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FINITENESS OF BOUND STATES 
OF GENERAL N-BODY OPERATORS 

EVANS W.D., CARDIFF, United Kingdom 

LEWIS R.\ BIRMINGHAM, AL, U.S.A. 

SAITO Y.SBIRMINGHAM, AL, U.S.A. 

Consider the (N + l)-body Schrodinger operator of atomic type, 

<l> ^ -E( -A,- 1 | f )+ £ ---i--. 
i=i ' ' i<*<i<iV ' ' 

This is the Hamiltonian of an atom with an infinitely heavy nucleus of charge Z and N electrons of charge 
1 and mass 1/2. Here x* 6 R 3 is the coordinate of the tth electron and A,- denotes the Laplacian in R 3 

with respect to the variable x%. For the operator PN the next theorem gives a classic result. (For the 
appropriate references we refer the reader to the extensive reference list in [4] .) 

Theo rem 1. (Zhislin (1960, 1969,1971), Uchiyama (1969) and others) The operator PN given by (1) 
has at most a finite number of bound states if and only if Z < N — 1. 

In this paper we work towards a theory for general N-body operators which would include the results 
in Theorem 1 for atoms as well as results for molecules. A portion of this task has been accomplished in 
[2] for general atomic-type operators of the form 

(2) P=-JT(2mi)-
1Ai + JTv<,i(X

i)+ VJ vtip-zi), 
t = l » = 1 l<i<3<N 

where m* is the mass of the ith electron. As in [2] we proceed from the foundation laid by Agmon[l] . 
Define 

n 

H = - £ ^^J + «<*)» X G Rn' 
. , . 7 = 1 

where H satisfies the following (3)(i)-(iv): 

(i) Each a ,J is a bounded, continuous, real-valued function on R n . 
(II) The matrix A(x) = [a%*(x)] is symmetric and its smallest eigenvalue p,(x) is a positive continuous 
function on R n . 

(3) 
(iii) q 6 Ii(Rn)/oc. 
(iv) «7_ = max(-g,0) € Af/oc(Rn), where M ( R n ) = Af0(Rn) is the Stummel class of functions. 

The sesquilinear form which gives rise to II is 

(4) PWM= I {<VA<P,VA4>>+q<pt}dx (<p,i/>eCS°(Rn)), 
IR» 

w h e r e p[<f>] := p[<f>,<f>] a n d 

n 

(5) < VA<p, VAi}) >= J^ a*J'vVV .̂ 
f,j=i 

Define 

(6) A(/7) = ini{p[V]: v e <%>{*"), M = U-

If A(II) > -oo , the sesquilinear form p[<p,ii>] on Go°(Rn) X Co°(Rn) is proved to be a densely defined 
symmetric form which is bounded below and closable in I2(Rn) - see Agmon[l] and [2] . 

1 Supported by the U.S. National Science Foundation, NSF DMS-8719027. 
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Henceforth, let H denote the self-adjoint operator in L2(Rn) associated with the form p[<p^\. Then, 
the least point of the essential spectrum of H is given by 

(7) £(ff) = sup [inf {fW • V e C H R " - K),|M| = l } ] . 
i f .compact 

Agmon [1] gave an interesting, alternative expression for E(P) which is related to the celebrated HVZ 
Theorem of quantum physics - see the references in Sigal[3] or [4] . 

Let B(0;R) := {x G R n : ||x|| < R} and 5 n ~ 1 := {x G R n : \\x\\ = 1}. For u G Sn~\6 G (0 , r ) , and 
R > 0 define the truncated cone 

r(u;,$,R) = {arGRn : < x,u> » \x\cos6,\x\ > R}. 

Let 

E ( « , M ) = inf {,[?] : <p G C0°°(r(u,,*,R)),|M| = 1} 

and 
K(u : H) = lim lim E(u;,tf,R). 

Theorem 2. (Agmon[l], Lemma 2.7) K(-: H) is lower semicontinuous on 5 n _ 1 and 

E(B ) = min{K(o;: H) : u € 5 7 1 - 1}. 

Let 
M := {w G 5 n _ 1 : K(-: B) assumes its minimum at u}. 

Note that M is a closed subset of 571"1 since K(o; : H) is lower semicontinuous on 5 n _ 1 . For M we 
define the truncated conical region 

T(M : R) := {x G R n : x = tu for w G M and t > R}. 

Let d\f (x) := rfwt(x : M). The first part of our main hypothesis is given by 

W(l) : Let M be a proper subset of 5 n _ 1 which is the finite union of closed sets {Af J*.--_. Suppose that 
each <-M- is C 1 in a neighborhood of Mt-. 

When B is a generalized N-body operator, Agmon shows that K(u : H) < 0. In that special case, 
M = 5 n _ 1 implies that K(LJ : H) = 0. For 3-body operators this may result in a rather pathological 
case called the Efimov effect - see [4] and the references contained therein. 

An important ingredient in our proof is the introduction of a certain partition of unity {Jo,Ji,I2} 
satisfying the properties given in Lemma 3 below. To this end we first define 

Ms := W E 5 n _ 1 : dist(u>: M) < 6}. 

We associate with Ms the truncated conical region T(Ms : R) defined as above. 
In the following, suppJi denotes the support of J,-. 

LEMMA 3. There is a partition of unity {Jo,Ji,J2} satisfying 
(i) 0 < Ji < 1 for each i and each x G R n ; 
00 £UIt

?(*)--lforsGRn; 
(Hi) each Ji(x) is> Lipschitz in Kn; 
(iv) supp Jo C B(0; 1); 
(v) suppJx CT(M6:\); 
(vi) supp J2 C R n \ (T(Ms/2 : 0) U B(0; I ) ) ; 
(vii) J\ and J2 are homogeneous of degree zero in R n \B (0 ; 1); and 
(viii) for anye > 0 there exists Ct > 0 such that 

|VJi(x)|2 + |VJ2(x)|2 < (cJ,(x)2 +C<J2(x)2)\x\-2 

for allxe R n \B (0 ; 1). 

P R O O F : For the basic ideas of the proof we refer the reader to either [2] or Sigal[3] . 

As the next lemma illustrates, this partition of unity allows us to separate the essential "parts" of the 
form p. This lemma gives the IMS localization formula[4] for H. 

160 



LEMMA 4. For any open set ficR" and any <j> 6 C£°(Rn) 

/ [ |V^ | 2 + q\<f>\2] dx = Y f [ |V^(I^) |2 + q\J{<i>\2 - |V,4I.|2|</>|2] dx. 
Jn ~ ^ JQ 

PROOF: An elementary calculation shows that 

| V ^ ( I ^ ) | 2 = J 2 | v ^ | 2 + | V ^ | 2 M 2 + \ < VAJ2,vA\4>\2 > 

on using the fact that the matrix A(x) is symmetric. Since 2t=o J?(x) — -> ̂ n e identity follows. 

Let D be a bounded open subset of R n , which contains the unit ball B(0; 1), and for which 

the embedding HX(D) «-+ L2(D) is compact. 

This is the well-known Rellich property and is satisfied if D has a continuous boundary. 
As a consequence of Lemma 4, 

Pi*] = f [|V^|2 + qW2] dx+J2f [|V„(J,*)|J + q\Ji<f>\2 - \VAJi\2\<l>\2] dx. 
JD i=l JR»\D 

The finiteness of bound states of H, or equivalently the finiteness of eigenvalues of H below £(11), 
depends upon the behavior of q in the truncated conical regions T(Ms : R) for R arbitrarily large. 
Roughly speaking, we need a certain degree of positivity of the "part" of the potential q which does not 
determine S(B ) . The next part of our basic hypothesis can be interpreted in such a manner. 

H(2) : There exist €U€2 € (0,1) and C€2 > 0 such that 

/ [\VA(M)\2 + (q--^)\Ji<l>\2)dx 
JR»\D \X\ 

> S(I/) / \J^\2dx -e2 f \VAcf>\2dx - Ce„ / \<j>\2dx. 
JR*\D JD JD 

The "part" of the form described in H(2) is the "essential" part mentioned above that determines 
the finiteness or infiniteness of bound states. The term —ci/|a;|2 arises from the error approximation 
associated with the partition of unity given in part (viii) of Lemma 3. At times it is helpful to replace 
*H(2) by the following two hypotheses: 

7i(2a) : There exists ei > 0 and a function a defined on 3D such that 

/ [\VA(Ji<t>)\2+(q~^)\Jicf>\2]dx 
JR»\D FY 

>£(/ .") / \Jx<f>\2dx-{- / a\JKl>\2da 
JR»\D JdD 

for all <f> £ C$°(Rn). 

H(2b) : For some e2 G (0,1) and C€2 > 0 

/ <r\JKf>\2dx>-€2 f \VA<j>\2dx-C,7 f \4>\2dx 
JdD JD JD 

for all <f> C£°(Rn). 

11 Kurzweil, Equadiff 7 161 



«'):=Ll: 

Hypothesis H(2b) holds if <r_ G L7(#D) for 7 = n - 1 when n > 2 and 7 6 (1,oo] when n = 2. 
The final part of our hypothesis assures us that the remainder of the form is under control. First, it is 

helpful to define the weight 
for x € D 

(x) for x $ D. 

Now, we introduce the notation 

/ \VAw<f>\2dx:= f \VA<f>\2dx + f \VAh<t>?dx, 
IR- JD JR»\D 

for all <f> ~ CS°(Rn). Note that VA(w<f>) is not defined on dD. 

H(3): Given €3 there exists C63 > 0 such that 

/ q\w<f>\2dx < €3 / \VA(w<j>)\2dx + C€3 / \w<f>\2dx 
IR» IR» IR» 

for all <f> e CS°(Rn). 

This last part of the hypothesis is satisfied by the N-body potentials briefly mentioned above. 
Now, we state our main theorem. Due to space limitations, we cannot give a full proof here. We will 

give a sketch of the main ideas of the proof. 

THEOREM 5. If (3)(i)-(iv) and H(l),H(2),kH(3) hold, then H has only a finite number of bound states. 

PROOF(SKETCH) : If we interpret H(2) in terms of operators, then we might expect that 

B>Ii(x)£(ff)Ii(a:) + Br 

for some "remainder" operator Hr. The sesquilinear form for such an operator is defined for CQ°(D U 
«ttppI2)-functions. This form is much like p with some additional error terms. Part H(3) of the hypothesis 
is a key ingredient in the proof of the fact that this form is closeable. Now, Hr arises as the operator 
associated with this form. A result like Theorem 2 applies to Hr. Part H(3) of the hypothesis assures 
that £(11r) > £(11). It follows that Hr can have only a finite number of eigenvalues below £(11). Finally, 
we show that the number of eigenvalues of H below £(11) can be no more than the number of eigenvalues 
of Hr below £(11), which completes the proof. 

A version of Theorem 5 with a more restrictive hypothesis was used in [2] to establish results for 
atomic-type operators (2). There it was assumed that K(- : P) assumes its minimum at no more than 
a finite number of points. That assumption excluded the consideration of molecules and an atom with a 
nucleus which was not assumed to be infinitely heavy. In these latter cases it is common to first remove 
the motion of the center of mass via a Jacobi coordinate change restricting the operator to "configuration 
space" X - see [4] . In A" we can think of the motion of the center of mass as being held fixed at the 
orgin. Now, letting H be the Hamiltonian in L2(X) = L2(K3^N~^), then A'(-: 11) assumes its minimum 
on curves in S3N~A or on their intersections. These curves correspond to x = (xl,x2,.. .,xN~*) € S3N~4 

where xl = x* for distinct t and j . Theorem 5 now allows us to consider these other cases. 
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