EQUADIFF 5

Jozef Kačur

On a degenerate parabolic boundary value problem

In: Michal Greguš (ed.): Equadiff 5, Proceedings of the Fifth Czechoslovak Conference on Differential Equations and Their Applications held in Bratislava, August 24-28, 1981. BSB B.G. Teubner Verlagsgesellschaft, Leipzig, 1982. Teubner-Texte ur Mathematik, Bd. 47. pp. 169--173.

Persistent URL: http://dml.cz/dmlcz/702283

Terms of use:

© BSB B.G. Teubner Verlagsgesellschaft, 1982

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

Jozef Kačur
Bratislava, Czechoslovakia

A nonlinear degenerate parabolic boundary value problem is considered in the form

$$
\begin{equation*}
\alpha(x) \frac{\partial u}{\partial t}-\sum_{i=1}^{N} \frac{\partial}{\partial x_{j}} a_{i}(x, u, \nabla u)+a_{0}\left(x, u, \nabla_{Y}\right)=f(x, t) \tag{E}
\end{equation*}
$$

on $\Omega x(0, T) \geq 0$ where $\Omega \subset R^{N}$ is a bounded domain and $\alpha(x) \geq 0$ is a measurable function on Ω. A corresponding Dirichlet boundary condition and initial condition $u(x, 0)=u_{0}(x)$ is assumed.

Together with (E) a corresponding parabolic variational inequality is considered. The problems of the existence uniqueness of the solution in the corresponding functional spaces is solved. Two cases are considered:
I. $\alpha(x)>0$ for a.e.x $\varepsilon \Omega$
II. $\alpha(x)=0$ in $\Omega_{2}<\Omega\left(\Omega_{2}\right.$ is an open subset in $\left.\Omega\right)$ and $\alpha(x)>0$ a.e.in $\Omega_{1}=\bar{\Omega}-\Omega_{2}$ where the boundaries $\partial \Omega, \partial \Omega_{1}, \partial \Omega_{2}$ are Lipschitz continuous.

The problem (E) and the corresponding variational inequality we set in an abstract form.

Case $I_{\text {. }}$ Let X be reflexive B - space with its dual X * with the corresponding norms $\|$: $\|_{X}$, \|. $\| x$. The duality between x^{*} and x we denote by <., .>.
Let H_{1}, H_{2} be the real Hilbert spaces with the corresponding norms II. $\|_{1}$. $\|$. $\|_{2^{*}}$ Suppose that $[$. .] is a continuous bilinear form between the elements of H_{1} and H_{2} satisfying

$$
\mid[u, v] \leq \leq\|u\|_{2}\|v\|_{1} \quad \text { for } u \varepsilon H_{2}, v \in H_{1}
$$

We identify H_{1}, H_{2} with their duals. A linear.operator $G \varepsilon L\left(H_{1}, H_{2}\right.$) is considered. Let $A: X \rightarrow X^{*}$ be a monotone operator. We assume that $X \cap H_{1}$ is a nonempty $B{ }^{\prime}$ - space with the standard norm $\|\cdot\| V_{\mathrm{VH}_{1}}=\|\cdot\|\left\|_{\mathrm{X}}+\right\| \cdot \|_{1}$. Moreover we assume that $\|u\|_{1}=0$
implies $\|u\|_{x}=0$ for $u \varepsilon V \cap H_{1}$. By I we denote the interval $<0, T>, T<\infty$.

Problem P_{1}. Let $u_{0} \in X \cap H_{1}$ and $f \in C\left(I, H_{2}\right)$.
Find a $u \in L_{\infty}\left(I, X \cap H_{1}\right) \cap C\left(I, H_{1}\right)$ such that $u(0)=u_{0}$
du
$\frac{d}{d t} \varepsilon L_{\infty}\left(I, H_{1}\right)$ and the identity
(1) $\quad\left[G \frac{d u(t)}{d t}, v\right]+\langle A u(t), v\rangle=[f(t), v]$
holds for every $v \varepsilon X_{\cap} H_{1}$ and a.e.t εI.
Problem P_{1}^{\prime}. Let K be a closed convex subset in $X \cap H_{1}, u_{0} \varepsilon K$ and $f \in C\left(I, H_{2}\right)$. Find a $u \in L_{\infty}(I, K) \cap C\left(I, H_{1}\right)$ such that $u(0)=u_{0}, \frac{d u}{d t} \varepsilon L_{\infty}\left(I_{1} H_{1}\right)$ and the inequality
(1') $\left[G \frac{d u(t)}{d t}, v-u(t)\right]+\langle A u(t), v-u(t)\rangle \dot{X}[f(t), v-u(t)]$
holds for all $v \in K$ and a.e.t $\varepsilon 1$.
The identity (1) can be interpreted as the corresponding operator equation in $X^{*}+H_{2}$. When $X_{\cap} H_{1}$ is a dense set in X and H_{1} then the corresponding operator equation can be interpreted in \mathbf{H}_{2}. Remark. As an application for the problem (E) we set $H_{1}=L_{2}(\Omega, \alpha)$, $H_{2}=L_{2}\left(\Omega, \alpha^{-1}\right.$) (weighted spaces with respect to α, α^{-1}, respectively). We put $[u, v]=\int_{\Omega} u v d x, G u=\alpha(x) u$ and $A: X+X^{*}$ we define by the form
$\langle A u, v\rangle=\int_{\Omega}\left\{\sum_{i=1}^{N} \frac{\partial v}{\partial x_{i}} a_{i}(x, u, \nabla u)+v a_{0}(x, u, \nabla u)\right\} d x$
for $u, v \in X \equiv$ in $_{p}^{1}(\Omega)$
under the assumption $\left|a_{i}(x, \xi)\right| \leq c\left(1+|\xi|^{p-1}\right.$) (p>1)
for $1=0,1 \ldots \ldots$, . In general case H_{1} is not necessarily separable and $X \cap H_{1}$ is not dense set in X and H_{1}.

When

$$
\int_{\Omega} a(x)\left|x_{1}\right|^{1_{1}} \ldots\left|x_{N}\right|^{i_{N}} d x<\infty \text { for all } 0 \leq i_{1}<\ldots
$$ $l=1, \ldots, N$, then the space H_{1} is separable and $X \cap_{H_{1}}$ is a dense set in X and H_{1}.

The problems P_{1} and P_{1}^{\prime} we solve under the following assumti. ons:
(2)
(3)

$$
\begin{align*}
& A: X \rightarrow X^{*} \text { is bounded and demicontinuous; } \\
& <A u-A v, u-v>20 \quad \text { for } u, v \varepsilon X_{;} \\
& f \in C\left(I, H_{2}\right) \text { with } \operatorname{Var}\left(f, H_{2}\right)<\infty, \tag{4}
\end{align*}
$$

where $\operatorname{Var}_{I}\left(f, H_{2}\right)=\sup _{\left\{t_{i}\right\}_{0}^{m}}^{m}\left\|f\left(t_{i=1}^{m}\right)-f\left(t_{i-1}\right)\right\|_{2} \quad$ and $\left\{t_{i}\right\}_{0}^{m}$
is a finite division of I.
$\left(\left\langle A u_{\mathrm{p}} u\right\rangle+\alpha\|u\|_{1}^{2}\right) /\|u\|_{x} \rightarrow \infty$ for $\|u\|_{x} \rightarrow \infty$, for suitable $\alpha \geq 0$.

In the case of the problem p_{i}^{\prime} we replace (5) by the assumption
(5')
$\exists v_{0} \in K:\left\langle A u_{1} u-v_{0}\right\rangle /[u]_{X} \rightarrow \infty$ for $[u] \rightarrow \infty$
where [u] is a seminorm in x satisfying : $1 \beta>0$ such that
$[u]_{X}+\beta\|u\|_{1} \geq C\|u\|_{X}$ for $u \in X \cap H_{1}$.
We assume
$\left[\begin{array}{lll}G & u_{p} & v\end{array}\right]\|\cdot u\|_{1}\|v\|_{1}$ and $[G u, u]=\|u\|_{1}^{2}$.

Theorem 1.

i/ Let $u_{0} \in X H_{1}$ and let (2) - (6) be satisfied. If
(7) $\sup _{\|v\|_{1} \leq 1, \quad v \in X \cap H_{1}} \quad 1<A u_{0}, v>1<\infty$ holds then there exists the unique solution of the problem P_{1}.
ii/ Let $u_{0} \in K$ and let (2) - (7) be satisfied.
Then there exists the unique solution of the problem P_{1}^{\prime}.
The method of the proof is based on Rothes method /method of lines/. Let $u_{i}(i=1, \ldots ., n)$ be corresponding problems
(8) $\quad[G u, v]+h\left\langle A u_{i} v\right\rangle=h\left[f\left(t_{i}\right), v\right]-\left[G u_{i-1}, v\right]$
 where $h=\frac{T}{n}, t_{j}=j h(j=1, \ldots, n)$. By means of $u_{i}(i=1, \ldots, n)$ we construct the function

$$
\begin{aligned}
& u_{n}(t)=u_{j-1}+h^{-1}\left(t-t_{j-1}\right)\left(u_{j}-u_{j-1}\right), t_{j-1} \leq t \leq t_{j} \\
& j=1, \ldots, n .
\end{aligned}
$$

On the base of (8) (($\left.8^{\prime}\right)$) using (3) - (7) we obtain (similarly as in [2-4]) the apriori estimates

$$
\left\|\frac{d u_{n}(t)}{d t}\right\|_{1} \leq C,\left\|u_{n}(t)\right\|_{X \cap H_{1}} \leq C \quad(C \text { is independent } \quad \text { on } t \text { and } n)
$$

which allows us to take limit for $n \rightarrow \infty$ in the approximate identity

$$
\begin{equation*}
\left[G \frac{d u_{n}(t)}{d t}, v\right]+\left\langle A \bar{u}_{n}(t), v\right\rangle=\left\langle f_{n}(t), v\right\rangle \tag{9}
\end{equation*}
$$

which we obtain trom (7) where $\bar{u}_{n}(t)=u_{j}$ for $t_{j-1}<t \leq t_{j}$, $\bar{u}_{n}(0)=u_{0}$ is the step function. Analogously we construct $\bar{f}_{n}(t)$. Similarly we proceed in (8^{\prime}).

Theorem 2.
Let (2-7) be satisfied and $f: I \rightarrow H_{2}$ is Lipschitz continuous, i.e., $\left\|f(t)-f\left(t^{\prime}\right)\right\| \leq C \mid t-t^{\prime} \|$.

Then the estimate holds

$$
\left\|u_{n}(t)-u(t)\right\|_{C\left(I, H_{1}\right)}^{2} \leq \frac{C}{n}
$$

where $u(t)$ is the solution of the problem $P_{1}^{\prime}\left(P_{1}^{\prime}\right)$.
The case II. To give an abstract formulation corresponding to this case we follow the concept of [1].
Let A, G, H_{1}, H_{2} and X be as in the case I. In the case II. they correspond to the subset Ω_{1}. Let X be a reflexive space with its dual Y^{*} and duality <., .>*. We consider a demicontinuous, coercive and strongly monotone operator $B: Y \rightarrow Y^{*}$ satisfying

$$
\begin{align*}
& <B u-B v, u-v>_{*} \geq C\|u-v\|_{Y}^{p} \quad(p>1) \tag{10}\\
& <B y, y>_{*} /\|y\|_{Y} \rightarrow \infty \text { for }\|y\|_{Y} \rightarrow \infty \tag{11}
\end{align*}
$$

(Y and B.correspond to the subset Ω_{2}). We define Cartesian product $W=X_{\cap} H_{1} X Y$ with the standard norm. Let $T: W \rightarrow W^{*}$ be the operator defined by the form

$$
\begin{aligned}
& (T u, v)=\left\langle A u_{1}, v_{1}\right\rangle+\left\langle B u_{2}, v_{2}\right\rangle_{*} \\
& \text { for } u=\left\{u_{1}, u_{2}\right\}, v=\left\{v_{1}, v_{2}\right\} \varepsilon W .
\end{aligned}
$$

We denote by (f, v) $=\left[f_{1}, v_{1}\right]+\left\langle f_{2}, v_{2}\right\rangle_{*}$ for $f_{1} \varepsilon H_{2}, f_{2} \varepsilon Y^{*}$. Let v be a (suitable) nonempty subspace of W.

Problem P_{2}. Let $\mathrm{f}_{1} \in \mathrm{C}\left(\mathrm{I}, \mathrm{H}_{2}\right), \mathrm{f}_{2} \in \mathrm{C}\left(\mathrm{I}, \mathrm{Y}^{*}\right), \mathrm{u}_{0} \in \mathrm{X} \cap \mathrm{H}_{1}$. To look for $u \in L_{\infty}(I, V)\left(u(t)=\left\{u_{1}(t), u_{2}(t)\right\}\right)$ such that

$$
\begin{aligned}
& \frac{d u_{1}}{d t} \varepsilon L_{\infty}\left(I, H_{1}\right), u_{1}(0)=u_{0} \text { and the identity } \\
& {\left[G \frac{d u_{1}(t)}{d t}, v_{1}\right]+T(u(t), v)=(f(t), v) \text { for all } v \varepsilon V}
\end{aligned}
$$

Analogously (as in the case I) we define problem P_{2}^{\prime} corresponding to the variational inequality.

Example. Considering problem (E) under the growth assumption

$$
\begin{aligned}
& \left|a_{i}(x, \xi)\right| \leq C\left(1+|\xi|^{p-1}\right) \quad(i=0,1, \ldots, N ; \quad p>1 \text {, we set: } \\
& H_{1}=L_{2}\left(\Omega_{1}, \alpha\right), \quad H_{2}=L_{2}\left(\Omega_{1}, \alpha^{-1}\right), \\
& X=\left\{v \varepsilon W_{p}^{l}\left(\Omega_{1}\right): v=0 \text { on } \partial \Omega \cap \partial \Omega_{1}\right\} \\
& y=\left\{v \in W_{p}^{1}\left(\Omega_{2}\right): v=0 \text { on } \partial \Omega \cap \partial \Omega_{2}\right\} \\
& \left\langle A u_{1}, v_{1}\right\rangle=\int_{\Omega_{1}}\left\{\sum_{i=1}^{N} a_{i}\left(x, u_{1}, \nabla u_{1}\right) \frac{\partial v_{1}}{\partial x_{i}}+a_{0}\left(x, u_{1}, \nabla u_{1}\right) \dot{v}_{1}\right\} d x \\
& <B u_{2}, v_{2}>_{*}=\int_{\Omega_{2}}\left\{\sum_{i=1}^{N} a_{1}\left(x, u_{2}, \nabla u_{2}\right) \frac{\partial v_{2}}{\partial x_{i}}+a_{0}\left(x, u_{2}, \nabla u_{2}\right) v_{2}\right\} d x
\end{aligned}
$$

The elements $u=\left\{u_{1}, u_{2}\right\} \varepsilon W$ we represent as a function on Ω such that $u=u_{1}$ on Ω_{1} and $u=u_{2}$ on Ω_{2}. We define $V \equiv \mathrm{~W}_{\mathrm{p}}^{1}(\Omega) \cap \mathrm{L}_{2}^{1}\left(\Omega_{1}, \alpha\right)$.

Theorem 3 .-
Let (2) - (7), (10) (11) be satisfied. If $\operatorname{Var}\left(\mathrm{f}_{1}, \mathrm{H}_{2}\right)<\infty$, $\left\|f_{2}(t)-f_{2}\left(t^{\prime}\right)\right\|_{Y^{*}} \leq C\left|t-t^{\prime}\right|\left(t, t^{\prime} \varepsilon I\right)$ holds then there exists the unique solution of the problem P_{2}.

Similar result can be obtained for the problem P_{2}^{\prime} corresponding to the variational inequality.

REFERENCES
[1] Zlámal,M.: Finite element solution of quasistationary nonlinear magnetic field, to appear.
[2] Kačur,J.: Application of Rothés method to nonlinear evolution equations. Mat.Cas. 25,1975,63-81.
[3] Kačur,J.: Method of Rothe and nonlinear parabolic boundary value problems of arbitrary order. Czech. Mat.J., V. 28 (103), 1978,507-524.
[4] Kačur,J.: Bock,I.: Application of Rothes method to parabolic variational inequalities. To appear.

