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ON A DEGENERATE PARABOLIC BOUNDARY VALUE PROBLEM 

Jozef Kačur 
Bratislava, Czechoslovakia 

A nonlinear degenerate parabolic boundary value problem is 

considered in the form 

3u N d 
(E) a(x) E a. (x,u,Vu) + aft(x,u,Vu) = f(x,t) 

3t i=l 3 X j

 X u • 

N on ftx(0, T ) * 0 where ft C R is a bounded domain and a(x)>0 
is a measurable function on ft. A corresponding Dirichlet boundary 

condition and initial condition u(x,0) « uQ(x) is assumed. 

Together with (E) a corresponding parabolic variational 
inequality is considered. The problems of the existence uniqueness 
of the solution in the corresponding functional spaces is solved. 
Two cases are considered: 

I, a(x) > 0 for a.e.x e ft 

II. a(x) = 0 in ft2 C ft (ft2 is an open subset in ft) 

and tf(x) > 0 a.e.in ft. = 5 - ft„ where the boundaries 
1 2 

9ft, dft., dft2 are Lipschitz continuous. 

The problem (E) and the corresponding variational inequality we 

set in an abstract form. 

Case !• Let X be reflexive B - space with its dual X 

with the corresponding norms II • IIx , II • II x*. The duality 
* 

between X and X we denote by < • , • > • 

Let Hj# H 2 be the real Hilbert spaces with the corresponding norms 

II • II ,, II • II 2» Suppose that [. , . ] is a continuous bilinear 

form between the elements of Hl and H satisfying 

I [u, v]l< llu|l2 II vll 1 for u e H2, v e H.̂  . 

We identify H., H 2 with their duals. A linear operator GcL(H.,H2> 
* 

is considered. Let A : X •* X be a monotone operator. We assume 
that X n H. is a nonempty B - space with the standard norm 
11 * " V H = j| * ,!X + " * Ml * M o r e o v e r w e assume that II ul^ =0 
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implies II u IL= 0 for u e VnH,. By I we denote the interval 
< 0, T >, T < • . 

Problem P.. Let uQ e XoH. and f e C(I, H2>. 

Find a u eLa(I,Xn H ^ n C(I,H1> such that u(0)= uQ 

du 
— e L (I, H.) and the identity 
dt * l 

du(t) 
(1) [ G , v J + < A u(t), v > = [ f(t), v] 

dt 

holds for every v e XnH and a.e.t e l . 

Problem P' Let K be a closed convex subset in XnH,, un e K 

and f e C (I, H2>. Find a u e L / I , K) n C(I, H1> such that 

du 
u(0) = uQ, -TT e Lw(I, H.) and the inequality 

» d u ( t ) , - „ 
(l'> [ G , v - u(t)] + < A u(t), v - u(t)> S [f(t),v-u(t)] 

dt 
holds for all v e K and a.e.t e 1. 

The identity (1) can be interpreted as the corresponding operator 
equation in X* + H2« When Xn H, is a dense set in X and H. 
then the corresponding operator equation can be interpreted in H2« 
Remark. As an application for the problem (E) we set H,=L!>(n,a), 

—l —1 

H2 = L2(n,a > (weighted spaces with respect to a, a , respecti
v e l y ) . We put [u, v] = / U v dx, G u = a(x)u and A : X+ X* 

ft 
we define by the form 

N 3v 
< A u , v > = / { E a, (x,u,v u) + v aft(x,u,v u) }dx 

a i=l ax±
 x u 

for u, v e X 5 8^ (n) 
P 

under the assumption la± (x, 0\< C(l + Ul p - 1) (p>l) 

for i=0,l^..,N. In general case H. is not necessarily separable 

and XnH, is not dense set in X and H,. 

When / a(x)|x1l
 x«..lx||l dx < • for all 0 * ij < • , 

1 = 1, •••, N, then the space H. is separable and X n H 1 is a dense 
set in X and H,. 
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The problems P, and P' we solve under the following assumti-

ons: 

(2) A : X •+ X* is bounded and demicontinuous; 

(3) < Au - Av, u - v > *- 0 for u, v e X* 

(4) f e C(I,H ) wi th Var ( f ,H- ) < • , 
2 I * 

m 
where Var ( f ,H 0 ) = sup Z II f ( t . ) - f ( t . . ) I U and { t , } m 

I 2 {tj^l i i - 1 2 i ° 

Is a finite division of I. 

(5) ( <Au, u> + ©-. II u II2 ) / II u llx - • for II ullx + ~ , 

for suitable at 2 0. 

In the case of the problem P' we replace (5) by the assumption 

(5') 3 vo e K : K A u' u " vo > / Wx "* " for Cu3 "•" " 
where [u] is a seminorm in X satisfying : 3. 3 > 0 such that 

[u]x + B II u llj > C II u ||x for ucXnHj. 

We assume 

(6) [G ur v] * II u II j II v II x and [G U, U] = Hull2. 

Theorem 1. 

i/ Let u0 e X H± and let (2) - (6) be satisfied. If 

(7) sup |< A uft, v >| < • 
II v\\1s 1, v e XnH x

 u 

holds then there exists the unique solution of the 

problem P.. 

11/ Let uQ e K and let (2) - (7) be satisfied. 

Then there exists the unique solution of the problem P'. 

The method of the proof is based on Rothes method /method of 

lines/. Let UjClsl, ..., n) be corresponding problems 

(8) [G u, vj + h < Au,v> s h [ f(t±), v] - [G U 1 - 1 # V] 

(8') ([G u, v - u] + h <Au,v-u> -fc h [f(t±),U-V]-[G U ± - 1 , V - U ] ) 

T 
where h = — , t.. -- jh (j * 1, ...,n). By means of u, (i»lf ...,n) 

n J x 

we construct the function 
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u
n
(t) = u

j-
.

1
 + h""

1
(t-t

j-1
)(u

j
 - u

j - x
) , t

j-;i
< t < t

j f 

j= 1, ..., n. 

On the base of (8) ((8')) using (3) - (7) we obtain (similarly as 

in [2-4]) the apriori estimates 

du (t) 

I I — ~ II, < C , II u ( t ) I I v „ di C (C i s independen t 

d t
 1 n Xn H 

1
 on t and n) 

which allows us to take limit for n+ « in the approximate identity du(t) 
(9) [G

 n
 , vl + < Au (t), v > = < f (t), v > 
dt

 n n 

which we obtain irom (7) where u (t)= u. for t. , < t й t. , 

ű (0) = u Q ІS the step function. Analogously we construct f (t). 

Similarly we proceed in (8'). 

Theorem 2. 

Let (2-7) be satisfied and f: I -v H
2
 is Lipschitz continuous, 

i.e., II f (t) - f(ť)ll <. C It - ť l . 

Then the estimate holds 

и« n (t ) - u ( t ) n 2

c ( I f H i > <£• 

where u(t) is the solution of the problem P.(P'). 

The case II. To give an abstract formulation corresponding to 

this case we follow the concept of [l]• 

Let A, G, H., H2 and X be as in the case I. In the case II. they 

correspond to the subset ß-. Let Y be a reflexive space with its 

dual Y* and duality <., .>ft. We consider a demicontinuous, coer-

cive and strongly monotone operator B : Y-* Y* satisfying 

(10) < B u - B v , u - v >
л
 >.C||u- V||P (p > 1) 

(11) < B y, y >* / Ц y||
ү
 -*- « for II yll

y
 -* «• 

(Y and B correspond to the subset П
2
) . We define Cartesian pro-

duct W = X л H j X Y with the standard norm. Let T : W -* W* be 

the operator defined by the form 

(T u, v) = < A u
1 #
 v^> + < B u

2
, v^ >

ft 

for u = {u
1#
 u

2
>, v = { vľ, v2> є W. 

We denote by (f,v) = [f-̂ rV̂ ] + < f
2
, v

2
 >

л
 for f̂  є H^, f̂  є Y*. 

Let V be a (suitable) nonempty subspace of W. 
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Problem P 2. Let f± e C (I, H 2 ) , f 2 e C (I, Y * ) , u Qe X n H ^ To 

look for u e L w(I, V) (u(t) = . { u ^ t ) , u 2(t)}) such that 

du 
— - e L ( I , H . ) , u . ( 0 ) = un and the i d e n t i t y 
d t 1 1 0 

d u , ( t ) 
[G — , v ] + CT u ( t ) , v ) = ( f ( t ) , v ) for a l l v e V. 

dt L 

Analogously (as i n the case I ) we de f ine problem P' correspon 
ding t o the v a r i a t i o n a l i n e q u a l i t y . 

Example. Cons idering problem (E) under the growth assumpt ion 

l a ± ( x , £)l < C(l + U I P " X ) ( i = 0 , 1 , . . . , N * p > 1/ we s e t ! 

H l = L 2 ( f l l ' a ) ' H2 = L 2 ( J V a " 1 ) r 

X = {v e W r (0 . ) :v=0 on 30 n 30. } p i 1 

Y = {v e Wp(02):v=0 on 30 n 30 2 } 
N 3v. 

< Au . , v > = / { Z a, ( x , u , Vu ) + a n ( x , u ,Vu - )v } dx 
1 1 Ql i s l 1 L 3 x i i i i 

< Bu 2, v 2 >* = jf {z a^ ( X f U 2 # V U 2 ) — ? + a o ( X f U 2 f V u 2 ) v 2 } dx 
2 i-> 1 3x. 

The elements u = {u,, u2> e W we represent as a function on 0 

such that u =u. on 0- and u = u 0 on 0 o . We define 
oi *• x z t 

V = W* (0) f\ L 2 ( 0 1 , a ) . 

Theorem3 . 

Let (2) - (7),(10)jCll) be satisfied. If Var (f-,H,,) < » , 
I x * 

II f 2(t) - f 2(t')ll Y* < C It - t'I (t,tr e I) holds then there exists 

the unique solution of the problem P 2. 

Similar result can be obtained for the problem P' correspon

ding to the variational inequality. 
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