
EQUADIFF 7

Jozef Kačur
Solution of nonlinear degenerate elliptic-parabolic systems in
Orlicz-Sobolev spaces

In: Jaroslav Kurzweil (ed.): Equadiff 7, Proceedings of the 7th Czechoslovak Conference
on Differential Equations and Their Applications held in Prague, 1989. BSB B.G.
Teubner Verlagsgesellschaft, Leipzig, 1990. Teubner-Texte zur Mathematik, Bd. 118.
pp. 175--179.

Persistent URL: http://dml.cz/dmlcz/702360

Terms of use:
© BSB B.G. Teubner Verlagsgesellschaft, 1990

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides
access to digitized documents strictly for personal use. Each copy of any part of this
document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech
Digital Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/702360
http://project.dml.cz


SOLUTION OF NONLINEAR DEGENERATE 
ELLIPTIC-PARABOLIC SYSTEMS 

IN ORLICZ - SOBOLEV SPACES 

KAČUR J., BRATISLAVA, Czechoslovakia 

We consider the system 

(1.1) dt bi(u) - Vai(t,x, b(u), Vu) = P(t,x, b(u)) , j = l m ; 

(x,t) e QT = -̂  x (0,T), Q c RN is bounded with the initial and boundary 

conditions 

(1.2) b(u) = b(u0) Qx{0 ) 

u = uD on H x (0,T) 

(1.3) a(t,x, b(u)) • v = <p(t,x,u) on T2 x (0,T) 

where u = (u1,..., um), Tx, T2 c 3Q , rx n T2 = 9 

mesN-i -"l + mesN-i T2 = mes^i 3ft,mesN-i Ti > 0. 

We assume 

(1 A) b(u) = VO(u) where O: Rm -> R1 is convex, C1 and b(0) = 0 . 

On subsets where b is constant (1.1) is elliptic. System (IT) includes porous 

medium type equations. This system has been studied by H.W. Alt and S. Luckhaus in 

[1] under the assumptions 

(1.5) (a(b(ri), 50 - a(b(ri), $ 2), fc - %2) ;> c 0 fo - 5 / (P * 2), 

<p s 0 in (1.3) and under the corresponding polynomial growth conditions 
concerning a,f. 
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Our contribution is to prove the existence of the variational solution of (1.1) only 

for monotone ease c0 = 0 and under the very weak restrictions on the growth of a 

in £ . Formally we can write it in the form 

(1.6) a(b(n), £) is monotone in £ (i.e. (1.5) holds with cQ = 0) 

and it is continuous in their variables; 

(1.7) |a(b(n),S)| <c(1+h(ri) + |g©|) 

(1.8) a(b(n), $) • I; > c $• g © 

(1.9) g *= C(R), g(£) -> oo for £ -> oo , £ . gft) is even and convex for £| >. ^ > 0 . 

(In the fact we understand that to each component of £ belongs a 

corresponding component of the vector function g). 

The growth conditions in a more general and more precise form are 

considered in [3]. 

Denote by G , Gft):= £ g ft) (for |£| >. £0 > 0) the N-funcuon (see [5]) and by G 

the conjugate (N-function) with respect to G(G(x) = max (x • y - G(y)) . By the same 
yeR 

way we construct 

(1.10) *F(x):=<j>(x)-(|>(0» and B(n):= ¥(b(T0) 

Then h(n) in (1.7) has to satisfy 

(l.H) Mn) f-G'^BCJl)) 

Moreover, we assume 

(1.12) |f(b(r0)| <c(l+h(n)) 

(1.13) u D e W ^ Q j ) , Uo:= u-\0). 
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Our variational solution is an element of the Orlicz-Sobolev space V defined as follows. 

Let L G ( Q T ) = L Q be the Orlicz space 

L G =. {u e L i ( Q r ) : 3 k > 0 such that J G(ku) < «>} 
Or 

with the norm ||v||G = inf{r > 0 : J G(v/r) <. 1} . 
Or 

L Q is B-space and L G = ( E Q ) * where EQ is the closure of bounded functions in the 

norm of the space L 5 . When g(£) = |£|p" c; then L G = ^ and LG = ^ (with 

p-i + q-i = l ) . Then our Orlicz-Sobolev space V is defined as follows 

VsWi 0 (Qr)={u:uieL G j for j = l m . ^ u i e L o j 

foг i = 1 ,..., N and u/p x (n т) = ^ ) 

with the norm ||u||v = £ £ IID1 uJ || G| where we take Gjj := min G{ . Evident ly 
ІŚІSN j=i i=0 

W G ° c w } , 0 ( Q r ) . With respect to 9 in (1.3) we assume 

(1.14 ) <p(t,x,r|) is continuous in their variables and is monotone in i\ ; 

(1.15) |cp(rD . Ç| <. Cl + C2(TI (pOl) + Ç • 9(C)) 

(1.16) |фi(n)) S c O + ï (PІҐfФЛD Vj = 1 ,..., m . 

The more general conditions are considered in [ 4 ] . 

1.17 Theorem If (1.6) - (1A6) are satisfied then there exists a variational solution u of (1 A), i.e., 

u - u D e V , b(u) 6 L i ( Q r ) , a(b(u), Vu) G L G ( Q T ) , f(b(u)) e L ^ O r ) and 

(1.18) J (b(u 0 ) - b(u)) • 9 t v + J a(b(u), Vu) -Vv + J cp(u) • v = J f(b(u)) • v , 
Or Or S T Or 
Vv e V n LJQr) with dtv e LJQr), v(T) = 0 . 
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1.19 Remark In the fact there exists dt b(u) e V* and J (b(uo - b(u)) • dtv = 
Or 

<dt b(u), v>r (<-,>T is the duality between V* and V) where v is from (1.18). Then in the place 

of (1.18) we have 

(1.181) <dt b(u), v>r + J a(b(u), Vu) Vv +J <p(u) • v = J f(b(u)) • v Vv e V . 
Or ST Qr 

To prove Theorem 1.17 we discretize (1.1) in time and space (modified time 

discretized Galerkin method). We obtain energy type a priori estimates 

J G(Vua) <> c , sup J B(ua(t)) £ c and 
Or t€(0,T) n 

f J (b(Ua(t + X)) - b(Ua (t))) • (Ua(t + X) - Ua(0) <- C T 
o n 

-1 T 

uniformly with respect to the discretization index a (a = (At, X ) , At = j - >X being the 

dimension of V^ = spanfei,..., ejj) . In the parabolic part of the equation we follow 

[1] (using compactness argument and integration by parts formula 

J J dt b(ua) • Ua = £ B(ua(t)) - J B(uo)). In the elliptic part of the equation we follow 
Oft ft a 
the idea of Minty-Browder. Some special properties of the Orlicz-Sobolev spaces are used 

and some results from elliptic equations [2] concerning Orlicz-Sobolev spaces are 

applied. The detail proofs are in [3] for cp s 0 . The case (p # 0 and also nonmonotonicity 

of <p will be discussed in [4]. 

When the system (IT) is diagonal we can prove L^-boundedness of the variational 

solution. Moreover we can remove the restrictions of a,(p with respect to the growth in 

b(T|), T|, respectively. We consider 

(2.1) dt bJ(uJ) - VaJ(t,x, b(u), Vui) = fi(t,x, b(u)) + Fi(t,x, b(u)) 

with (1.2), (1.3). We assume 

(2.2) b(s) is strictly monotone and |b(s)| -» «> for |s| —> <». 

(2.3) |a(b(ii), fy\ £ uQ*\) (I + lg©0. aOXn) • 0) = 0; 
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(2.4) a ( b ( T i ) , 0 - ^ v ( | T i | ) ^ g ( 0 

where V,\L > 0, are continuous (v(s) —> 0 for s -> «>); 

(2.5) ^aJk(b(n) , £) = dz*a|(b(T]), £) , Vj, Vi,k ; 

(2.6) 9^(^(11).>0 and (p(r\)r\iz0 V | T I | > K > 0 Vj; 

(2.7) |f(T])| <;Cl(d + |Ti |) ,deLJQr) 

and 

(2.8) 3 ^ Fi(T» £ 0 , Vj ; g rf F(T]) <. c2 h f 1 + c3 

j=i J 

Vp = 2k+1 ,k^ko>0,V|T| | <. I>r+1 where 

(2.9) Dr := (||b(uD)|U.Qr+ l|d|U,Qr+ biO C(CIO-H-D + «>T 

and bK := max (max {W (K), -b>(-K)}). 
j 

2.10 Theorem Let (2.2) - (2.9), (1.6), (1.9) and (1.13) are satisfied. Then there exists a bounded 

variational solution of (2.1), (1.2), (1.3). Moreover ||b{u}|U,Q- < Dr where DT is from (2.9). 

The assertion of Theorem 2.10 can be extended to the case when a is of the form a(t,x,M(u), 

Vu) with a rather general Volterra operator M: L^Qr) -»Uo(Qr) • The proof can be found in [3] for 

the case q> s 0 . The case <p * 0 will be discussed in [4]. 
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