooth functions 2w
periodic in t and having compact support (in (0,7)) in x . Let E denote

the closure of this set with respect to
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which enable us to pass to a limit and get a nontrivial solution of (l) .
Two technical problems impede this program. To describe them, consider
the linear problem

" ow=g(x,t),
(4)

w(0,t) = 0= w(m,t); w(x,t+2m)=w(x,t).

Under these boundary and periodicity conditions, O has a null space whose
closure in  L3(T)= L% is N= {p(x+t) - p(-x+t)|p e LZ(8H} .
If I\TL denotes the orthogonal complement of N in L2 , then for

ge NJ' , (4) is uniquely invertible in N'L with a gain of one derivative

in either the LZ or sup norms [4,5] . Thus we have some compactness
for the projection of (1) in N“L ; however there is none in N .

The two technical difficulties mentioned above are:
(i) the unrestricted growth of f at » does not permit us to obtain the
necessary estimates for w, the component of u in N‘L s (ii) the lack
of compactness of the projection of (1) in N .

To get around these difficulties, we modify (1) and (3) .
For ue E, wecanwrite u=v +w where ve N and weNJ‘ .
Let B> 0. Consider
5) {Du—ﬁvtt+fK(u)=0, 0<x<m, teR

u(0,t) = 0 = u(m,t); ux,t+2m = u(x,t)

where f, satisfies (fl)-(f2) , fi(z)= f(z) for |z| =X, and f; grows
at a prescribed rate, e.g. cubically, at « . The B term essentially
compactifies the projection of (1) on N . Corresponding to (5) we have

the functional;

(6) I(u) = f{) [3u? - uZ - pv?) - Fy(w)] dx dt
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where FK is the primitive of fK . The idea now is to: 1° find an

appropriate critical point of I| E ¢ 2° get suitable estimates for this
m

critical point; 3° pass to a limit and solve (5) ; 4° get B and K
independent estimates for solutions of (5); and 59 let B -0 and K —-w

to solve (1) . This is too lengthy a process for us to carry out now so we

will content ourselves with just trying to give the flavor of a few of the
estimates that are involved. To do this we return to (1) and argue

a priori . This is much simpler than the actual procedure carried out in

the existence argument.

Thus suppose we have a smooth solution u, of (1) . We will
obtain bounds for u in terms of c, the critical value of I corresponding
to u. Thus suppose I(u) = c . The first estimate gives a bound for

|| £(w) ) | - Since I'(u)= 0 (where I'(u) denotes the Frechet derivative
L
of I at u),

) c=1(u)-31'(wu= f{) [4 f(u)u - F(w)] dx dt

Invoking (f2)(ii) then gives

(8) Il £w)ull 4=M

for some constant M1 dependingon ¢ . By (fl),

|f(z)| = £(1) - £(-1) + f(z)z . Hence (8) implies a bound for | f(u)] o
Next writing u=v+w, VEN, wWE N“L , we have

9) Ow= -f(w) .

There is a representation theorem [5] for solutions of (4) which implies:

(10) wll = azllall y
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Consequently we conclude
(11) "W” I = 33” f(u)" Ll = 33M1 = MZ .

The next step is to get an estimate for ||v]| _ . This is more subtle.
L

We assume v # 0 or there is nothing to prove. From (9) we conclude that
(12) JJ fwyedxdt=0
D

for all ¢ € N. By choosing ¢ to be an appropriate nonlinear function of
v, we will obtain the desired estimate for | v|| o By rewriting (I12) we

get
(13) J[ (E(v+w) - f(w)pdxdt=~ [[ f(w)e dxdt
D D
= || f(w) | dx dt
| £(w) | - f{) ol
From the definition of N we have ¢ = p(x+ t) - p(-x+t) where pe LZ(SI) .

Clearly p is only determined up to an additive constant. We make p

unique by requiring that

2m

[p] = fo p(s)ds = 0 .

Define a function q(s) by g(s)=0 if |s| =M, q(s)=s-M if s> M;

q(s)=s+M if s < -M . With the above normalization on p, we write

v(x,t) = p(x+t) - p(-x+t) = v - v™ and chose ¢ = q(v+) -q(v)= q+ -q eN.
Therefore for any 6 > 0, by (fl),

14 £ - f toq)dxdt = | £ o+ lle”
(14) ffD ((v+w) - f(w))(q" -q) lew) ] la'l y+ ol p

&
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where D5= {(X,t) e D IVI = 6} . Let D+: {(x,t) € Dalv > 6} and
- +

D = D6\D Define
min f(z + ¢) - £(¢) z=0
lgl =M,
Wz) =
max f(z + ¢) - £(¢) z< 0
lel =M,

Then by (fl), ¢ is strictly monotone increasing and |y(z)| =~ as

|Z| —owo . From the definition of ¢ we get
(1) JI, vew - s (@' -d7)ax at =

ff U (gt -q)dxdt>ﬁ|—)— ff v(qt-q)dx at

since v(q+-q-) =0 . Similar estimates for the T integral lead to

(16) ff ((v+w) - f(w)) (q' - q )dxdt>f1“—)— ff v(qT-q ) dx at
6 v

where for z = 0, u(z)= min(y(z),-Y(-z)) . Note that p is strictly

monotone increasing and (z) o as z—-wo . Now

(17 [f wa*-aaxar= [ va"-adxat- s(llatl g+ a7l ) -
D6 D L L

Since [vi] = 0, itis easy to verify that
ff v+q-dxdt= 0=ff v_q+dxdt.
D D

Therefore

(18) [f via*-q") dxdt= ffT (v'qt +vig)dx dt .
T
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By the definition of q, we have sq(s) = M|q(s)| . Hence
+ - - -
(19) ffD v'a* +v7q )dxthM(||q+||Ll+||q Iv-

Combining (14) , (16)-(19) yields

(20) ﬁM"—: utd) (la*ll y + a7l y = ||f(w)nL1<ucr‘||Ll sl

' Choosing any M < ||v7| . vl o+ the ! terms are positive so they
L

can be cancelled and

@1 2w = 1wl o
LW

Since this is true for all M < || v I ¢ Weocan take M= || v l -

urther noting that ||v| =2 v I and taking &= 1v |*  yields
e _ -l
(22) v e (4 £w)ll R

Thus (22) and our estimate for [|w| _ give the desired bound for |v| __ .
L )t
Therefore we have a bound for | ul| .

To get further estimates, from (9) and the properties of D_l we

have

(23) lwl ;, =a,llfwm| =M,.
o = 2alinl =y

Next the arguments used to obtain the bound for | v|| - can be modified

to estimate the modulus of continuity of v . In the framework of (5) ,
these bounds enable us to pass to a limit to get a continuous weak solution
of (1) . A separate argument shows u# 0 . To verify that u is indeed a
smooth solution of (1) requires further arguments which we will not carry

out here.
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