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SOLUTION OF SYMMETRIC POSITIVE SYSTEMS 

OF DIFFERENTIAL EQUATIONS 

U.M.Sultangazin, Alma-Ata 

S.K.Godunov and the author showed in 1969 that the hyperbolic 

system obtained from the one-velocity kinetic equation in P2n+1 " 

approximations of the method of spherical harmonics under boundary 

conditions of Vladimirov's type is symmetric positive. Writing the 

system of equations of the method of spherical harmonics in the form 

of a symmetric system in the sense of Friedrichs together with a 

proof of dissipativity of the boundary conditions have made it possib

le to discover new qualitative laws of the theory of spherical har

monics. Under general assumptions concerning the dissipation indi-

catrix9 the author proved weak convergence. A little later V.Skobli-

kov and A.AkiSev studied the problem of strong convergence of the 

method of spherical harmonics. It is also important that the symmet

ry of the system and the positivity of the boundary conditions allow

ed to construct effective computing algorithms for the solution of 

the three-dimensional system of equations of spherical harmonics. 

The present paper offers a survey of results of the study of symmet

ric positive systems which appear in the method of spherical harmo

nics. 

1. Formulating the problem 

Let G be a convex domain in the three-dimensional Euclidean 

space R-, whose boundary is a smooth surface P • Let us assume 

that the surface V belongs to the class C and has a bounded ra

dius of curvature at any point. In the cylindric domain 
ST != C°tT]*Gx£-- with the base Q = Gx.Q. we consider the following 

initial-boundary value problem for non-stationary one-velocity kine

tic transport equation: 

Jo 
g(4)f ̂ MudA)' = f , 

(2) u(Ofrf£j) = $(r fW) , 

(3) u(t,r,^)=0 for (^,n)<0f rE P 

where r = (x,y,z) are space coordinates, u) = (^,^,cL) are 

angular variables which may be written in terms of spherical coordi-
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nates as £, = cos LP sin 0 , ^= sin tP sin 0 , £ = cos 0 , £2. = 

= ( y , © : 0<{f><25r , O-^0-2tf} , u(t,r,£>) is the function of 

distribution of particles, f(t,r,^ ) is the source function, <5(r), 

6* 0(r) are the macroscopic sections characterizing the properties 

of the medium, -TJT glcOtU)') is the dissipation indicatrix, 

cde CL, lvenV . 
Definition 1. A function u(t,r, lo )EC( [0,T]; L 2 ( G X Q ) ) is call

ed a generalized solution of the problem (l)-(2) if it satisfies 

the integral identity 

(4) I L*"vudtdrdaJ +/ <j[)(r, co )v(0,r, u) )drd£> =/ vfdtdrd^J 
JsT Jt=o Js T 

for all continuously differentiable v(t,r,£j ) with 

(5) v(T,r, To) = 0 , 

(6) v ( t , r , o ) ) = 0 for (n,o))^0, r E T . 

The formula (4) which is the basis of the above definition requires 

that the coefficients of the equation (1) and the initial data ful

fil the following minimal conditions: 

(a) (j , (Ts are measurable in G and <5~, (5 ELp(G) , 

(b) f€C([0,Tj ; L2(G*CL)) , 

(c) $eL2(G*Q.) . 

It is easy to see that the integrals in (4) exist provided the 

conditions (a)-(c) are fulfilled. 

Theorem 1. Let us assume that 

(i) the coefficients 6"(r), cT(r) are bounded and fulfil the 
s 

Lipschitz condition with respect to x,y,z with constants 6* , 

<Dy > <SZ t <5~sx t <.rsy » <TgZ i respectively (e.g. the Lipschitz condi

tion in x: 

|e>(x',y,z) - <5~(x»,y,z) |̂  < <5Tx|x'- x » | ) ; 

(ii) the source function f(t,r, Jo) is bounded, i.e. 

|f(t,f, u))]^t and it fulfils the Lipschitz condition with respect 

to t and x,y,z with constants f+ ,f ,f ,f , respectively; 
-r __« x y z 

(iii) the initial function (pirfto) is bounded, i.e. 

| <J)(r>4j)| — ^ 0 and it fulfils the Lipschitz condition with respect 

to x,y,z with constants (5 * $ v » $z > respectively. 

Then there exists a bounded generalized solution u(t,r,4j) 

which is absolutely continuous with respect to t,x,y,z and, more

over, Lipschitz continuous in the domain S-, with respect to t,x, 
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A proof requires only to establish a priori estimates for the 

differences u(t
,

f
r,^) - u(t

 M

 f
r

f
 u)), uU,?* tco) - u(ttr" 9 cd) by 

virtue of the integral equation 

J^r-tv (t-s))ds 

(7) u(t,r, co) = e u(t*,r*,k)) + 

t
 - Ҷ бҶr-ы (t-s»))da» 

Bu(s,г-£<; ( t - a ) , íc*)đs. 

Here t*f r* correspond to the point of intersection of the charac
teristic r - cOt = const with the side boundary of the domain S^ 
and with the plane t=0 f respectively, 

ttltNr*^) - { ° if ̂ > 0 

§lr9aJ) if t*= 0 f 

C5"« f - - - - -
Bu « ~ g(6J f 6/ )u(tfrf ̂ Md/J* + f • 

We have 
|u(t» fr f«) - u(t

, ,

f? ftj)| -^M1jt
,-t,,| , 

d(r» fr» f w)|u(tfr»f5}) - u(t fr'» f5)| ̂  M 2|F
,-? , ,| 

where M. depend on T and the constants which appear in the assump
tions of Theorem lf d(rf ,r , ,

f^j) = min {&(r't7b)t d(rff
tu))} f 

d(r, uj) is the distance from the point whose coordinates are 
r = (xfy,z) to the boundary P along the direction u) . A detailed 
proof of these estimates is to be found in [6J f [_7j • 

2# Method of spherical harmonics 

Let us introduce a projection operator 

' » « • * £ ; £ . &£o<«.<£ ,)>+^>(U,s<->)j, 
k=-0 m=0 where 

cЛш) = ( 2 k + 1 ) | | - ж j i p ( m ) ( p c o в m / f 

S ( - ) - ( a V l ) ^ j | p : ţ - ) ( $ ) . i a . f , 

u,v) = jt 
J 0 J 0 

f2T 
(u fv) = / / uv sin Q&QáU? 

J0 

Then using the method of spherical harmonics, we determine the 
approximate solution 
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n k cz 
k=0 m=0 

v ł E E cчřVř"*•ř>yŕ>: 
from the equation 

(8) *_._-,_-. tnt . 

This system of equations together with the corresponding initial 
and boundary conditions can be written in the form 

Pvn 3[|]-_ 3 [fly Pg]y 
( 9 ) 7T + - T I T - 3 + "^y-2 + " ^ F ^ + **n -

-7T I Wn&V --"„ , 4JГ 
_ . 

( 1 0 ) v n | t - 0 - _>-.<*'*>> , 

(11) v n Є ^ ( з ) , ЄП 

where 
Jftfr) - { v n : (v n , ( п _ ^ + П у 7 +n_£ ) v n ) > 0 } 

n ,n ,n are the components of the outer normal n ; g, n , £ 
are operators which map a harmonic polynomial v onto another such 
polynomial without increasing its degree jj_f] » 

It is known that the system of equations of the method of sphe
rical harmonics may be written in another form which enables us to 
express the system in the form of a symmetric hyperbolic system in 
the sense of Friedrichs, namely 

^vn ^v- 2v_ ?vn 

(12) B -j? • ^ - ^ • A2-^S + A 3 _ H . ̂  = F n f 

(13) vn(0,F) = <£n , 

(14) Mvn(t,r) = 0 for r E P 

where v = { U> n , *W^ } > B is a positive definite matrix, 
A. are symmetric matrices [2] , M is a rectangular matrix satis
fying boundary conditions of the type of Vladimirov-Marsak. The boun
dary matrix A = n A, + n A + n

z
A3 h a s a constant rank on the 

boundary f1 • In virtue of dissipativity of the boundary conditions 
(11) it is possible to establish a priori estimates 

nax / / v„ 

t LL n 
max / / v„drdO) --M^ 

Ö-_ 
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max J J (V,n)v^dsdo/ ^ M4 

where U^ , M. are independent of the number of harmonics n • On 

the basis of the a priori estimates we can prove also the absolute 

continuity of v (t,r, ̂ o) with respect to t,r under the conditions 

(i)-(iii). 

Let u(t,r,^j) be a generalized solution of the problem (1) -

(3) which is absolutely continuous with respect to t,r and let 

vn(t,r,CO) be the corresponding generalized solution of the problem 

(9) - (11). Then the following theorem [4] is valid. 

Theorem 2. The sequence (v (t,r,^)} approximates u(t,r,/jj) 

with respect to the norm of the space C([O,T"] ; Lp(G*Q)). 

In order to prove Theorem 2 we introduce ML = u - v where r n n n 
u = f u • Then the Green formula 

(15) / f wj(t,rf£)drdw = J f wJ(Ofrf^)drdo5 -

~2\ I [\G*n-Jr /gnWnd |̂Wndtd?da' + 

+ 2 j l I (f-fn+Rn)Wndtdrd^ - / I / (Co ,n)W^dtdsda3 , 

ho lds f o r the d i f ference W with 

. 1 / ( n - m + 2 ) l o m - l . (n-m)lom+1 s 
+ 2 ( (n+m)l Sn+1 + t O T T S n + l > 

atfín) n 

+ (n>m+l)lcm
 c V n n + V ^ r l / (n-m+2) U - l 

(n+m)l 11+I O z J Z_/ L 2v (n+m)l n+1 
m=l 

^ —-*(m) 
^ (n-m) lom+1 x dVn 1, (n-m+2) Um 
* Tn+i5TTbn+l ; ~~dH ^ ( n + m ) l V l + 

~ ,^ (m) - ^(m) 
n-m)tcm+l » ^ n (n-m-t-l)l ^ n -, ^ 
n+m)J n+1 y ^ y (n+m). ^ z J / 

where % t ^ n a r e t h e c o e f f i c i e n t s of the representat ion of 
u a t the l a s t harmonics. 

We est imate (15) by 
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IIWJ? * W o + kTllwJI?^ + H*-V^I| 2 t- tf f I (»' W^-td-dO 
with 

|2 _ f f u ^ , -
IIVt = W n d r d c 0 • 

Jo/a 
In virtue of the properties of harmonic polynomials we obtain 

the inequality 
t 

/ J J { E ' ^ ) W n d t d ? d ^ -HU-UJc([0,TJ;L2)
t • 

Using this inequality, we conclude finally 

ll
u
n-

v
JI§([0,T];L

2
)^

C
l

(T)
{ll«

rad
 l

u
-
u
nHlc([0,T];L

2
)
 + 

+
 ll

u
-
u
nll§([o,T];L

2
)} 

which proves the theorem* 

3» Estimate of error 

Let us consider the stationary problem for the kinetic equation 

in the case of the plane geometry. Here the boundary value problem 

for the equations of the method of spherical harmonics in *2n+l " 

approximations assumes the form 

l>] Vr + ^v
n • "T

2
 [ V/'

 + f
n • 

'0 
J

P
2 8

+
l

(
/

) v
n

( 0
' /

) d
/

г
° » 

I
 P
2 s + l

(
/

) v
n

( H
' /

) d
/

=
 ° » »-0»l»-..»n ; 

where n-1 

[/]
 v
n - \YL ( 2

-
+ 1 )

/
P
k

(
/

) l
/k

 + \ n P
n-l

(
/

) (
/n • 

If u is the exact solution of the original problem, then W
n 

-* v - u satisfies the equation 

V 
" T * I

 v
n

d
/ -

f
n

( z
'

0 )
]
 + f

 "
f
n • 

(16) 
/ ГЏ » ** «-» 

1 
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The function W introduced above satisfies the boundary condi
tions 

(17) Wn(0f A') = v n(O f^) if ^ > 0 f 

(18) Wn(H, us) = vn(H, u) if ^<0 . 

Thus we have formulated a boundary value problem (16) - (18) 
with respect to W (z, JÛ ) • By virtue of the maximum principle [jf] 
this yields an estimate for W_ 

P (/(/) n 

|wn|<max{max lp^(6) t V > ^ ( f } l » ~ x IV 0'/^'' 

max | vn(H,^)|} 
where / T 

5 v n ^s T 
Rn(f) = f-fn ; Lvn = ^y^T ~ * vn " ~T ***/> • 

^-1 

4. The splitting method for equations of the method 

of spherical harmonics 

Let us now proceed to the problems of construction of the diffe
rence schemes for the solution of the problem (12) - (14). To this 
aim we divide the interval [OfT.] into m equal parts with the 
step f = T/m and replace the problem on the interval [m£f(m+l)Tj 
by a sequence of one-dimensional problems. The convergence of this 
method was studied in our former papers [_8J • Here we show some new 
approaches to the realisation of symmetric systems on each interme
diate step. We consider the one-dimensional problem 
(19) B ^ + A-|^ + Du = f, 

(20) u(mtrfx) = § > 

(21) J^u = 0 for x=0 f M2u = 0 for x=H . 

We introduce the spaces 
Jff {u : Mxu=0} , i > {v : M2v=o} , Jfr {w : Aw=o} . 

In virtue of the dissipativity of the boundary conditions (Aufu) = 
= 0, u € / + f (Avfv)^Of vE,yfl • Ttiis implies that the spaces Jf^ , 
Jl^ are orthogonal with respect to the metric [ufvj = (Aufv) • 
Let {u} f {v} f {w} form orthogonal systems of bases of the spaces 
^ + >u^l t jV0 9 respectively* 

Denote the matrix formed by these basis vectors by L = [ufv,w]« 
Then using the mapping u=LV we can rewrite the system (19) in the 
form 
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2v ^ л ^v 

where B = L*BL , ../t = L*AL is a diagonal matrix. The vector V 

may be written in the form V = (V*,V~,V°) with V'*",V"',V
0
 corres

ponding to the blocks u,v,w. 

The boundary conditions (21) are 

V* » 0 for x=0 , 

V" = 0 for x=H . 

After transforming the sy3tem into the canonical form it is not 

difficult to find stable difference schemes. 
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