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NUMERICAL IMPERFECTIONS NEAR A CRITICAL POINT 

Franco Brezzi - Pavia, Italy 

ABSTRACT - The behaviour of a finite dimensional approximation of a 

nonlinear problem near a critical point is analysed from the point 

of view of contact equivalence. 

0. The aim of this lecture is to present a short survey on the resul 

ts obtained by the author in some recent papers. Reference should be 

made to [l]-[4] for a more detailed treatment. We shall deal with the 

following framework; assume that we are given: 

(0.1) two Banach spaces, V,W 

(0.2) a C°° mapping G from Vx Rn(n>1) into W 

(0.3) a linear compact operator T from W to V 

and consider the nonlinear problem : 

(0.4) {find (u,X) 6Vx Rn such that 

u+TG(u,X)=0 . 

Assume moreover .that we are given a sequence Th of linear compact 

operators from W into V, such that 

(0.5) lim||T.-T|! =0; 
h-K) n JS(W,V) 

hence we may consider the "approximated problems": 

(0.6) { 
find (u,X)6 Vx Rn such that 

u+ThG(u,X)=0. 

Our aim is to study the behaviour of the set of solutions of (0.6) 

(if any) in a neighbourhood of a critical point (u ,X ) for (0.4). 

Remark. In the practical cases (finite element methods, spectral me­

thods and so on) the operators Th will have a finite dimensional ran 

ge V ; hence, on the computer, the solution of (0.6) will be sought 

in V.x Rn. However, from the theoretical point of view, it will be 

easier to look for solutions of (0.6), a priori, in the whole space 

Vx Rn. On the other hand our theory will apply as well to different 

cases, in which the range of Th is not finite dimensional: for instan 

ce we may assume that W is a compact subspace of V("dual space of V ) , 

that A is an isomorphism from V onto V1 and that T«A"X; if now A. is 

a sequence of isomorphisms from V onto V that G-convergea to A,we 

may set Tn=A^and (0.5) will be funfilled. 
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1 .. Let now (u . X ) be a solution of (0.4) and consider the Frechet 

derivative with respect to u of the mapping 

(1.1) F(u,X)=u+TG(u,X) 

at the point (u ,X ): 

(1.2) L"DuP°-DuF(uo ,Xo) . 

By definition LI«(V rV), If L is an isomorphism, the implicit Fun­

ction. theorem will ensure the existence of a unique mapping X-»»u(X) 

through (u ,X ) such that 

(1.3) u(X)+TG(u(X) ,X)=0 

identically in a neighbourhood of X . It is easy to see that, in this 

case, problem (0.6) shows a similar behaviour for h small enough. 

Setting, as in (1.1) 

(1.4) Fh(u,X)=u+ThG(u,X) 

one can also prove (see e.g.[2]) the optimal error bound 

(1.5) ||uh(X)-u(X)||v<c||.Fh(u(X),X)||v--c||(Th-T)G(u(X),X)||v 

uniformly in a neighbourhood of X independent of h. Obviously, in 

(1.5), (uh(x)rX) is the .solution of (0.6). 

Let us turn now to a more interesting case; for this, assume that 

L, defined in (1.2), has a finite dimensional kernel. For the sake 

of simplicity we assume 

(1.6) dim (ker(L))=1. 

We say then that F has a simple critical point at (u .A ). It is pro 

ven in [3] that, in such case, the classical Lyapunov-Schmidt decom­

position can be carried out on both F and Fh at the same time, giving 

rise to the reduced problems 

(1.7) f(x,A)=0 fCC°°( Rx Rn; R) 

and 

(1.8) fh(x,A)=0 fh«C~( Rx R
n; R). 

Moreover fh converges uniformly to f in a neighbourhood of the origin 

with all the derivatives, with no loss in the optimality of error 

bounds. See [3] for precise statements and details. From now on we 

shall assume that (1.7) and (1.8) are our original problems. 

Remark. The setting of (0.6) in Vx Rn instead of V^x Rn could seem 

unimportant at first sight; however it is crucial in order to carry 
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out the L-S decomposition for the two problems at the same time. 

2. Our setting, from now on, will be the following. We are given a 

mapping 

(2.1) f £CT( Rx Rn; R) 

and a sequence of mappings 

(2.2) f-tC0^ Rx Rn; R) 

n 

converging to f with all the derivatives in a neighbourhood of the 

origin . We assume that the origin is a simple critical point for f, 

in the sense that 

(2.3) f(0,0)=fx(0,0)=0 

and we look for the solutions of 

(2.4) f(x,X)=0 

and 

(2.5) fh(x,X)=0 

in a neighbourhood of the origin. 

We recall first the two basic concepts of "codimension" and of 

"contact equivalence" (see [6]) in the case n=1 (i.e. Xe R) . 

Definition 2.1. Let 

G={ germs of C°°( R2; R) }, G, .={germs of C°a( R;. R) }, ... 

let f £G and set 

Tf-^f+g.f^feG) 

Tf=Tf •{g(X)fx|g€G(x)}; 

if G/Tf has finite dimension we define 

codim f = dim (G/Tf); 

otherwise we say that f has infinite codimension. 

Definition 2.2. Let f,g be two germs in G. We say that f(kte*g(f is 

contact equivalent to g) if there exists T(x,x)€ G, X(x,X)€ G and 

A(X)€G(X) such that 

T(0,0)?-0, X(0,0)=0, A(0)=0, Ax(0)>0, Xx(0,0)>0 

and 

g(x,X)«T(x,X)f(X(x,X), A(X)).-

The following theorems are proved in [i] . 
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Theorem 2.1. If f has codimension 0 then there exists a neighbourhood 

U of the origin, and an h >0 such that for all h < hQ there exists a 

unique point (x ,A ) in U such that 

fh(x+x£,A+A£)
Cc:?-f(x,A). 

Remark. Here and in the following, when speaking of the codimension 

of a function, we mean the codimension of the corresponding germ. 

Theorem 2.2. Assume that f has codimension one, and let g(x,X,y) be 

a one-para 

such that; 

a one-parameter u n i v e r s a l un fo ld ing of f, t h a t i s a C°° mapping R3-+R 

g ( x , A , 0 ) = f ( x , A ) , 

G={a+cb | a € T f , b=g (x, X,0) , c e R} . 

Let g, (x,Ary) be a sequence of C00 functions converging to g, with 

all the derivatives, in a neighbourhood of the origin. Then there 

exists a neighbourhood of the origin U and an h >0 such that for all 

h<h there exists a unique point (x ,A ,y ) in U such that 

gh(x+x^, A+A^, yjj)
 C~e'f(x,A), 

gh(x+x ,A+A ,y+y ) is a universal unfolding of gh(x+xQ,A+A ,y ). 

Remark. In both cases (see pi) an estimate could be provided for the 
v. v. 

speed of convergence of the discrete critical point (x ,A ) to the 

origin. An estimate for ||& | can also be found. 

Remark. In the case of codimension one, in general, fh(x,*) does not 

have itself a critical point. Theorem 2.2 shows that, from one hand, 

a small perturbation of fh allows the recovery of the same type of 

criticality of f; from the other hand it shows that, for h small eno 

ugh, the behaviour of fh is similar to any universal unfolding of f 

for a suitable value of the perturbation parameter; finally it shows 

that, in some sense, the addition of a suitable perturbation parame­

ter produces a gh that matches perfectly the behaviour of g. 

Remark. In [i] a guess is done that the result of theorem 2.2 should 

hold in a more general case: roughly speaking, for a problem of codi 

mension k, the addition of k perturbation parameters should be neces 

sary and sufficient in order to recover the whole bifurcation diagram 
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in the discrete case; however this has not yet been proved at my know 

ledge. 

3. I will recall now some results obtained in [l] on a particular 

case of codimension 2. For this assume now that 

(3.1) f(x,X)=x3-xx 

and that the following two parameter universal unfolding is given 

(3.2) g(x,X,y,a)=x3-Xx+y+ax2. 

Assume furthermore that g, is sequence of C* mappings from Ru to 

R that converges to g in a neighbourhood of the origin with all the 

derivatives. The following result is proved in \ A \ . 

Theorem 3.1. There exists a neighbourhood U of the origin and an 

h >0 such that for all h<h there exists a unique point (x ,X ,y ,a ) 

in U such that: 

%{*+**,\+\*,V*,**)%*'f(x,\), 

gh(x+x^,X+X^,y+y^,a+a^) is a u.u. of <̂ (x+x£, X + X ^ y ^ ) 

g^x+x^X^y+y^a^^'x^y. 

Remark. The case 

(3.3) 

is often present, in the applications, as a true two-parameter pro­

blem (see e.g.[5]). Although there is no definition, yet, of codi­

mension in the case (n=2) of a two-parameter problem, theorem 3.1 

suggests, somehow, that (3.3) behaves as a problem of codimension 1, 

at least from our point of view. 
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