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OK A FIXED POINT INDEX METHOD FOR THE ANALYSIS OF THE ASYMPTO -

TIC BEHAVIOR AND BOUNDARY VALUE PROBLEMS OF PROCESS AND SEMIDY-

NAMICAL SYSTEMS 

A. F. Ize* 

Univeraidade de Sao Pauio , B r a z i l 

1. INTRODUCTION 

Wasiewaki principle [ 1 9} playa an important role in the stu-

dy of ordinary differential equations. Its applicability is large

ly due to the fact that in a finite dimenaional euclidean space, 

the unity sphere is not a retract of the closed unit ball* Since 

this is no longer true in infinite-dimensional Banach space the 

direct extension of WaSewski's principle to processes or aemidyna-

mical systems on infinite dimensional Banach spaces has a very li

mited applicability. 

Since in finite dimensional spscee the fact that the unity 

sphere is not a retract of the closed unit ball is equivalent to 

the fact that every continuous mapping of the unity closed convex 

ball has a fixed point, the main idea of this work is to develop 

a method based on fixed point index properties instead of retrac

tion properties. 

Our fixed point formulation, Theorem 2, is essentially equi

valent, in finite dimension, to Waiewaki Theorem. Although in fi

nite dimension, WaSewaki Theorem is no longer applicable, Theorem 

2 and also Theorem 3 are applicable and give deeper result9 since 

fixed point methods have proved to be very useful in the solution 

of differential equations either in finite or infinite dimensional 

spaces. After that we go further and generalize theorem 2 and 3 

using Leray-Schauder degree theory or the fixed point index theory 

for compact or condensing maps. These generalizations, theorems 4, 

5 and 6 are stronger even in finite dimension than WaSewski Theorem 

lft Gregu**. Xauadiff -14* 



After the appearence of WaSewski paper several papers arised 

applying Waiewski principle to the asymptotic behavior of ordinary 

differential equations, C. Olech £13] f V. Pliss 0&] » Miko-

lajska 0 0 , N. Onuchic f u l , A. F. Ize* [<f] and others. 

Kaplan, Lasota and Yorke £10*] applied Wa2ewski method to bounda

ry value problem and C. Conley £~3~1 also applied WaSewski method 

to a boundary value problem for a difusion equations in biology. 

Since our aproach uses WaSewski basic ideas in conection with de

gree theory it should give, even in finite dimensions much better 

results and can be applied also to boundary problems in Hilbert 

spaces. 

2. PROCESSES 

Definition 1. £2] Suppose X i s a Banach space R =-[bic,°) , 

u:R x X x R **X i s a given mapping and define U( ©•ft):X~J,>X 

for «" € R f t € R + by 

U ( C , t ) x =- u( e - f x f t ) . 

A process on X is a mapping u:R x X x R -^X satisfying 

the following properties 

(i) u is continuous , 

(ii) U(S"fO) * I (identity), 

(iii) U(*+sft)U(6- fs) =- U(6\s+t). 

A process is said to be an autonomous process or a semidyna

mical system if U(<T,t) is independent of 6" f that is f 

T(t) a U(Oft) f t £ 0 . Then T(t)x is continuous for (tfx) 

€ R+ x X . 

In a process u( S",xft) can be considered as the state of a 

system at time 6" + t if initially the state at time C was x. 

Processes arise from ordinary differential equations evolu

tion equations, retarded and neutral functional differential equa-
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tions and partial differential equations. 

Definition 2. Suppose u is a process on X • The trajecto

ry t?+( Ffx) through (C fx)€R x X is the set in R x X de

fined by 

^(S-.x) * {(«T+tf U( tr ,t)x | t<SR
+}. 

The orbit ^(G^x) through (S"fx) is the set in X defi

ned by 

p ( 6 * f x ) »{u(<T fx)x f t€R+J 

Definition 3.If u is a process on X then an integral of 

the process on R is a continuous function y:R—*X such that for 

any <F € R f 

*+(G*fy(G"))
 s / ( ^ + t f y(6-+t)) | t £ 0 } .An integral y is an 

intfcral through ( 6" ,x) € R x X if y( *) « x . 

We assume in the following that the integral through each 

(«"fx)eR x X is unique. 

We define 

£ - 1 (x) * (<r fy)£ R x XJ3t > 0 such that 

U(<* ,t)y » x . 

If P0 « (^,x) e R x X and z € y + ( * ,x) f we define 

t z » inf { t i o|u(C\t)x -- z) 

Q z ' ***** • U(cr,t£)x) 

Cp
0 • O - ' f r * " ^ U(cr f t )x |0 i t <XZ] 

[P0 t Q z l« i ( f l r + t , u ( r f t ) x | o £ t < X%} 
(P0 . O 1 ! ^ U ( 6 T f t ) x | 0 < t t f t a > 
(po » V f * * * ^ &(6\t)x)o<t <t,J 
Let i l be an open set of R x X f 60 an open set of JL f 

4) C & » CO j* 9S a n d ^ 0 J « 3 n ( i l - C 0 ) the boundary of CO 

with respect to H . We put: 
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S° » { P 0 * ( 6 " f x ) c S c j | 3 t > 0 e z € ^ ( ( T f x ) f with 

<Po • V * 0 a n d ( Po » < V n Z 3 « 0 

S « f Q € 3 o > / 3 P 0 « ( ^ f x ) € c o , com Q e V (<T,X) e 

f P , Q) cu>] 

The points, of S are called egress points, the points of S 
are called strict egress points. 

Given a point PQ * (*Tfx)€CO f if the trajectory X (tf~,x) 
of the process is contained in Co for every t > 0 f we say 
that the trajectory is asymptotic with respect to 6-> f if the 
trajectory is not asymptotic with respect to to then there is 
a t > 0 such that (^+tf U(C5" ,t)x) 6 3co # Taking 

t »{min t > 0 1 (tf+tf U(S",t)x) € 3cO^ 
po 

Q » (^+tp , u(e-ftp )x » C(PQ .CO) 
o o 

we have 

t>0 . « *> • 
The point C(PQ fC3) is called the consequent of PQ • 

Define G to be the set of all PQ -* (ff,x)<£CO such that 

there is C(PQ f O ) and C(PQ fco) € S* • 

Consider the mapping 

k: GUS*-» S* • 

K(PQ) * C(PQ fco) if P 0 £ ^ and K(PQ) * PQ if P Q6 S* . 

The proof of the following is standard, see for example f2l , 

rui . 
Lemma IjThe mapping K: GUS -* S i s continuous* 

Theoren 1 : (First form) Assume that there exist sets S coco 

and Z c w t i s f Z / 0 sat isfying the conditions: 

( i ) S • S (that i s , the points of S are egress 

points)* 
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(ii) Z is compact and convex . 

(iii) ZO S is a retract of S. 

Civ) There exists a continuous mapping 

4> :Z O S -*Z O S such that 4>(P) ̂  P for every 

P€ zns. 

Then there is at least one point P Q
S (6 ,,x)€ZnW 

such that the trajectory % (6",x) is contained in co , 

that is, the trajectory V ( °~,x) is asymptotic with respect 

to CO . 

Proof: Assume the Theorem is not true. Hence for every 

P € Z C\ OJ the trajectory through PQ is not 

asymptotic with respect to to , that is, there exists C(PQt ,CO). 

Since S = S* f C(PQ ,6J)£ S * . Then 

Z r\(o C Q . 

From Lemma 1 the mapping K is continuous. 

From condition (iii) there is a retraction. 

r:S-* ZOS 

The mapping 

R a r . K:Zn(o-^ZnS 

is continuous and takes PQ = (̂  ,x) into 

C(Pp ,(0) « (^*tQ , U(6" ,tQ)x)6 z n S • 

From condition (iv) the mapping <p takes C(PQ fCo) 

into S(C(P0 ,<*))) * C'(PQ fCJ) * C(PQ ,co) and then the composite 

mapping 

(Ь.вK: z-*z 

is continuous and never has a fixed point. This is in contradiction 

with Schauder fixed point theorem. Then the trajectory % (P ) is 

asymptotic with respect to GO and the theorem is proved* 
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Remark ]_• One simple situation in which condition (iv) is satis

fied is when Z A S is symmetric, that is, 

- Z O S C Z O S • The mapping S : Z n S - » z n s is defined by 

<j)(P) =- - P . 

Theorem 2: (Second form) Assume that there exist sets S--9«0 

and ZCU) V S , Z/- 0 , satisfying the conditions: 

(i) S * S*. 

(ii) Z is closed bounded convex • 

(iii) Z O S is a retract of S . 

(iv) There is a continuous mapping <t>:ZOS-*zr\S 

auch that Cj> (P) ¥ P for every P € Z n S . 

(v) U ia compact • 

Then there ia at least one point PQ « (6"*fx) t, Z H 

O) 8uch that the trajectory % ($"fx) is contained in «*-* f 

that is, the trajectory through PQ is asymptotic with respect 

to W . 

The proof follows as in Theorem 1 • Since U is compact the 

mapping K that takes PQ into C(PQ ,60) is compact* r is a 

retraction and then R • r.K:ZOCo *—=> Z D S is compact* The map

ping 4>*nK:P0 ~*C*(P0 ,6J) is also compact and never has a fixed 

point* This is in contradiction with Schauder fixed point Theorem 

since <|>.r.K:Z-*Z and Z is closed convex, bounded. 

Then the trajectory through PQ is asymptotic with respect 

to <0 and the theorem is proved. 

Theorem 2 can be extended by using the fixed point index theo

ry or Leray-Schauder degree in the following way* 

Theorem ^Assume that there exists sets Sj C S and ZC U) U S| , 

Z closed convex, Z ¥ 0 satisfying the conditions: 

(i) S « S*. 
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(ii) There exists a continuous mapping >̂ : S- —3>Sj s u c n 

that <.j)(P) / P for every P € S1 . 

(iii) U is compact. 

(iv) deg(I -<J>U, ZOoy ) / Q. 

Then there exists at least one point PQ « (6^,x) € Z n M 

such that either C(PQ) € S - S- or C(PQ) does not exist, that 

is, the trajectory % (tf ,PQ) is asymptotic with respect to o> « 

Proof: Assume that the theorem is not true* Then C(PQ) € Sj 

for every P € Z n CO and then Z O *0 C o . Then 

Z » (ZOS|)u Z n ^ ^ S u G • From Lemma 1 the map K is con

tinuous and the restriction of K to Z U S- that we note by 

K , is also continuous since U is compact the map K that ta

kes PQ into C(P ) is compact. The transformation <£>U is also 

compact and (J> U(P) J P for every P C Z U S • This implies that 

deg(I -<^U, Z 0 ( O ) « 0 what is a contradiction and the theorem 

is proved* 

A less general formulation of theorem 3 that is more similar 

to theorem 2 is the following* 

Theorem £: Assume that there exist sets S- c S and 

Z C w u S p Z / 0, Z closed convex satisfying the 

conditions: 

(i) S « S*. 

(ii) Z O S| is a retract of S.j , that is, there 

exists a retraction r:S.j -* Z O S| • 

(iii) U is compact • 

(iv) There exists a continuous map 4> :Z Sj —* Z n S. 

such that <£ (P) / P for every P t Z O S| . 

(v) deg(I - ^U, Znu) ) / 0. 

Then there exists at least one point 

P • ((T9x) e Z O U ) such that either C(P0) € S - S| or C(P0) 
o 
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does not exist. 

The proof is similar to theorem 2 and 3« Nussbaum £71-Q de

fined a fixed point index and consequently a degree for ft-set 

contradictions and condensing maps. 

Theorem £; Assume that there exist sets Sj C S and Z C ( A / U ŝ  f 

Z/£Jt Z closed convex satisfying the conditions: 

(i) S = S*. 

(ii) There exists a continuous map <£ :Sj -*> Sj such that 

<£ (P) t P for every P ̂  Sj -

(iii) <£> U is condensing . 

(iv) deg(I - <t>U, Z^"-> ) J o . 

Then there exists at least one point P 6 8 - S| such that 

either C(PQ) C S - Sj or C(PQ) does not exist, that is, the 

trajectory X (̂ ",x) through (6*,x) is contained in ^ . 
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