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A priori bounds for a sem i l inear wave equa t ion 

Paul H. Rabinowitz 

The purpose of t h i s note i s to desc r ibe some recent r e su l t s on the 

ex i s tence and regular i ty of so lu t ions of sem i l inea r wave equa t ions of the 

form 

f u t t " u x x + f ( u ) = 0 ' 0 < x < TT , t e R 

'" 
I U(0 ,t) = 0 = u(7T,t) 

where f(0) = 0 . Of in te res t i s the ex i s tence of t ime per iod ic so lu t ions of 

(1) . Note tha t u = 0 i s a t r ivia l such so lu t ion ; nontr ivial so lu t ions are 

often ca l led free vibra t ions for (1) . The same methods we sha l l desc r ibe 

below can be u sed to t rea t the forced vibration c a s e where f a l s o depends 

expl i c i t ly on t in a t ime per iod ic fash ion . 

There i s a subs t an t i a l l i tera ture on forced and free vibrat ion problems 

for (1) , mainly for the former c a s e wi th f being a perturbation term, 

i . e . f = e g ( x , t , u ) where e i s sma l l . See e . g . [1-8] and the refe rences 

c i ted the re . The work to be d i s c u s s e d here can b e found in de tai l in [ 9 ] . 

Our main re su l t for (1) i s : 

Theorem 2 ; Suppose f e C , k > 2 , and sa t i s f i e s 

(fl) f i s s t r ic t ly monotone inc reas ing wi th f(0) = 0 , 

(f2) f i s super l inear a t 0 and oo , i . e . 

(i) f(z) = o ( | z | ) a t z = 0 

(ii) F(z) = f f(s)ds < 0zf(z) for | z | > z where 9e[0,j) . 
0 

Then for any period T wh ich i s a ra t ional multiple of Ir , (1) p o s s e s s e s a 

nontr ivial T -pe r iod ic solut ion u e C . 
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lullE= / / (u? + «Ô<-xdt r, D i x 

where D = [0, Ir] x [ 0 , 2 T T ] . Ignoring ques t ions of where it i s defined, 

formally cr i t ica l points of 

(3) / / [ T ( U ? - O - F(u)] dx dt 
D 

in E are weak solut ions of (1) . Unfortunately we know of no direct way 

of determining nontrivial cr i t ical points of (3) . However if a finite 

dimensional approximation argument i s used , i . e . (3) i s res t r ic ted to 

E = span {sin jx sin kt , sin jx cos kt | 0 < j , k < m} , the form of (3) 

and hypotheses on f imply the ex is tence of a nontrivial c r i t ica l point . 

The problem then becomes that of finding bounds for th is cr i t ica l point 

Before sketching the proof, a few remarks are in order. We do not 

know if the res t r ic t ion on T i s e s s e n t i a l . The reason for th is assumption 

here i s that for such t , the spectrum of 

a2 a2 

• = — j j in the c l a s s of T periodic functions in t sat isfying the 
ar ax̂  

boundary condit ions in x is d iscre te with 0 being an i so la ted point in 

the spectrum while if T is i r rat ional , the spectrum is dense and 0 i s an 

accumulat ion point of the spectrum. Condition (f2)(i) can be eliminated 

provided that (fl) i s re ta ined . We do not know if the monotonicity of f 

can be relaxed in any e s sen t i a l way. See however [7] • Lastly condit ion 

i - i 

(f2)(ii) implies | f (z ) | > a, \z\e - a 2 ; hence the terminology 

super l inear i ty a t oo . 

Turning now to the proof of Theorem 2 , the bas ic idea is to try to 

find a solution of (1) a s a cr i t ica l point of a corresponding funct ional . 

For convenience we take T = 2TT . Consider the se t of smooth functions 27r 

periodic in t and having compact support (in (0,7T)) in x . Let E denote 

the c losure of th is se t with respec t to 
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which enable us to p a s s to a limit and get a nontr iv ia l solut ion of (1) . 

Two t e c h n i c a l problems impede t h i s program. To descr ibe them, cons ider 

the l inear problem 

D w = g(x,t) , 
(4) 

т) = w(x, t) 

Г D w = g(x,t) , 

l w(0, t) = 0 = w(тr, t) ; w(x, t + 27T) 

Under t h e s e boundary and periodici ty c o n d i t i o n s , D h a s a null s p a c e whose 

c l o s u r e in L2(T) = L 2 i s N = {p(x + t) - p(-x + t ) | p e L 2 (S 1 )} . 

If N d e n o t e s the orthogonal complement of N in L , then for 

g e N , (4) i s uniquely invert ib le in N~ with a gain of one der ivat ive 

in e i ther the L or sup norms [4, 5] . Thus we have some c o m p a c t n e s s 

for the project ion of (1) in N ; however there i s none in N . 

The two t e c h n i c a l dif f icult ies mentioned above a r e : 

(i) the unres t r ic ted growth of f a t w does not permit us to obtain the 

n e c e s s a r y e s t i m a t e s for w , the component of u in N ; (ii) the lack 

of c o m p a c t n e s s of the project ion of (1) in N . 

To get around t h e s e dif f icult ies, we modify (1) and (3) . 

For u e E , we c a n write u = v + w where v e N and w e N 

Let p > 0 . Cons ider 

( Du - ßv + L ( u ) = 0 , 0 < 
(5) tt K 

L u(0 , t ) = 0 = u ( я , t ) ; u ( x , t + 

•u - pv + t + iv(u) = 0 , 0 < x < 7 T , t e R 

2TT)= u(x, t ) 

where fK s a t i s f i e s (fl)-(f2) , fK(z) = f(z) for | z | < K , and L, grows 

a t a prescr ibed r a t e , e . g . cubica l ly , at oo . The p term e s s e n t i a l l y 

compact i f ies t h e project ion of (1) on N . Corresponding to (5) we have 

the f u n c t i o n a l ; 

(6) I(u) = / / [ i ( u j - u j - pvj) - F K (u)] dx dt 
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where FK is the primitive of f . The idea now is t o : 1° find an 

appropriate critical point of l| ; 2° get suitable estimates for this 
m 

critical point; 3 pass to a limit and solve (5); 4° get £ and K 

independent estimates for solutions of (5) ; and 5° let p -* 0 and K — oo 

to solve (1) . This is too lengthy a process for us to carry out now so we 

will content ourselves with just trying to give the flavor of a few of the 

estimates that are involved. To do this we return to (1) and argue 

a priori . This is much simpler than the actual procedure carried out in 

the existence argument. 

Thus suppose we have a smooth solution u . of (1) . We will 

obtain bounds for u in terms of c , the critical value of I corresponding 

to u . Thus suppose I(u) = c . The first estimate gives a bound for 

||f(u)|| , . Since I (u) = 0 (where l'(u) denotes the Frechet derivative 
L1 

of I at u) , 

(7) c = I(u) - \ I '(u)u = / / [J f(u)u - F(u)] dx dt 

Invoking (f2) (ii) then gives 

(8) ||f(u)u|| , s M . 
JL 

for some constant M, depending on c . By (fl) , 

|f(z)| < f(l) - f(-l) + f(z)z . Hence (8) implies a bound for ||f(u)|| ^ 
Li 

Next writing u = v + w , v e N , w e N , we have 

(9) Dw= -f(w) 

There is a representation theorem [5] for solutions of (4) which implies : 

(10) INI^M9^! • 
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Consequent ly we conclude 

(11) II w|| o o £ a 3 | | f ( u ) | | ^ 3 ^ = M2 . 
L L 

The nex t s tep i s to ge t an es t ima te for || v|| . This i s more subt le . 
L00 

We assume v ^ 0 or there i s nothing to prove. From (9) we conclude tha t 

(12) f f f ( u ) ţ > d x d t = 0 
D 

for a l l <p € N . By choos ing <p to b e an appropriate nonlinear function of 

v , we wi l l obtain the des i red es t ima te for || v|| . By rewr i t ing (12) we 
Li 

ge t 

(13) / / (f(v + w) - f(w)) <p dx d t = - / / f(w) <p dx dt 
D D 

25 Uf(w)ILc» / / M d x d t 

L D 

2 1 
From t he defin i t ion of N we have <p = p (x+ t ) - p ( -x + t ) where p e L (S ) 

Clear ly p i s only de termined up to an add i t ive c o n s t a n t . We make p 

unique by requiring tha t 

-2я 
[P] s / p(s)ds - 0 . 

0 

Define a function q(s) by q(s) = 0 if | s | -s M , q(s) = s - M if s > M ; 

q ( s ) = s + M if s < - M . With the above normal izat ion on p , we write 

v(x, t ) = p(x + t) - p(-x + t) = v + - v" 

Therefore for any 6 > 0 , by (fl) , 

+ - + — + -
v(x, t) = p(x + t) - p(-x + t) = v - v and c h o s e <p = q(v ) - q(v ) = q - q e N 

(14) / / (f(v + w) - f ( w ) ) ( q + - q " ) d x dt £ | |f(w)|| jU+\\ , + | | q ' | | {) 
D c L L L 
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where D 6 = { ( x , t ) e D | v | > 6} . Let D + = {(x, t) e D 6 | v > 6} and 

D~ = D 6 \ D + . Define 

Ф(z) = 

min f(z + i) - Щ) z > 0 

kl * м2 

max f(z + l) - f(C) z < 0 
\i\ -s M 2 

Then by (fl) , I|J i s str ict ly monotone increasing and |ip(z)|—co as 

| z | —00 . From the definition of ip we get 

(15) / / (f(v + w) - f(w) ) (q + -q" )dx dt > 

D + 

£ / / ^ v ( q + - q - ) d x d t = = - 4 ^ - / / v ( q + - q - ) d x d t 
D + Hl t € 0 D+ 

s ince v(q -q~) -̂  0 . Similar estimates for the T~ integra l lead to 

(16) / / (f(v + w) - f ( w ) ) ( q + - q ~ ) d x d t > ^ ( 6 ) / / v ( q + - q " ) d x d t 
D 6 "VHLoo D 6 

where for z > 0 , \±(z) = minfipfz), -ip(-z)) . Note that \i i s str ict ly 

monotone increasing and | i (z) — co as z —- oo . Now 

(17) ff v ( q + - q " ) d x d t > / / v ( q + - q " ) d x d t - 6( | |q+ | | + ||q"|| ) 
D, D L* L 

o 

Since [\r] = 0 , it i s easy to verify that 

ff v + q" dx dt = 0 = / / v" q+ dx dt 
D D 

Therefore 

(18) / / v(q+ - q") dx dt = / / (v + q + + v"q") dx dt 
T T 
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By the def in i t ion of q , we have sq(s) ^ M | q ( s ) | . Hence 

(19) / / (v + q + + v"q")dx dt a M ( | | q + | | , + ||q Ц ,) 
D Ij L1 

Combining (14) , (16)-(19) y ie lds 

(20) -fvT I^6)(l|q+ll j + l h l j) =- II «w)|| ,( | | q+|| ._ + || q" || p 
" " joo L L L L L 

Choosing any M < || v || = | |v"|| , t h e L terms are pos i t i ve s o they 
L 0 0 L 0 0 

can be c a n c e l l e d and 

(21) ^ u ^ | | f ( w ) | | . 

L a Lте 

Since th i s i s t rue for a l l M < II v II . we can take M = II v II 
11 " -TOO " ' j O O 

Further not ing t h a t || v|| ^ < 2 || v* || m and tak ing 6 = j || v| | ±

m y i e l d s 
L L L 

(22) || v* I ^sZ^WtMW J . 
Li L I 

Thus (22) and our es t ima te for | |w|| give the des i red bound for || v|| 
Li Li 

Therefore we have a bound for II UL II 
L°° _! 

To ge t further e s t ima tes , from (9) and the proper t ies of • we 

have 

(23) || w|| 1 s a 4 | | f ( w ) | | K S M 3 . 
C L 

Next t h e arguments u s e d to obtain t h e bound for || v|| c a n b e modified 
Lt 

to es t ima te t h e modulus of con t inu i ty of v . In the framework of (5) , 

t h e s e bounds enab le u s to pass to a limit to ge t a cont inuous weak solut ion 

of (1) . A separa te argument shows u ^ 0 . To verify t h a t u i s indeed a 

smooth solut ion of (1) requ i res further arguments wh ich we wil l not carry 

out here. 



347 

References 

[1] Vejvoda, O . , Periodic so lutions of a l inear and a weak ly nonlinear 

wave equation in one dimension , I , Czech . Math. J. 14, (1964), 

341-382 . 

[2 ] Vejvoda, O . , Periodic so lutions of nonlinear partial differential 

equations of evolution , Proc. Sym. on Diff. Eq. and Applic. 

Brataslava—1966, (1969), 293-300 . 

[3] Kurzweil, J., Van der Pol perturbation of the equation for a vibrating 

str ing, Czech . Math. J., 1£, (1967), 558 -608 . 

[4] Rabinowitz, P. H. , Periodic so lutions of nonlinear hyperbo l ic partial 

differential equations, Comm. Pure Appl. Math . , 2J3, (1967), 145-205. 

[5] Lovicarova, H. , Periodic so lutions of a weak ly nonlinear wave equation 

in one dimension , Czech . Math. J., 19, (1969), 324 -342 . 

[6] Rabinowitz, P. H. , Time periodic so lut ions of a nonlinear wave 

equation , Manus . Math., 5, (1971), 165-194. 

[7] Stedry, M . and O . Vejvoda, Periodic so lutions to weak ly nonlinear 

autonomous wave equations, Czech . Math . J., 2_5, (1975), 536 -555. 

[8] Brezis, H. and L. Nirenberg, Forced vibrations for a nonlinear 

wave equation, to appear . 

[9 ] Rabinowitz, P. H. , Free vibrations for a semilinear wave equation , 

to appear Comm. Pure Appl. Math. 

This resea rch was sponsored in part by the Office of Naval Research under 

Contract No . N00014-76-C-0300 and in part by the U . S . Army under 

Contract No . DAAG2 9 - 7 5 - C - 0 0 2 4 . Any reproduction in part or in full i s 

permitted for the purposes of the U . S . Government. 

A u t h o r ' s a d d r e s s : Department o f M a t h e m a t i c s U n i v e r s i t y o f 

W i s c o n s i n - M a d i s o n , Mad i son , W i s . 5 3 7 0 6 , USA 


		webmaster@dml.cz
	2012-09-12T22:11:46+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




