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THE METHOD OF LEAST SQUARES ON THE BOUNDARY AND 

VERY WEAK SOLUTIONS OF THE FIRST BIHARMONIC PROBLEM 

K. Rektorys, Praha 

In this paper, the so-calledMethod of Least Squares on the Boundary 
is presented and its application to an approximate solution of the 
first biharmonic problem is shown. This method is applicable even if 
the boundary conditions are so general that the existence of a weak 
solution is not ensured, so that current variational methods (the 
Ritz method, the finite element method, etc.) cannot be applied. Mo
reover, it enables to solve the first problem of plane elasticity by 
reducing it into the first biharmonic problem also in the case of 
multiply connected regions,where other current methods meet with 
well-known difficulties even in the case of smooth boundary condit
ions. 
Because the origin of this method lies in solving problems of the 
theory of plane elasticity, let us recall, in brief, basic concepts 
and results of this theory. 
Throughout this paper, G is a bounded region in E 2 with a Lipschit-
zian boundaryH 
Under the first problem of plane elasticity we understand a problem 
to find three functions 

(1) <rx, <rr rxy, 

the so-called components of the stress-tensor, sufficiently smooth 
in G (to be made more precise later), fulfilling in G the equations 
of equilibrium 

DGT -?r 
x xy 

(2) + = 0, 

2x 2y 
?r x y Dcr^ 

(3) + = 0 

and the equation of compatibility 

(4) ^ ( <rx + CT ) = 0 

(where A is the Laplace operator), and on / the boundary condit
ions 

(5) (T^ V x + r x y Vy = X(s), 

(6) T V + CT V = Y(s). 
xy x y y A^°/* 
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Here VY, )JV are components of the uni t outward normal to P ( e x i -
y ^ __. 

s t i n g almost everywhere on / , because / i s L i p s c h i t z i a n ) , X and Y 
are components of the outward loading which a c t s on the boundary, s 
i s the l eng th of arc on f " . I f G i s mult ip ly connected, i t i s r e q u i 
red, moreover, that the vector of disp lacement corresponding to the 
s t r e s s - t e n s o r (1) i s a s ing le -va lued funct ion in G. 
In what f o l l o w s , we assume that the loading i s in the s t a t i c e q u i l i 
brium (both i n forces and moments). 

I . Simply connected regions 

In t h i s case , the f i r s t problem of plane e l a s t i c i t y can be e a s i l y 
transformed into the f i r s t biharmonic problem 

(7 ) A 2 u = O i n G , 
? u 

(8) u = g Q ( s ) , -^-7 = g 1 ( s ) on r . 
The funct ions gQ, g-, are derived, i n a simple way, from the f u n c t i 
ons X,Y ( f o r d e t a i l s see [ 5 ] ) - In t h i s paper, we assume 

(9) g0^41}(r), g ^ v r ) 
o n l y . This assumption i s s u f f i c i e n t l y general from the point of 
view o f the theory of e l a s t i c i t y and s u f f i c i e n t l y i n t e r e s t i n g from 
the mathematical point of view. Indeed, (9) does not ensure e x i s t 
ence of a weak s o l u t i o n of ( 7 ) , ( 8 ) . But (see the Ne5as monography 
1 3 ] ) i t ensures ex i s tence of the s o - c a l l e d wery weak s o l u t i o n : In 

f a c t , t races ( i n the sense of (9 ) ) of funct ions from the space 
W ( 2 )(G) are dense i n W ( 1 ) ( r ) x LAP ) . Consequently, a sequence of 

2 (?) 
funct ions v £W2 (G) e x i s t s such that 

(10) ( v n ' l J > -XSO'S^ i n W 2 1 ) ( r ) x L 2 ( r ) -
Then ( s ee [ 3 ] again) the sequence of weak s o l u t i o n s v n of the problem 

( 7 ) , (8) with gQig1 rep laced by v n , Dv^/Dv converges, i n L2(G), to 

a funct ion u € L 2 ( G ) . This funct ion i s uniquely determined by the fun

c t i o n s g 0 , g ,and i s c a l l e d the very weak s o l u t i o n of the problem ( 7 ) , 

( 8 ) . The funct ion u can be shown to be a c l a s s i c a l s o l u t i o n of (7 ) 

i n s i d e of G. The components of the des ired s t r e s s - t e n s o r are then 

g iven by the r e l a t i o n s 2 ~ 2 n 2 
3^u 6/ u d u 

( 1 1 ) ^ x = a~2 ' ^y = "^2 » Txy = ~<?x^y 

Because a very weak s o l u t i o n of ( 7 ) , (8) need not be a weak s o l u t i o n 
and, consequently , need not belong to W^2)(G), usual v a r i a t i o n a l 
methods are not a p p l i c a b l e , i n general , to get an approximate s o l u t -
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i o n o f the problem ( 7 ) , ( 8 ) . Therefore, in [ l ] the above mentioned 

method o f l e a s t squares on the boundary has been deve loped by K. 

Rektorys and V. Zahradnfk: 

Let 

(12) z 1 ( x , y ) , z 2 ( x , y ) , . . . , z n ( x , y ) 

be the system o f bas ic biharmonic po lynomials . (For d e t a i l s see T l l ; 
> 

note that f o r n = 2 there are p r e c i s e l y 4n - 2 bas ic biharmonic po ly
nomials o f degree = n. ) Let n = 2 be f i x e d . Denote by M the s e t o f 
all functions of the form 

4n - 2 

(13) v(x ,У> = 
i = 1 

b
ni z^(x ,У> 

with b . arb i t rary ( r e a l ) and l e t 

(14) Fv = / ( v - g Q ) 2 d s + / ( ^ - ^ ) 2

 d 3 + / ( ~ - g l ) 2 

'r ° Jr dQ ds Jr z>v 

be a f u n c t i o n a l on M. (Because o f (10) and o f the L i p s c h i t z i a n boun

dary, a l l in tegra ls in (14) have a s e n s e . ) Let us look for an appro

ximate s o l u t i o n i n the form 
4n - 2 

(15) u n = i ^ i a ^ U . y ) , 

where the coefficients a . are determined from the condition 

(16) Fu = min. on M. 

The functional F being quadratic, the condition (16) leads to the 
solution of a system of 4n - 2 linear equations for 4n - 2 coeffi
cients a .. 

ni 

Theorem 1. The above mentioned system is uniquely solvable. 

The groof is relatively simple: On the set M of all functions (13) 

one d e f i n e s the s c a l a r product (u,v)p by 

( ( 2 u c)v / <3u<)v 
(u ,v ) = uv da + I — — — - ds + J - — rr- d s . 

r Jr Jr d 3 Os Jr dv dv 
It turns out that the determinant of the above mentioned system is 

the Gram determinant of the linearly independent functions (13), and, 

consequently, it is different from zero. 
Theorem 2. For n—> 00 we have 

u
n
—» u in L

2
(G), 

where u(x,y) is the very weak solution of (7), (8). Moreover, on eve

ry subregion G'C G the convergence is uniform. The same holds for the 

convergence of the derivatives -^u to D
x
u in G^ 
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The proo f i s not simp le ( see [ l ] , pp . 119 -1J0) . I t i s ba3ed on the 
f o l l o w i n g two lemmas: 

Lemma 1 . Let uQ be a weak s o l u t i o n o f a f i r s t biharmonic problem i n 

G. Then to every £ > 0 there e x i s t a reg ion G 3 G and a funct ion u 
biharmonic i n G such that for i t s r e s t r i c t i o n on G we have 

" * - u rJI (2( < L • 0 W ^ C ( G ) 

(Because ujLs biharmonic in G, it has continuous derivatives of all 

orders in G; thus, Lemma 1 says that every weak biharmonic function 
(2) 

in G can be approximated, in W^ (G), with an arbitrary accuracy, by 

a very smooth biharmonic function in G.) 

For the proof of this lemma, one construet3 a sequence of bounded re

gions G-, 

G ^ G j , Gj+1 C 0^ for every j = 1,2 

lim mes (G. - G) = 0 
j-> <=>o J 

(thus G. converge for j -» °° to G "from outside"), extends the fun-
J 

ction un to G, so that this extension - let us denote it by Un - be-
(2) (2) 

longs to Wg (G,) (and, consequently, to every W^ (G-), as the re

striction on G., j = 2,3, ••• )• This is pos9ible (cf. [3] , p. 80). 

On every G. one con9tructs the (uniquely determined) weak solution 
u. of the first biharmonic problem with boundary conditions given by 
J *̂  
the function Un and proves for the restrictions u. of u. on G that 

li*Ju0-u.\\^2hG) =0. 
^J ^ 

For the function u it is then sufficient to take the restriction u. 

of a function u. with a sufficiently high index j. (For details see 

[l] , pp. 122 - 128.) 

Lemma 2 (on density). The traces of biharmonic polynomials are dense 

in W^1^!"1) x LJ.T). In detail : To every pair of functions g € 

Wp-^r 1), g,€ L2(T) and to every £>0 there exists a biharmonic po

lynomial p satisfying jp 

UP- soil w ( D ( r )
< £ ' H ^ - M V D ^ • 

The proof is relatively simple and is based on Lemma 1, on the well-

-known representation of biharmonic functions by holomorphic functi

ons (see [5] ) and application of the Walsh theorem on approximation 

of holomorphic functions by polynomials. For details see [l] . 
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Having proved Lemmas 1 and 2, the proof of the first assertion of 
Theorem 2 is only a technical matter. (One applies a procedure simi
lar to that described in the text following (10) and some almost ob
vious properties of the method of least squares0 For details see [lj 
pp. 129-130. 
The second assertion of this theorem is an easy consequence of Theo
rem 4.1.3 from [3] , p. 200 (on the behaviour, in the interior of G, 
of solutions of equations with sufficiently smooth coefficients). 

Remark 1. In [l] also a numerical example can be found. Note that 
the second integral on the right-hand side of (14) plays an essenti
al role in the proof of convergence as well as in the numerical pro
cess (as a "stabilizator"). 

II. Multiply connected regions 

Let G be a bounded (k+l)-tuply connected region in E 2 with a Lip-
schitzian boundary 

(17) r = rQ u r x u . . . u rk , 

r -p ... , r*k being inner boundary curves. Let a loading be acting 
on each of the boundary curves. As well as in the case of the simply 
connected region, the functions giQ, g^ (i = 0,1, ... ,k) can be 
constructed and the problem 
(18) ^ u A 2

U = 0 in G, 
(19) u = giQ, -^yj = g±1 on Pv i = 0,1, ... ,k 

can be solved. Assuming that 

(20) g i 0£
W2 1 ) ( ri )' S i l ^ V ' V ' i = °»1' ••• 'k» 

it can be shown, in a quite similar way as in the case of the simply 
connected region, that a (unique) very weak solution of (18), (19) 
exists. It is a classical solution inside of G again. But in'contrast 
to the case of a simply connected region, the functions (11) need not 
be components of a stress-tensor, because the corresponding vector 
of displacement need not be a single-valued function in G. (For de
tails and for an example see [2] , Part I.) 
Definition 1. A(very weak) biharmonic function to which there corres
ponds - through the functions (11) - a single-valued displacement is 
called an Airy function. In the opposite case we speak of a singular 
biharmonic function. 
In a simply connected region, every biharmonic function is an Airy 
function. In a multiply connected region it need not be the case. 
From the point of view of the theory of elasticity, we are interested 
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(23) 

(24) » * SiO •л. 

_3 
2 

ii = 0 , 

ùu 
дv ' ~il > 

be an Aiгy funct ion. Here 

A-°: Л = 0 for i = 0, 1 A-°: L x + ь i У + C i 

in Airy functions only. 

From the construction of the functions g.
Q
, g., it follows (see [2], 

Part I) that the functions 

(21) g
i 0
 = g

i Q
 • /(x,y), g

n
 = g

i l
 + - * A , 

where 

(22) ^(x,y) = a^x + b ^ + c
i
 (a

i
, b

i f
 ci real constants), 

correspond to the same loading on F.. A question arises if it is 

possible to find, on ̂  (i = l,...,k), the constants a., b., c. in 

such a way that the very weak solution of the problem 

i = 0,1,...,k, 

for i = 1,...,k. 

Definition 2. An Airy function which is the (very weak) solution of 

(23), (24), is called an Airy function corresponding to the given 

loading (given by the functions g^
Q
, g.^)--

Formulation of the problem: The functions g being given, to find an 

Airy function corresponding to the given loading. In detail: To find 

the constants a., b., c. (i = l
f
..«

f
k) in such a way that the solut

ion of (23), (24) be an Airy function, and to find this function. 

Theorem 3* Let the functions g.
Q
, g.-, satisfy (20). Then there exists 

precisely one (very weak) Airy function corresponding to the given 

loading. 

The idea of the proof is the following: Let u
Q
 be the very weak so

lution of (18), (19K This solution need not be an Airy function.Now, 

if it is not, the so-called basic singular biharmonic functions r.. 

(i = l,...,k j = 1,2,3) are constructed which are weak solutions of 

the first biharmonic problem with functions of the form (22) as boun

dary conditions. It is shown that there exists a linear combination 

of these functions which "removes" the singularity from the solution 

UQ, i.e., if added to this solution, an Airy function is obtained. In 

this way, we get the required Airy function corresponding to the gi

ven loading. Uniqueness: It is shown that the difference U(x,y) of 

two Airy functions corresponding to the given loading is a linear com

bination of basic singular biharmonic functions. At the same time, 

U(x,y) - as a difference of two Airy functions - should be an Airy 

function. But this is possible, as shown in the work, only if all the 

coefficients of the above-mentioned linear combination are equal to 

zero. - For a detailed proof of Theorem 3 see [2l , Part I. 
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Also in the case of multiply connected regions, the method of least 

squares on the boundary can be applied and is shown to be very conve

nient as a numerical method. The approximate solution cannot be as

sumed in the simple form (15) only, but in the form 

(25) U m„ ( x »У) = Umт,(x»У) + V m r , < X » У ) » 

mn mn mn , v ' wheгe 

(26) 
4n - 2 lc 4m 

U m n ( x ' y ) = ^ x

 amni z i ( x ' У } + J i ^ bmniq v i q ( x ' v ) 

+ ^ m n i 1 - [ ( x - x i ) 2 + (У"Уi ) 2] 

4n - 2 lc 4m 
U m n ( x ' y ) = ^ x

 amni z i ( x ' У } + J i ^ bmniq v i q ( x ' v ) 

+ ^ m n i 1 - [ ( x - x i ) 2 + (У"Уi ) 2] 

and 
(27) 

k 3 
V . ( X ' У ) « J 2 CC^ r ^ x . y ) . 

Here, z.(x,y) are basic biharmonic polynomials, 

z 
v i , 4 / + l ( x ' y ) = R e 

(z-z^) Л i 
V І , 4 І + 2 

(x,y) Im 

( z - Z i ) M 

v i , 4 І + 3 ( x ' y ) Re 
(z-z^) / +1 

V І , 4 / + 4 ( X ' У ) = ^ 
( z - z . ) A l 

z . = x . + y . i s an (arb i trary) p o i n t l y i n g i n s i d e o f the inner boun

dary curve f\ ( j = l , . . . , k ) and r. . (x ,y ) are the above mentioned ba-
J •* J 

s i c s i n g u l a r biharmonic funct ions .(These funct ions cause no d i f f i c u l 

t i e s i n the numerical p r o c e s s , because i n t h i s p r o c e s s there appear 

only t h e i r va lues on the boundary curves H* ( i = l , . . . , k ) , and these 

are extremely s imp l e . ) (26) r e p r e s e n t s the "Airy part" and (27) the 

" s i n g u l a r part" o f the approximation, r e s p e c t i v e l y . 
The c o e f f i c i e n t s a m v i . , b » . cm„., oCm„A A are determined from the mm' mniq' mm* mnij 
c o n d i t i o n (16) again, M being the s e t o f funct ions o f the form (25) 

wi th arb i trary ( r e a l ) c o e f f i c i e n t s . The c o n d i t i o n (16) l e a d s to the 

s o l u t i o n o f a system o f l i n e a r equat ions f o r the unknowns a ,.,b . . 
* ^ mm* mmq' 

c.^• , oCm^,. • ( f o r d e t a i l s see [ 2 ] , Part I ) . 
mni' mm j fc •* ' 

Theorem 4» The above mentioned system i s uniquely s o l v a b l e . 

The E£22£ i s ai-Bple and i s an analogue o f the p roof o f Theorem 1 . 
Theorem 5* For m,n—» °° we have 

u m n ( x , y ) ""* u C x » y ) i n L
2

( G ) ' 

where u ( x , y ) i s the very weak s o l u t i o n o f the problem ( 1 8 ) , (19) • At 

the same t ime, the "Airy part" u
m n ( x > y ) converges , i n Lp(G), to the 

Airy f u n c t i o n correspond ing to the g iven l o a d i n g , and thus to the d e 

s i r e d s o l u t i o n o f the f i r s t problem o f p lane e l a s t i c i t y . The conver-
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gence i s uniform on every subregion G' o f G such that G'CG. The s a 
me ho lds for the convergence of the d e r i v a t i v e s Dxu or DXU 

mn mn 

The DT22£ follows the same idea as the proof of Theorem 2.Only the te

chnique is more pretentious because of the multiple connectivity of 

the region. Especially, the Walsh theorem on approximation of a holo-

morphic function by a polynomial should be replaced by a more general 

theorem on approximation by a rational function (this is also the cau

se why functions v. appear in (26)), etc. 

Remark 2. Because, solving the problem of plane elasticity, we are 

interested only in the Airy function corresponding to the given loa

ding, it is not at all necessary to construct, actually, the "singu

lar" functions r. .(x,y). 

Remark 3. The method of least squares on the boundary suggested by 

the authors proved to be a very effective approximate method when 

solving problems of the theory of elasticity and of related fields. 

Especially, it has been applied with success to the solution of some 

rather difficult problems of wall-beams in soil mechanics. In the ca

se of the biharmonic problem, it takes advantage of the form of the 

biharmonic equation. However, it can be applied as well, when proper

ly modified, to the solution of other problems. 
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