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ON A NONLINEAR PERTURBATION OP A SELP-ADJOINT 

BOUNDARY VALUE PROBLEM 

Valter Seda 
Bratislava, Czechoslovakia 

The aim of this paper is to give a uniqueness and existence 
results for a nonlinear perturbation of a self-adjoint boundary va­
lue problem which generalizes and strengthens some theorems proved 
by S. Pucik and A. Kufner in [2, pp. 199, 202, 203] , M. §veo in 
[5f P* 174] and completes the results obtained by J. D. Sohuur in 
[3, p. 23] and by J. R. Ward, Jr. in [8, p. 239]. 

Preliminaries. Let n - 2 be a natural number, a < b be real 
numbers. Let the functions p. € Q*n"^'([af b ] ) ( j « 1 , 2,...,n) 
and the function f : [a, b] x R -» R locally satisfy Caratheodory 
conditions. All functions throughout the paper are supposed to be 
real-valued. Let the boundary conditions 

B±(x) - i ( Mi;J x
(3-1)(a) + N±;) x

(3-1>(b) ) ( i - 1,2 

with M.J., N.J. 6 R ( i, j - 1, 2,..., n ) be linearly independent. 

Denote L(x) - x ( n ) + TT P;)(t) x
( n" 3 ) ( x £ C(n)(La, "*>]) )• 

If the problem 

(1) L(x) » ^ x 
(2) B1(x) « 0 ( i - 1, 2,..., n ) 

is self-adjoint ( [1, p. 189] ), i. e. fb L(u) v dt » Cb u L(v)dt 
/ \ Ja Ja 

for all u, v € Cvn'([a, b]) satisfying (2), then there exists an 
orthonormal basis for L2([a, bj) made up of eigenfunctions y± of 
(1), (2) and let 7\^ ( i « 0, 1, 2, ... ) be the corresponding 
eigenvalues of (1), (2). We have thatlA±l-*co ae i-* oo m Denote 
the inner product in L2([a, b]) by ( • , • ). 

Theorem 1 is a consequence of Theorem 2 in [4, p. 439-440]. 
It shows the role of the eigenvalues ^ of (1), (2) in the ques­
tion of existence of a solution to the nonlinear problem (3), (4). 

Theorem 1. Let the following assumptions be satisfied : 
(H1) The problem (1), (2) is self-adjoint. 
(H2) f is continuous in [a, b] x R. 
(H3) There exist real numbers p < q such that 

p 6 lim inf f (t, x)/x * lim sup f (t, x)/x * q 
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as i xj-->oc uniformly for t e (_a, bj and such that /\±<j. [p,qj 
( i - 0, 1, 2 , . . . ) . 

Then the problem 
(3) L(x) « f ( t , x) 
(4) B i(x) - C± ( i - 1, 2 , . . . , n ) 

has at least one solution for each C.e R ( i =« 1, 2f..., n ). 
Proof. We can write f(tf x) » h(tf x).x + g(tf x) (a £ t « 

bf xe R) where 
,p if f(tfx)/x £ p, 

h(t, x) »j f (t,x)/x if p £ f (tfx)/x -2 q for a * t - b, 
Iq if q £ f(t,x)/x ixi i 1, 

h(tf x) « h(tf -1) +{Lh(tf 1) - h(tf -1)J/2}(x + 1) (a 2 t £ bf 
|x| « 1 ) and g(tf x) « f(tf x) - h(tf x) .x (a • t * b, x e R )• 
g and h satisfy the assumptions of Theorem 2 in [4, p. 439-440J. 
Hence, by this theorem, there exists a solution of the problem (3), 
(2). A solution u of the problem (3), (4) can be obtained in the 
way suggested in [8f p. 238j. If c is not in the spectrum of (1)f 
(2), then the problem L(x) » ex, (4) has a unique solution w. Let 
f(t, x) - f(tf x+w(t)) - cw(t) (a » t « bf x € R). Then f satis­
fies (H2), (H3) and hence there exists a solution v of the problem 
L(x) - f(tf x) f (2). Then u « v + w is a solution to (3), (4). 

In many boundary value problems the set of all eigenvalues 
is bounded from below ( from above ). Then the following unique­
ness theorem is true. 

Theorem 2. Suppose that besides the assumption (H1) the fol­
lowing assumptions be fulfilled: 

(H4) All eigenvalues of (1), (2) are greater or equal to the 
eigenvalue ^ 0 ( are smaller or equal to the eigenvalue 

(H5) The function f (tf x) - ̂ Q x is decreasing ( increasing ) 
in x 6 R for each te [a, bj. 

(H6) f is locally majorized by L2 functions. 
Then the problem (3)f (4) has at most one solution for each G±€ R 
( i » 1f 2,..., n ) . 

Proof. Without loss of generality we may assume that A Q »0, 
since if we let L1 (x) - L(x) - \ x, g(tf x) - f (t, x) - ̂  xf then 
(3) is equivalent to L1(x) « g(tf x) and all of our hypotheses are 
satisfied by the pair L-, g with A 0 • 0. Further only the case A ±& 
0 and hence f (tf . ) is decreasing will be considered. Let there 
exist two solutions x1§ x 2 of (3), (4). Then y » x 2 - x.. satisfies 
(2) as well as the equation L(y) « h(t, y) where h(tf y) - f [t, 
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x.j(t) + y] - f[tf x.j(t)]. h enjoys properties (H5) and (H6) of the 
function f. Moreover h(tf y)y < 0 ( a » t « b # y f O ) . Hence 

(5) (L(y)f y) - f
b L(y)(t)y(t)dt - fb h[tf y(t)]y(t)dt < 0. 
a a 2 

On the other hand, since |y. 1 forms an orthonormal basis in L ([af 

b])f y » J J ) (y, V±)Y± and^as L(y)€ L2( [a, b])f L(y) - .§> (L(y)f 
yi)yi " S ) (y» L(yi,)yi^T i?0 \(y' yi)yi- ttUB 

(6) (L(y)f y) - g , 7±(j9 y ± ) 2 2 0 
which contradicts (5)• 

Remarks. 1. Hypotheses (H4)» (H5) can be replaced by the 
following ones: 

(H4) All eigenvalues of (1)f (2) are positive ( negative )• 
(H5') The function f (t, • ) is nonincreasing ( nondecreasing ) 

in x € R for each t 6 [af b] • 
2. Consider the differential operator M which is defined on 

D(M) «{x € C*n)([af b]) : x satisfies (2) \ by M(x) - L(x). The 
problem (1)f (2) is self-adjoint iff M is symmetric. By (6) M is 
positively definite in D(M) iff all eigenvalues of (1)f (2) are 
positive. 

Under the assumption (H4) the existence of a solution to (3)» 
(4) will be proved* The proof can be based either on Hammer stein's 
theorem ([6f p. 266]) or on Vajnberg's theorem ([7f p» 275]) or on 
Ward's results [8]. J. R. Ward, Jr. has used his own results to de­
rive an existence theorem ([8, p. 239]) which is very similar to 
our next theorem. Prom the mentioned results Hammer stein's theorem 
is the most elementary and its proof contains constructive elements 
which can be used in calculating approximative solutions to the 
problem (3), (4). 

flfrTTynergtein B theorem. Let the following assumptions holdt 
1. The function G £ C([af b] x[af b]) and it is symmetric, i.e. 

G(tf s) - G(sf t) in [af b]x[af b]. 
2. All eigenvalues 6°± Of the function G, i.e. the numbers for 

which there exists a nontrlvial solution z4 ( the correspond 
ding eigenfunction of G ) of the equation zi(t) « ̂  I G(tf 
s)zi (s)ds can be written In a form of a nondecreasing sequen­
ce ("Q £ fa ».••«* ̂  *••• tending to oo ( of a nonincreasing 
sequence ̂ Q * ̂  *•••* ^ 2... tending to -oo ). 

3 . W 6 C([af b]). 
4# f 6 C([af bJ x R ) and there exist such t> 0f C € R that the 

function F given by the relation 
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<7) F(t , x) - ^ x f [t , w(t) + ujdu ( ( t , x) t [ 8 , b J x H ) 

f u l f i l s ( V 

(8) F(t, x) ts ('3- - i- ) x 2 + C 

( ?(t, x) i ( -£ + fc ) x 2 + C ) 
in [a, b] x R. 

Then there exists a solution x 6 C(|a, b]) of the integral equation 
(9) x(t) - w(t) + (b G(t, s) f[s, x(s)Jds. 

^a 
RflflflTKff t 1 • The lemma has been proved under the assumptions 

that all (*~'± > 0 and w(t) • 0. If the latter assumption remains va-
lidf then the proof is true also in the case when finitely many ei­
genvalues <y*Qt •••» At; are negative. The second part of the theorem 
follows from the first one by considering (9) ( with w(t) i 0 ) in 
the form x(t) • (* fc- G(tf s)][-f (sf x(s))Jds. The assumption w(t)s 

Ja 
0 can be removed by transforming (9) to the equivalent equation 
y(t) « ( G(tf s) f [sf w(s) + y(s)] ds using the transformation 

x(t) - w(t) « y(t). 
2. Hammer stein's theorem is generalized in a certain sense 

by Vajnberg's theorem • Still the assumption on continuity of Nemyc-
kij operator in the latter puts restriction on the growth of f • 

Theorem 3. Let the assumptions (H1)f (H2), (H4) and 
(H7) There exists a function oie C( [af b]), o6(t) « 0 in [a, b] , 

od-p 0 such that 

(10) lim sup f(tf x)/x « \ -*6(t) ( lim inf f (tf x)/x £^ 0+ 
lxl-*oo v lxl-»°tf 

o6(t) ) 
uniformly for te[a b] be valid. 

Then the problem (3)f (4) has a solution for each C±€ R ( i • 1f 2, 
• ••f n ) . 

Proof. Only the case that all A ± £ *Q will be considered. 
Similarly as in the proof of Theorem 2 we may assume that A Q • 0. 
Now we consider the equation (3) in the form Lg(x) « h(tf x) where 
L2(x) « L(x) +o6(t)xf h(tf x) « f (tf x) +o6(t)x. Then (10) implies 

that 
(11) lim sup h(tf x)/x « 0 

|xl->°c 
uniformly for t fc [a, bj . On the other hand, by Lemma 1 in [8. p. 
237] which is also valid under assumption that all p^ £ C^n""^([af 
b]) all eigenvalues \ ( 1 « 0f 1f 2,... ) of the problem L2(x)^« 
>x f (2)f are positive. Thus by (11) there exists an £ f 0< £< .A Q 
and an Iff > 0 such that 

21 Rre^sVEwadiff 32t 



(12) h(t, x)/x * \ - • ( a - t i i b , |z|-^M ). 
The problem (3), (4) is equivalent to the integral equation 

(13) x(t) - w(t) + P G(t, s)h(s, x(s)]ds 
Ja 

where w is the solution to (4), 
(14) L2(x) -- 0 

and G is the Green function of (14), (2). The function P.. given 
by (7) is of the form 

(15) P«(t, x) - Cx hit, w(t) + uldu « (w<t)+* h(t, v)dv. 
1 Jo J Jw(t) 

V/e shall show that there is such a C that 
(16) P^t, x) 4 ( 3f- -*j ) x2 + C ( (t, x)fc La, bjx R ) 

which will give, on basis of the Hammerstein theorem, the existen­
ce of a solution to (13) and thus to the problem (3)» (4)» Denote 
M- «- max |w(t)J, M0 • max ( M, M4 ). Pirst there exist Ci < 0, 
1 a-*t*b * 1 1 

C2 > 0 such that 
(17) C1 -i h(t, x ) J c 2 ( a -5 t £ b, |x\ £ M2 ). 

We shall consider the following cases. 
1. If 0 * x i M2 - w(t), a -* t -* b, then by (17) we get that (15) 

gives ~ 
P^t, x) £ CgX * ( -| - -^ ) x2 + max {c2(M2«-w(t)) + 

r 0-*x-iMQ--w(t) 

- ( -f - -| ) x2 + A. 
2. x > M2 - w(t), a i t * lj. ThenJ12) and (17) imply that 

jy t , x) s c2 ( M2 - w(t) ) + *° t [( w(t) + x ) 2 - M2J 

^ ( -I - -T ) x2 + max {C,( M„ - w(t)) + 

~ M0-w(t)Sx<^ 

+ —- ( W2(t) -M 2 ) +x2( ---J+ ( \ - t ) . 

•w(t)/x )J - ( -| - ~ ) x2 + B. 
3. 0 » x « - Mg - w(t), a = t - to. How we have 

P.(t, x) - C. x is C. ( - M2 - w(t) )«(•-§- -| ) x
2 + 

+ max {C.l-Hjirtt)) + ( 4 - % ) x2j 
aStSb l 1 2 4 2 J 

0£x£-M2-w(t) 

» ( -f - 4 ) x2 + D. 
4. When x < - M2 - w(t), a * t £ "b, from (17) and (12) it follows 
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that -

F^t, x) £ CrC -M2 - w(t)) + — V ~ L( w(t) + x )2 - M 2 J 
« ( -§ - -7 ) x 2 + max̂ . (C. ( - M2 - w(t) ) 

-~ -^<x»-M2-w(t) 

+ ̂ - (^•.j)^(-v(A°f')| 
- ( -| - -| ) x2

 + E . 
In all oases the inequality (16) is satisfied with C » max ( A, B, 

D, E ). 
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