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ON A NONLINEAR PERTURBATION OF A SELF-ADJOINT
BOUNDARY VALUE PROBLEM

Valter Seda
Bratislava, Czechoslovakia

The aim of this paper is to give a uniqueness and existence
results for a nonlinear perturbation of a self-adjoint boundary va=-
lue problem which generalizes and strengthens some theorems proved
by Se Fudik and A. Kufner in (2, pp. 199, 202,°203] , M, 3vec in
[S5» Pe 174] end completes the results obtained by J. D. Schuur in
[3, p. 23] and by J. R. Ward, Jr. in [8, p. 239].

Preliminaries. Let n & 2 be a natural number, a < b be real
numbers., Let the functions py€ o(m=d ([a b]) (J =1, 2,eeey n )
and the function £ :la, b] x R~ R locally satisfy Carathéodory

. conditions. All functions throughout the paper are supposed to be
real-valued. Let the boundary conditions

n
B,(x) = (X 1(3'1)(3) + N x‘a'”(b) ) (1= 1,2,00e
i i i L ald
E ! J n)
with M, 540 Ni;je R (1, j = 1, 2,e0ey 0 ) be linearly independent.

Denote L(x) = x(2) F Py (t) x(8=3) (xe C(n)([a b)) ).

If the problem
(1) I(x) =2 x
(2) By(x) = 0 (1i=1, 2,000y n)
is self—ad;]oint ( [1, p. 189) ), 1. e. S" L(u) v at = Sb u L(v)at

for ell u, v € C(n)( [ay b]) satisfying (2). then there exists an
orthonormal basis for Lz([a, b]) made up of eigenfuncticns y, of
(1), (2) and let Ay (1=0, 1, 2, oo ) be the corresponding
eigenvalues of (1), (2). We have that|A \‘700 as 1— ©° , Denote
the inner product in L2([e, )by (o5 & ).
Theorem 1 is a consequence of Theorem 2 in [4, p. 439-440].
It shows the role of the eigenvalues 9\1 of (1), (2) in the ques-
tion of existence of a solution to the nonlinear problem (3), (4).
Theorem 1. Let the following assumptions be satisfied :
(H1) The problem (1), (2) is self-adjoint.
(H2) £ is continuous in [a, b] x R.
(H3) There exist real numbers p< q such that
p & 1im inf £(t, x)/x & 1im sup £(t, x)/x & q
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88 j X|-»oc uniformly for te [ &, b] and such that At [p.qj
(1=0,1, 2,000 )
Then the problem )
(3) L(x) = £(t, x)
(4) B, (x) = ¢, (i=1,2,e00,n)
has at least one solution for each C;€ R(1=1,2.00y,n).
Proof. We can write f(t, x) = h(t, x).x + g(t, x) (a & t &
b, x€¢ R) where

P if £(t,x)/x & p,
h(t, x) -{f(t,x)/x if p = f(t,x)/x S q foraat &b,
q 1f q S £(t,x)/x (xi &1,

h(t, x) = h(t, =1) +{lh(t, 1) = h(t, =1)]/2}(x + 1) (a St &b,
Ixy £1 ) and g(t, x) = £(t, x) = h(t, x).x (@St &b, xe R ).
g and h satisfy the essumptions of Theorem 2 in {4, p. 439-440).
Hence, by this theorem, there exists a solution of the problem (3),
(2). A solution u of the problem (3), (4) can be obtained in the
way suggested in [8, p. 238]. If c is not in the spectrum of (1),
(2), then the problem L(x) = cx, (4) has a unique solution w. Let
£(t, x) = £(t, x+w(t)) - cw(t) (a =t S b, xe R). Then £ satis-
fies (H2), (H3) and hence there exists a solution v of the problem
L(x) = £(t, x), (2). Then u = v + w is a solution to (3), (4).

In many boundary value problems the set of all eigenvalues .
is bounded from below ( from above ). Then the following unique-
ness theorem is true.

Theorem 2, Suppose that besides the assumption (H1) the fol-
lowing assumptions be fulfilled:

(H4) All eigenvalues of (1), (2) are greater or equal to the
eigenvalue 9\0 ( are smaller or equal to the eigenvalue
7\0 ).
(§5) The function £(t, x) - }\0 x is decreasing ( increesing )
in x ¢ R for each te [a, bl.
(H6) £ is locally majorized by 1% functions.
Then the problem (3), (4) has at most one solution for each cie R
(1=1, 2,e..y n).

Proof. Without loss of generality we may assume that A 0 =0,
since if we let L,(x) = L(x) =2, x, &%, x) = £(t, x) - 2, x, then
(3) 18 equivalent to L,(x) = g(t, x) and all of our hypotheses are
satisfied by the pair L,, & with 2 o = 0. Further only the case Aiﬁ
0 and hence £(t, . ) is decreasing will be considered. Let there
exist two solutions x;, X, of (3), (4). Then y = x, ~ x, satisfies
(2) as well as the equation L(y) = h(t, y) where h(t, y) = £[t,
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x4 (¢) +y] - f[t, (t)] h enjoys properties (HS5) and (H6) of the
function f. Moreover h(t, y)Jy< 0 (as t % b, y $ 0). Hence

(5) (L), y) = g" L(y) (£)y(t)at = g h(t, y(t)]y(t)at < o.
On the other hand, since [yi} forms an orthonormal basis in Lz([a,
b])n y = JZ,'{) (v, yi)yi and as L(y) € Lz({_a' b])n L(y) = =0 (L(y),
¥1)y; = 2o (9 Llyhyy = Eo Ay ¥4)yy. Thus

6) (@), ¥) = Zp v y2 20
which contradicts (5).

Remarks. 1. Hypotheses (H4), (H5) can be replaced by the
following. ones:

(H4") All eigenvalues of (1), (2) are positive ( negative ).

(H5°) The function £(t, « ) is nonincreasing ( nondecreasing )

in x € R for each t € [a, b).
2. Consider the differential operator M which is defined on
D(M) -{x € c(")([a, b]) : x satisfies (2) g by M(x) = L(x). The
problem (1), (2) is self-adjoint iff M is symmetric. By (6) M is
positively definite in D(M) iff all eigenvalues of (1), (2) are
positive.
Under the assumption (H4) the existence of a solution to (3),
(4) will be proved. The proof can be based either on Hammerstein s
theorem ([6, p. 266]) or on Vajnberg’'s theorem ([7, Pe 275]) or on
Ward's results [B]. Je Re Ward, Jr. has used his own results to de-
rive an existence theorem ([_8, Pe 239_]) which is very similar to
our next theorem. From the mentioned results Hammerstein s theorem
is the most elementary and its proof contains constructive elements
which can be used in calculating approximative solutions to the
problem (3), (4).
Hammerstein’s theorem, Let the following assumptions hold:
1. The function G € C([a, b] x[a, b]) and it 1s symmetric, i.e.
G(t, 8) = G(s, t) in [a, v]x[a, b].

2, All eigenvalues é‘/i of the function G, i.e. the numbers for
which there exists a nontrivial solution zy ( the correapon-
ding eigenfunction of G ) of the equation z,(t) = & g G(t,

8)z,(s)ds can be written in a form of a nondecreasing sequen-
ce Wy & (M &...5 & s... tending to 00 ( of a nonincreasing
sequence M, & M, ...3 d'Ui ees tending to =00 ).

3. we c([a, b))

4, £ € C([a, b] x R ) and there exist such €>0, C € R that the
furction F given by the relation
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(1) F(t, x) -3’; £[t, w(t) +ulau  ( (¢, x)e[a, D] xR )

fulfils A
(8) F(t,x)s (=2 -¢)x24+¢

( ZE'(t,x)z("ga:Q +e)x2+C )
in [a, b] x R.
Then there exists a solution x ¢ C( [_a, b_]) of the integral equation
(9)  x(t) = w(t) + (P a(t, 8) £[s, x(s)] as.
a

Remarks, 1. The lemma has been proved under the assumptions
that all (‘*—'1 > 0 and w(t) & 0. If the latter assumption remains va=-
11d, then the proof is true also in the case when finitely many ei-
genvalues (_‘-uo, ceey M/ are negative. The second part of the theorem
follows from the first one by considering (9) ( with w(t) = 0 ) in
the form x(t) = Sb (= att, 8)][~(s, x(s))]ds. The assumption w(t)s

a

O can be removed by transforming (9) to the equivalent equation
y(t) = Sb G(t, 8) :t[s, w(s) + y(s)] ds using the transformation

x(8) = wit) = y(+).

2. Harmerstein’s theorem is generalized in a certain sense
by Vajnberg's theorem . Still the assumption on continuity of Nemyc-
kij operator in the latter puts restriction on the growth of £,

Theorem 3, Let the assumptions (H1), (H2), (H4) and

(HT) There exists a function < eC([a, b)), X (t) 2 0 in (a, B,
o ¥ 0 such that
(10) lim sup £(%, x)/x & >\° =L (t) ( lim inf £(t, x)/x 220+

| {x| > oo
xi=>= oL ()

uniformly for t€la b] be valid.
Then the problem (3), (4) has a solution for each C;€é R (1 =1, 2,
ceey n).

Proof. Only the case that all A, 2 >‘0 will be considered.
Similarly as in the proof of Theorem 2 we may assume that AO = 0,
Now we consider the equation (3) in the form L,(x) = h(t, x) where
Ly(x) = L(x) +ot(t)x, h(t, x) = £(¢, x) +ol(t)x. Then (10) implies
that

(11) 1lim sup h(t, x)/x £o
x| -0

uniformly for tela, b] « On the other hand, by Lemma 1 11(1 i_as p.
237] which 1s also valld under assumption that all py € ¢"™J'([a,
b]) all eigenvalues A; (1 =0, 1, 2,... ) of the problem L,(x) =
Ax, (2), are positive. Thus by (11) there exists en £, 0< E<)°
and an M > O such that

21
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(12)  h(t, x)/x& Py -~ (adtsb, (xI2M).
The problem (3), (4) is equivalent to the integral equation

(13) x(t) = w(t) + sﬁb ¢(t, s)hls, x(s)]ds
a

where w is the solution to (4),

(14)  L,(x) =0
and G is the Green function of (14), (2). The function F, given
by (7) is of the form

(15) P (t, x) = S’g hit, w(t) + uldu "S:E:;“ h(t, v)av.
We shall show that there is such a C that

(16)  F,(t, x)S(Zg--%)x2+c ( (t, x)e(a, B)x R )
which will give, on basis of the Hammerstein theorem, the existen-

ce of a solution to (13) and thus to the problem (3), (4). Denote
My o= zg.:s Jw(t ), M, = max (M, M, ). First there exist ¢, < 0,
c > 0 such that

(17) c, 2n(t, x) S ¢, (aSt sy, x\&M,).
We shall consider the follow:l.ng cases.

1. If0&x & M, - w(t), a $t 3 b, then by (17) we get that (15)
glves

X & 2
F,(t, x) 5.02:: s ( ﬁ% - )+ géb {02(M2~w(t)) +
X 0SxEM -w(t)
+ (~%-—g ) x ‘(
oY .
= (-%-—i)xz'o-A.

2, x> M, -w(t), a®t 35 b, Then (12) and (17) imply that
Py (%, x)-02 (Mz-w(t))+—-°——‘_(w(t)+x)2-M2]

2. &,
S(5-3) x2 4 max {e,( M, = w(t)) +
My=w(t)ax <=

n\

a ~
—9-2—<w2<t>-mg>+x2<-ﬁ4+mo-u.
.w(t)/x)}-(fn-;z)x + B.

3. Osx--Ma-w(t),aat-b.Nowwehave

Pty ) 30 xS0 (=i -wt) )E (G- P
£ .22
e (Cq(-Myw(t)) + (Z =3 )x _f
OzxZ-M,~w(t)

= ( —g - '%' ) x2 + D.
4. When x < = M, - w(t), a %t S v, from (17) and (12) it follows
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X -t
My = w(t)) + —LH— [(w(t) +x )% -n2]

P, (%, x) =C1£
Y 5
ﬁ('%-—tz)xzq-max {c1(-M2-w(t))

ast<p
. xS (t) K. it
e G

4

b

- ( % - <)% E
In all cases the inequality (16) is satisfied with C = max ( A, B,
D, E).
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