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ON A CLASS OF WEIGHTED SOBOLEV SPACES 

Jacques Camus 

Many authors have studied various classes of Sobolev spaces 

with weights (see for example [2 J, [3J and the references therein). 

The aim of the present paper is, roughly speaking, to present some 

results about the Sobolev theorem and about the inequalities of the 

type "compacity" for a special class of weighted Sobolev spaces; one 

can use these results to study spectral properties of a class of de

generated elliptic operators. 

Let us mention that the results presented here were obtained 

together with P. BOLLEY and PHAM THE LAI (Nantes University). 

I. The case of the half-line IR, 

For an integer m € IN , two real numbers a and 8 JL 0 and 

an interval I of IR, , we consider the space 
-r 

V m .(I) = {u £ £>' (I); tau e L 2(I), t6Dmu e L2(I)} 
ct» p --

equipped with the canonical norm. 

PROPOSITION 1.1. If u e Vm
 o(0, T) 3 where T is a strictly 

c t , f5 

positive real number3 we have: 

(i) t3"jDm"ju e L2(0, T) for 0 < j < Min(jQ, m) with j Q = [$ + | ] _ : 

8— i 
(ii) t °Dm"ju «= L2(0, T) for jQ+ 1 < j < m if jQ+ 1 < m ; 

(iii) u € Hm"^(0, T) if 3-m 9- integer + ^ . 

The notation [A] means the greatest integer < A . 

P r o o f . Let <£ be an infinitely differentiable function 

such that (j>(t) = 1 if t < | and <j>(t) = 0 if t >. 3~ . Put v = 

= <f>u ; then v € V o^-jL) with bounded support. 



Using Hardy's inequality, we obtain (i). 
3-J 0

 m _ j 0 2 ^-^O' 1 m" j0 
Now for (ii) : we have t Dt v £ L (JR+) , also t

 Dt ^ 

2 3-jQ m-j -1 2 

e L (3R+) and by Hardy's inequality we get t D v g L (H+) ; 

repeating the same argument, we obtain (ii). 

If 3 > m , it results from (i) that t u e L QR+) and con

sequently if 3-m ?- integer + -5- , we have ([4]) u e. H QR+) • 

If 3 4 m , then j 4 m and - y < 3 - J 0 : < y . Hence two 

cases must be distinguished according to - " 5 " < 3 - J n < : 0 and 0 < 

< 8 - J <.± . 
1 S-Jo "-Jo"1 

First case: 0 < 3 - j < T . We have t D v and 
^ O ^ - J Q _ 2 , 

t D v e L OR ) (notice that 0 < 3 - j Q and 3 4 m implies 

^ m-jQ-l ^ m-j 
j + l ^ m ) . Then we have t 2D v and 12D v € L (1R+) , and now 

— J 0-l 2 
we prove that these two conditions imply D v £ L (IR ) . 

LEMMA I. 1. ([l]). If u 6 V1 ^(IR+) _, then u € L2(1R+) . 

P r o o f . If u € ©(lR^) , we can write 

-, r+°° 

|u(t)I = 2 Re u(a)u'(a) da 

t 

and using Fubini's theorem, we obtain 

r+°° 9 r+°° r+0° 9 r+0° 9 
|u|zdt < - 2 Re a u(a)u'(a) da 4 t|u(t)| dt + t|uf(t)|*dt 

0 0 0 0 

Finally the density of 9 QR. ) in the space V, , (JR.) proves Lemma 
-5»-5 + 

m-j0-l 
Now, we prove that D v e H (R ) with e • 1 - (3 - J0)< 

m-j0-l m - j 0 

To this end put D v = f and D v = F and compute 

r Pr^]2 dx dy • r r"(":uf<,)|2 - « • 
% 0 i x - y i 0 0 * • 

However, 

f (x + t ) - f (x ) = I F(x + a)da . 
0 



J i '<- + g . ; . f ( - ) | 2 at - ( - ^ i j , c , +„> do,2
 d t 

" o c 0 

t y , 
+00 

( -TI-T l F ( x + t ) l 2 d t • 
o t 

o t h e r hand, 
+ 0O 

I ^ I T T lF<* + t ) l 2 d t " f 1 L 7 ^ l F < ^ l 2 d? 
J ^ t J „ y - x 

and using Hardy*s inequality, 
+oo 

:£ C 

0 
(C is a constant.) On the other hand 

+ 00 +, 

and Fubini's theorem yields 
+ 0O + 0 0 +CO +0O 

f - 2 ( e - l ) A _ _ 1 _ _ , - . , N | 2 J N J f _ L _ _ _ 1 _ _ J f - 2 ( 6 - 1 ) , - , v i 2 
( .2e-llF(ax)l d a ) d x = | -,2e-ldg y lF(y)l 

0 1 |o-l| 1 |o-l| J
0 dy; 

thus, Dfc ° v € H£(R+) and v € Hm~B(]R+). 

Second case: - y < 3 - j n _ 0 . The case 3 - J0 • 0 being 

trivial, we can assume that - - 2 - < 3 - J 0 < 0 . Then -r < 3-Jn+ 1 < 1 

and we have Dfc v Ç L Z(ÄJ and t D^ v € L (E,) . By the 
t + t т 

same computation as before we get that D v € H (E ) with e = 

= - (3 - jQ) and finally v 6 Hm~3(JR+) . Proposition 1.1 is proved. 

REMARK I.1. We can improve the result of Proposition 1.1 when 

3 - a > m , in fact we have: if 3 - a > m and if u € V m
 o(0, T) , 

a, p 

then t
a + <J / m ) ( 3- a )

DJu € L2(0,T) f or j = 0, . . . , * . The proof is ana

logous to that of the following proposition. 

PROPOSITION I. 2. If 3 - a < m and if u € V m „(T,+«>) where 

T -Cs a reaZ number > 0 ., then 

a4-l(3-a) 2 

t DJu € L (T,+°°) for j = 0, ..., m . 

P r o o f . It will be done in two steps. 

First step: Reduction to the case a = 0 . 

LEMMA 1.2. If u € V m
 0(T, +») , then t3~m,"jD?u € L2(T, +<») . 

— — a , p t 
P r o o f : If 3 <. — , we have obv ious ly u 6 Hm(T, +«) and 



t h en t 3 ~ j D m " J u € L 2 ( T , + « ) f o r j - 0 m. 

If $ > -r , then, as in Proposition 1.1, we get that 

t3-JDm-Ju 6 L
2(T,+») for 0 4 j <. Min(j Q, m) with j Q = [3 + y ] _ . 

Finally, since D^'^u € L (T, +») for j = 0, ..., m, we get that 

t.B-JDm-Ju € L 2 ( T j +oo) f o r j = J Q + ly , # > > m i f J Q + ! < m (3 - j 

i-s negative) . 

LEMMA 1.3. The map u i — ^ t ^ u is arc -isomorphism from V (T,+°°) 

o n t o V . , ( j - _ ( T - + - > • 

P r o o f . Le t u be an e l e m e n t of V 0 ( T , +°°) , we p u t v = 
m a 

= tau; then t3"aDmv(t) - \ a .te"jDm"ju(t) and by Lemma 1.2 it 
j=0 J t 

results that v 6 V m _ (T, +«>) . 
0,$-a 

Conversely, let v be an element of V A (T, +»), we put 
m
 u» P~a 

u = t"av; then t6Dmu(t) = " a . .13~a~jDm~jv(t) and by Lemma 1.2 it 

m j-0 3 t 

results that u 6 V 0(T, +«). a, p 

Second step: We assume a = 0 . 0 
1 •'• '— m— p 

We use the change of variable y = t and of the function 

, x 3/2(m-3) ,_N w(y) = yH 'u(t). 

By induction on p we show that, for 0 < p < a , we have 

D P w ( y ) . _»/2(«-3) \ t
J " P + P » D i ( t ) , 

m~S 

where a r" 0 . By Lemma 1.2 we get D w € L (Y,+°°) where Y = T 
pp ' y 

and consequently w € Hm(Y, +») since w 6 L (Y, +«>) . Then DPw € 
2 

6 L (Y, +*) for p = 0, ..., m and using the preceding fprmula, we 

fi O 

get by induction on p and since j - p + p— < 2 for j < p that 

J 1 

t m D*Ju € L (T, +°°) for j = 0, ..., m . Proposition 1.2 is proved. 

We now apply these results to a sub-class of Sobolev spaces 

with weights which will be useful for the following: let m € K , let 

- a and 6 b e two r e a l n u m b e r s > 0 s u c h t h a t a+m ^ 0 and a+<5ni>_ 0 . 

We consider the space 

Wm *<*_.) = {u 6 H " 0 * * . ) ; t a + < 5 k + j D ^ u € L 2 ( R . ) f o r a + 6 k + j > 0 and 
0 , O T T t T 

k+j ^ m } 



equipped with the canonical norm. 

By Propositions 1.1 and 1.2, this space coincides with the 

space Vm . , (R_J . r a+6m,a+m + 

We now give Sobolev's theorem for the spaces W (R ) . 

PROPOSITION I. 3. (i) If u € Wm (R+) 3 then u is continuous 

on R and theve exists a constant C > 0 such that fov evevy u €. 

e W (R ) and fov evevy t > 0 3 we have 

q+m l 1 

(1-1) |u(t)| < C. t" 2m ||u.|2£ Mull1; 2=. 

V* L 

f-£-£j Let ws assume -a > -~- . J/ u € W QR ) _, then u -is continuous 

and bounded on R and theve exists a constant C > 0 such that fov 

evevy u £ W (R ) and fov evevy t > 0. we naye 

-i- 1+--

( i . 2 ) i » ( o i < c. i i u i i i° n u n 2
2a ; 

w « A L 

a, o 
-(a+6m)+3g(6-l) 

(1.3) |u(t)| <C. t Mu|| . 

a, o 

P r o o f . (i) First, we apply the usual Sobolev's theorem: if 

v € H (R ) with m >_ 1 , then v is continuous on R and there 

exists a constant C > 0 such that for every v € H (R.) and for 

every t >_ 0 , we have 
+ 00 +00 

| v ( t ) | 2 < C { J | D m v ( T ) | 2 dT + | | V ( T ) | 2 dT } . 

0 0 

I f w € W (R ) , the function v defined by V ( T ) = w(T+t) belongs 

to Hm(R ) for every t > 0 . Since -o > 0 and a+m >_ 0 , it is 

m > 1 and for every w € W P(R.) and for every t > 0 , we have 

= , a, 6 + , J 

+ CO » +00 

|w(t)|2 < C. {| |D mw(T)| 2 dT + | |W(T)|2 dT }. 

t t 

Now, let u be an element of W* .Q&.) and let us apply the preced

ing inequality to the function w defined by W ( T ) = U ( X T ) where X 



is a positive constant. Then there exists a constant C > 0 such 

that, for every u € W (IR ) , for every t > 0 and for every X > 0, 

we have 
+ 00 +00 

(1.4) |u(t)|2< £ {[ |xmDmu(T)|2dT + ( |U(T)|2 dT }, 

and since t <_ T , we get 

+00 

1 / _ \ | 2 C r | , 2m — 2 ( a + m ) 1 a+m_ m , \ 1 2 ., . | 1 , v i 2 , •_ 
. " ( t ) . __ X M X t l T D t u ( T ) | dT + J | U ( T ) | dT } . f | u ( т ) | ! 

Choosing X = t , a f o r t i o r i we obtain 

q+m +°° + 0 0 

|u(t)|
2
<C. t"

 m
 {( |T

CT+m
 D

m
u(T)|

2
dT + [ |U(T)|

2
 dT} . 

0 o 

Now, we apply this inequality to the function v defined by V ( T ) «-

- U ( X T ) where X is a constant >0 : 

q+m +
00
 +°° 

|u(Xt)|
2

 4
 C.

t
"

 m
X -

1
( [ X-

2 C T
iT

a + m
D

m
u|

2
 dT + [ | u ( T ) |

2
d T } . 

o o 

1 

Putting X = r
 2 a
 , we get for every u € W (E ) , for every t > 0 

and for every r > 0 that 

1 _ _1 q+m _1 , +°° +°° 

| u ( t r 2 a ) | 2 < c . ( t r 2 a ) m r 2 m " {[ |TCT+mDmu|2dT+r( | u ( T ) | 2 d T } . 

0 0 

Finally, there exists a constant C > 0 such that for every t > 0, 

for every r > 0 and for every u & W' CR_._) » we have 

_ q+m _1 _ 

ju(t)|2 < C. t" m r 2 m " {||u||2a > r||u||2 }. 
Wa,6 L 

7 — 2 
Taking r = ||u|| . ||u|| ?, we obtain the inequality (1.1). 

W m . L 
q, 6 

(ii) If -q > -r- , Sobolev's theorem implies that if v € H (IR.) , 

then v is continuous and bounded on JR and there exists a constant 

C > 0 such that for every v € H (JR., ) and for every t >_ 0 , we 

have 



M o r < c. i i v i r a 
H" 0R+) 

However, by Proposition 1.1, the space VQ a+ (R+) is continuously 

imbedded in H"a(R+) . Hence for every t > 0 and for every v € 

€ Wm OR.), we have 
a» 6 + 

+ «> +00 

|v(t)|2 < C {J |Ta+mDmu|2 dT + J |U(T)|2 dT} . 

0 0 

Using the same change of functions as before, we conclude that for 

every u e Wm
 5(R+)» for every t > 0 and for every r > 0 , we have 

- i - i -
|u(t)|2 < C. r 2 o {||u||2 + r Mull2, >. 

W™,« L 

We obtain the inequality (1.2) by taking r -= ||u||2 . | | u | V 2 . 
W<J,6 L 

To establish the inequality (1.3), we start from the inequality (1.4) 
+ 00 

in which we choose \ « (( |u(T)|2dT)2m (I |Dmu ( T) |2d T)~ 2mf w h i c h 

.» - J t t 
yields 

+ o> 2 + o o i 
|u(t) |2 <C. (( |Dmu|2dT)

2l»(( |U(T) |2dT)1_ *-". 

then we notice that, since t <^ T, we have 
,+ 00 +« 

| D m u | 2 d т < t - 2 ( ø - : - m ) ( т 2 ( a + m ) | D m u | 2 d t < t - 2 ( ö " m ) | | u | | 

a. 6 

and 
+ 00 +0C 

J | u ( T ) | 2 d T < t"2«H-«m) ( T 2 ( a + 6 m ) | u ( T ) | 2 d x ; t - 2 ( a + 6 m ) | | u | | 2 m 

t t W a ,6 

which imp l i e s the i n e q u a l i t y ( 1 . 3 ) . 

1 0 



II. The case of the half space R , n > 1 . 

Let m be an integer, -a and 6 two real numbers >0 such 

that a+m >; 0 and a+6m ^ 0 . We consider the space 

W m
> 6(R^) - {u € L

2(R»); ta+6lal+;JDjD^u € L2(R*) for a+5|a|+j > 0 

and | a | + j <̂  m} 

equipped with the canonical norm. 

The space 2>(R.) is dense in the space W fi (R.) (cf. for 

example [2]) and we have also 

W m
> 6(R^) = {u € 0 ' ^ ) ; tMax(0,a+6|a|+j) DJ Da u^ ^2 (JRn} f o r | a | + j ^ m } # 

PROPOSITION II. 1. (i) If m > n/2 and if u e Wm
 g (R+) , then 

u is continuous on R and there exists a constant C > 0 such that 

for every u € Wm .(R+) and for every (t,x) e R+J we have 

- r 2 - f^a+Sm> f- i-f-
( 2 . D | u ( t , x ) | < c . t 2 m 2 m | | u | | 2

m
f f i | | u | | 2

2 m 

w ™ * L 

a, 0 

Cii; 1/ Min (-a, -a/6) > nil and if u € W m (R+) ., t h e n u is 

continuous and bounded on R + an<i there exists a constant C > 0 

sweh t h a t / o r every u _ Wm _ (R+) and for every (t,x) €. R + 3 we have 

_ 1+6(n-1) 1 + 1+6(n-1) 

.2 

(2.2) |u(t,x)| < C. ||u|| „ 2° ||»|| 2 a 

Wa,6 L 

P r o o f . The proof is analogous to those in Chapter I. 

(i) First we apply the usual Sobolevfs theorem: if v € H (R ) with 

m > n/2 then v is continuous on R, and there exists a constant 
— • 

C > 0 such that for every v € H m(R +) and for every (t,x) € R + , 

we have 

|u(t,x)|2 < C. { I [ |D^D%(T,y)|2dT dy + [ |v(T,y)|2dT dy}. 

j+|a|=m J Kn
 J

Rn 

If w e W (R ) , the function v defined by v(T„y) = w(T+t, y) 

11 



belongs to H OR.) for every t > 0 . Hence for every w € W . OR, ) 

and for every (t,x) t£ JR. , we have 

+CO +00 

|w(t,x)|2 < C.{ I f f |DJD"w(T,y)|2dTdy+f f |w(T,y)|2dTdy> 
|al+j--mJ J n-1 Z X J J n-1 i + J = m J t V t к " 

Let now u be an element of W g 0R+)
 a n d

 let us apply the preceding 

inequality to the function w defined by W ( T , y) = U ( X T , yy) where 

X and y are two constants. Hence there exists a constant C > 0 

such that for every u e W . (IR ) , for every (t, x) €. TR, and for 

every X and y > 0 , we have 

+00 

| u ( t , x ) V < i , í I f 
a +j=mJ\ J„n-1 

i n~l i i ." J J X.y |a|-i-3=mJt
 J

Rn 

x2j , 2 ( ш - j ) | D
J

D
a

u ( т > y )
,

2 ( l т d y 

t B 
J
 n-1 

(т, y ) V d т dy} , 

and since t <. T , this yields 

|u(t,x)Г < 

2 

dTdy + 

< < ^ _
{
 V [ f

 X
2J 2(-j) -2(a+«(-j)+J)|

T
a+«|a|+i j a 

== , n-1 i f . . J J i t x 

X.y |a|+j--m
J

t

 J

R
n-l 

dTdy 
+ 00 

+ |u(T,y)|
2
 dTdy }. 

Jt J
K
n

+
l 

o+m o+6m 

Choosing X = t and y = t , a fortiori we get 

|u(t,x)| 4 C.t 

o+m n-1 * ,x ч (ø+öm) 
m m r f , o+fi|a|+i j a i 2 

/. |T ' ' JD JD u| dTdy 
|aí+j=m J n 

|U(T, y)rdT dy}. 

K 
We now apply this inequality to the function v defined by V ( T , y) 

- U ( X T , yx) where X and y are some constants: 

|u(Xt, yx)| 2 < 

12 



°+» « - l ( 0 + . « ) 
t m m " c _ í x-2(a+6(m-.j))ii2(m-j)|Ta+6|a|+JDJDa_|2 

n-1 |a|+j=mJ n 
*u *+ dTdy + 

í |u|2 dт dy} 
** т. 

+ 
1__ 

Putting X - r^° and u = A , we deduce that for every u € W (2R ) , 

for every (t, x) € JR and for every r > 0 , we have 

|u(tr2a, xr 2 a ) | 2 < 

1 cr+m _ n ~ 1 ( J j «m) n 

< C . ( t r 2 c f ) m " m
 r 2 » - l { J f | T a + 6 l a l + j D _ D « u | 2 d T d y 

| a | + j = m J n 
+ 

+ r J | u | 2 d T dy } . 

B+ 

Finally, there exists a constant C > 0 such that for every (t, x ) ^ 

e 3R. , for every r > 0 and for every u _ W .(JR.), we have 
+ o, 6 + 

|u(t,x)|2 < C. t m m r2m-l {||u||2m + r||u||2_} . 
W m . L Z 

a, 6 

2 —2 
This yields the inequality (2.1) by choosing r = | |u| | . | |u| | „•. 

W m . L 
a, 6 

(ii) We begin by proving 

LEMMA II,1. We have the algebraical and topological imbedding 

W m ^ ( R ^ ) C H M i n (- a'" a / 6 )(R n) . 

P r o o f . By Chapter I, we know that V m (3R+) C H
_ a (JR+) . 

Hence there exists a constant C > 0 such that for every 

v € W (R ) , we h a v e a , o T 
-i-oo * +00 +00 

J ( l+TV a | F (Pv) | 2 dT < C.{ | | t a + mDmv|2dt + I | t a + 6 m v | 2 d t } , 
-« o o 

where F stands for the Fourier transform in the variable t and P 

for a linear and continuous extension operator from H""a(JR) (for 

13 



example, P can be taken as the Babitch extension). If v € W . (R ), 
a, o + 

then the function u(t) -= v(tA~ ), where A is a positive constant, 

belongs to W g (£ ); for every A > 0 we have 
+ 00 +00 +00 

( (A2/6+T2)->(Pv)|2dT < C {( |ta+BD»v|2dt + A2mf |t°+Smv|2dt) . 

-00 0 0 

Let now u be an element of «0(R ) and for every £ e 1R \{0} , let 

us consider the function v(t) = u(t, £)» where ^ means the Fourier 

transform in the variable x £ Rn~ ; then F(PV)(T) =yPu(T, 5),where 

& means the Fourier transform in the variable (t, x) in JR . From 

the preceding inequality we deduce, taking A -= |s| and integrating in 

£ over R , that there exists a constant C > 0 such that for all 

u e #(Rn) , we have 

||Fu|| _ff* < C.||u|| 
H <V Wa,S<*+> 

with a = Min (-a, -o/6)t and thus 

i i u i i . „ * n < c . i i u i i m n 

H <*?) v">8<*») 

The space 2) (Rn) being dense in the space W « (R.) , the proof of 

Lemma II.1 is complete. 

Now, if Min (-a, -a/6) > n/2 and if u e Wm
 x0R

n), then u 
a , o + 

*+ 
such t h a t for every u € Wm

 fi0R+) and for every ( t , x) € R" , we 

have 

| u ( t , x ) | 2 < C.{ J [ T 2 < 0 t « < - - > + J V j > a
u ( T , , ) | 2 <>T dy + 

U ! - M = T J n Z X | o |+ j -m J П 

( r , y ) | 2 dr dy} . 

+ 

The change of v a r i a b l e of ( i ) y i e l d s 

| u ( t , x ) | 2 < 
- f x - 2 ( " + « < - J » 1 | 2 ( « - j ) | т 2 ( a + в ( - j ) + J ) D 3 « u ( T f y ) 1 2 d т d : / 

1 UI+í=тJ n . t X X.u П ^ x | a | + j = m J ж n 

14 



+ |u(т,y)| dт dy} ; 
*• n 

- 6
 m + 

we choose A • r
2 0
 and u «* A , which gives 

2q+l+S(n-l) 

|u(t,x)|
2
 < C. r"

 2 o
 {||u||

2

m
 „ + r ||u||

2

2
 } , 

W
o,«<*+>

 L
 <*+> 

and taking r - | |u| | , I I
 u
 1 I ~o »

 w e
 obtain the inequality (2.2). 

PROPOSITION II. 2. Let I be an integer, 0 4 £ < -a - -r ; 

then the map u 1-—> y u « D u(t-O): 10(Rn) ->0(Rn~ ) can be extended to 
m n - 2-<g+*> + 1 

a linear and continuous map from W fi (R.) into 2 6 ftR11""1) 

P r o o f . By Chapter I there exists a constant C > 0 such 

that for every v 6 W .(R,), we have 
0,0 + 

+00 +00 

|D*v(0)|2 < C.{ ( |ta+mDmv|2dt + ( |ta+6mv|2dt} . 

0 ° 1 

If v 6 Wm .OR,), then the function u(t) = v(t A a) , where A is a 
0,0 + 

positive constant, belongs to W .(R ); hence there exists a constant 

C > 0 such that for every v £ W . (R ) and for every A > 0 , we 

have 

2(0+£)+l 26 |D*v(o)|2 < C. {f |t0+mD»v|2dt + A2m( |t°+5,nv|2dt} 

Let now u be an element of & OR?) , and for every £ € Rn~ \{0} let 

us consider the function v(t) - u(t, £)» where ~ is the Fourier 

transform in the variable x € R ; as in Lemma II. 1, we deduce 

HY£UM 2(0+£) + l ̂ C ' Nu|| . 
H" 26 Wa,6 

It will be very useful in the sequel to have an inequality of 

the "compacity" type for the spaces W .: 
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PROPOSITION II. 3. Let m be an integev >l and put 6. = 

= Min (1, 6). Theve exists a constant C > 0 such that fov evevy 

e > 0 and fov evevy u e W m (E^) with supp u C {|t| < 1} , 

we have 

( 2 . 3 ) | | u | | m_1 < C. u l l u M + e - c » - i > , |.„, , } . 
W _ i _ * * W * --

P r o o f : We begin by establishing a lemma: 

LEMMA II. 2. The map u >-+ { | | tCT+mDmu || 2 2 + ' | | t C T + 6 lVu | | 2 2 + 
2 k L |a|=m L 

+ I.I u | | «-" is an equivalent novm fov the space W GLR^) . 

P r o o f . Let k and j be integers such that a+6k+j ^ 0 

and k+j 4 m . It follows from Chapter I that if v(t) € W m (E,), 

then tCT+6k+:iDJv e L2(E+) and 

+00 +«> +co 

( |tCT+6k+J DJv|2dt < C.{( |tCT+mDmv|2dt + ( * |tCT+6mv|2dt} 

0 0 0 

where C is a constant >0 which does not depend on v . 

If v e W m
 r(E,). then the function u(t) = v(t A~ ) , where 

a, 0 + 
A is a positive constant, belongs to W f(R,); hence there exists 

a,o + 
a constant C > 0 such that for everv v € W _. (E. ) and for every 

a, 0 + 
A , we have 

(2.4) A 2 k( |t C T + 6 k +V tv|
2dt < C.{( |tCT+mDmv|2dt + A 2 m( |tCT+6mv|2dt}. 

0 0 0 

Let now u be an element of 0 ( E ) and for every £ € E \{0}, let 

us consider the function v(t) = u(t, £), where * means the Fourier 

transform in the variable x € E . From the preceding inequality we 

deduce, taking A = |£| and integrating in £ over E , that there 

exists a constant C > 0 such that for every u € S)(E ) , we have 

Hull2-, i C. {||t
CT+mD-u||22 H- 7 ||t°+aiV"l|2

2 + ||u||22} . 
»">4 ' L2 |_t— L2 L2 

The space Q(R,) being dense in the space W (R ) , Lemma II.2 is a 
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consequence of this inequality and the Banach theorem. 

P r o o f of Proposition II.3. The inequality (2.4) with j 

-1, k - 1 and A -» e > 0 implie 

l t
a+S

+
ш-l

D
m-l

v |
2
 d t

 < I ь 
л f
 2 f I a+m^m ' 12 Лль , -2(m-l)f . a+őm .2 , , 

4 C.{ є | t D v | dt + є
 v

 ' | t v I dt} . 

0 +« 

0 0 

We apply this inequality to the function v(t) - ti(t, £ ) for u € 

€ 90R +) and ? € R n _ 1\{0} and integrate in 5 over ]Rn~1 . This 

yields 

| | t a + . + - l D « - l u | | 2 

(2.5) L <> 

< C. { e 2 M t 0 + X « H 2
2 n + e-^-^UuM^ n } 
Ł-CRp "L

2
(jф 

provided supp u C {|t| <. 1}. 

Besides, we know that there exists a constant C > 0 such that 

for every e > 0 and for every v(x) € H QR ) , we have 

(2.6) I f |D«v|2dx < C.{.2 I f |D%|2dx + 
|o|-m-lJ„n-l x |a|=mJ„n-l 

'(-Of |T 
J„n-1 

™ R " ^ -2(m-l) f 1 1 2 , , + e v ' \ v dx}. 

We use this inequality to the function v(x) = u(t,x), t > 0, where 

u € 2>(R+); we multiply by ta m and integrate in t > 0 over 2R , 

thus obtaining 

(2.7) I ||t°+6mD%||22 < C. {e2 I ||ta+5mD%||2
2 + 

|o|-m-l X L Z(E +) |o|-m X L Z(R +) 

L 2 (IRn) 

provided supp u C {|t| 4 1}. 

The inequality (2.3) for { < 1 is a consequence of (2.5) and 

(2.7). For 6 >. 1 , we replace the inequality (2.5) by the inequality 

2 Fucik, Kufner 17 



(2.8) Ht^D™"1"!!2, n < C. {e2||t°+mD™u||2
2 + 

+ e - 2 < " - 1 ) l l « l l 2
2 n J 

if supp u C {|t| .<_ 1}. This inequality is easy to prove in the same 

way as (2.5). 

After that we multiply (2.7) by t and choose e = 

= rit , n > 0 . We complete the proof as before. 

III. The case of a bounded open set fi ĉf ]R , n > 1 

Let fi be a bounded open set of B. with a boundary T. We 

assume that fi is a compact C -manifold. We introduce a C -function 

<j> : JR. —y R such that 

fi = {x € R11; <f>(x) > 0 } ; 

(3.1) \ T = {x 6 E n ; <J)(x) = 0}, 

grad 4>(x) t 0 for x € T, 

where grad <|>(x) = (r--—(x) , ..., r----(x)) is the gradient vector as-
Xl Xn 

sociated with <f> . Let (Xi)n<i< b e v e c t o r fields with C°°-coef-

ficients on JR. such that 

(3.2) X is transversal to r on r , i. e. (x0<f>) (
x) ^ ° 

for x e T; 

(3.3) X. is tangent to r on T for i = 1, ..., q, i. e. 

(X±<J)) (x) = 0 for x € r; 

(3.4) for every x £ fi, the rank of the system (X.(x)) is 

equal to n . 

Let m be an integer, -a and 6 two real numbers >0 such 

that a+m ^ 0 and a+6m ^ 0 . We consider the space 

T7m ,_N , ^ T2 /„ x JMax(0,a-i-<(S,a>)„a _ T 2 / _ N _ i i . i 
W (Q) = {u £ L (fi);<j> X u € L (fi) for jaj 4 m} 

equipped with the canonical norm. (We have used the notation X 

18 



- X n ° . . . X q f o r a = (a , . . . , a ) <£ JN q + 1 and < 6 , a > -
0 q 0 q 

- « I a + a ) 
i=l 

PROPOSITION III.1. Under the above assumptions, we have 

(1) W^.(0) C Hm
oc(fi) ; 

(ii) $ u € W 6 W . fo r every * 6 C (ft) and / o p every u € W §(--)• 

P r o o f . (i) Under the assumption (3.4), for every xft € ft 

there exists a neighbourhood V(x0) of x in ft in which we can 

write 

q 

IT" = * 3 i ( x ) xi 
Xk i=-0 

for k = 1, ..., n with some convenient functions 3. which are C 

in V(x_), and we can easily verify (i). 

(ii) Let $ be a C°°-function on ft and u -6 W m
 (g(ft). Then $ u € 

€ L (ft) and for |oc| 4 m , we have 

X°(*u) - I («) (I8.) (Xa-Bu) . 

It results that $ M a x ( 0 , a + < 6 » a > )x a (*u) € L2(ft) , that is to say $ u € 

REMARK III.1. It is easy to prove that the space W m .(ft) does 

not depend on the choice of the vector fields (̂ ')r.<-,< satisfying 

the conditions (3.2), (3.3), (3.4). 

PROPOSITION III.2. (i) If m > n/2 and if u e Wm g(„) , then 

u is continuous on ft and there exists a constant C > 0 such that 

for every u _ W 6(^) and for every x £ ft ̂  we have 

_ q + m _ - - I / .* \ 

(3 .5) i»(x)i < c. • ( * ) " 2 - " 2m m i i u i r ! 2 - i i u i i 1 : - ! 2 - ; 
"m,« L 

(ii) if Min(-a, -a/6) > n/2 and if u e W m
 g(Q) , t h e n u is c o n 

tinuous and hounded on ft and there exists a constant C > 0 such 

that for every u e W JT(^) <^nd for every x € ft 3 we have 
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1+S(n-1) x + l+6(n-l) 

(3.6) |u(x)| < C. ||„||" 2 o i|u|| 2a 

"„,« L 

P r o o f . (i) The inequality (3.5) can be obtained by means 

of Proposition III.l and of a partition of unity for functions u € 

€ W .(ft) with supports in a neighbourhood of the boundary Y of ft. 

Let be a point of V ; from the properties (3.1) we see 

that there exists a neighbourhood v ( x
0 ) °f x

0
 i n R a n d a dif-

feomorphism 0 = (91 ) with 6 = 4 from V(x_) onto the 
i n u 

unit ball of H such that 

f e(V D ft) = B + = {y e H n ; |y| ^ 1 , y > 0} ; 

M < - . y - 0} ; (3.7) (V Л Г) = B
Q
 = {y e ж 

X
Q
(
 k
) = 0 in V for k = 1, ..., n-1 . 

Under these conditions, if u £ W r(^) with supp u c V and if v 

-1 r,m r.n\ = u • 0 * , then v £ W .OR.) with supp v c B . In fact, to this 

end it suffices to notice that the diffeomorphism 0 transforms the 

vector fields (X.)_ . into the vector fields (I.)r,^-^ with 
1 0<_i. <_q 1 0 ^ 1 <_q 

(3.8) I. Ә 

lw 
J
 Гl 

a(y) 9-0 for y є B = {y € E n ; |y| < 1} ; 

(3.9) I± - IÏ + [(X±
Ф) . Є "

1
] - ^ for 

where I. means a homogeneous differential operator of order 1 , 

with C -coefficients in the variables y,, ..., y , ; 

(3.10) for every y £ B = {y e IRn ; |y| < U , the rank of the 

system (I-)n<i< i s e c l u a l t o n * 

Hence, the inequality (3.5) follows from the inequality (2.1) in 

Proposition II.1. 

(ii) In the same way, the inequality (3.6) at the boundary follows 

from the inequality (2.2) in Proposition II.1. 

In the interior, it follows from the fact that if u € WQ 6(ft), 
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then u € H. (ft) and then it belongs to H_ (ft) as well where loc loc 

m' = - TTT7 TTJ in fact, since a+m > 0 and a+Sm > 0 , we have 
1+6(n-1) ' — ~ 

m' <_ m . Then the inequality (3.6) in the interior is a consequence 

of the classical inequality 

i u ( X ) i < c . \\u\rfjm1 i iuM 1 - 1 1 7 2 1 * ' • 
H L 

PROPOSITION III. 3. Let I be an integevs 0 <_ £ < - a - •=•; then 
.£ 

the map u —»• y 0
u = — r l r : ̂ (fi) """*• &-KO can be extended to a lineav 

_ 2(a+£)+l 
and continuous map fvom Wm (ft) in to H 2<S (r) 

(— means the derivative along the unit normal vector to r which 
a11 

points into the interior of ft.) This proposition follows from Propo

sition II.2. 

PROPOSITION III. 4. Let m be an integev _i 1 and 6 = 

-= Min (1, 6). Theve exists a constant C > 0 such that fov evevy 

z > 0 and fov evevy u g W (Si) _ we have 

(3.H) ||u|| < C.{ e ||u|| + - ^ - " l I u M }. 

V«_.« Wa,6 L 

P r o o f . As before, we see that the inequality (3.11) at the 

boundary follows from the inequality (2.3) and, in the interior, from 

the classical inequality for the usual Sobolev spaces: 

l|u|| __, < C. { e||u|| _ + c-<m-1)||u|| }. 
H H L 
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