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EMBEDDTNGS OF SOBOLEV SPACES 

David E. Edmunds 

i 

1. Introduction 

As is very well known, Sobolev spaces provide a natural frame-

work for the modern theory of partial differential equations, and 

this theory is greatly aided Ъy the possibility of embedding one So-

bolev space in a variety of other sucћ spaces, in L spaces, or even 

in spaces of continuous functions, tћe corresponding embedding maps 

Ъeing continuous and often compact. The compact embedđings are very 

important; they make it possible to reduce elliptic boundary-value 

problems to questions involving the Fredholm-Riesz-Schauder theory of 

compact linaar operators, and they are at the heart of much of the 

work on tћe asymptotic distribution of eigenvalues of elliptic 

operators. 

ïn tћis paper we discuss some of tћese embedding maps, focus-

sing initially on tћe question as to whether tћey have any properties 

better than mere continuity, sucћ as compactness. A convenient crite-

rion for tћis is provided" by tћe notion of a k-set contraction, 

wћich generalises the idea of a compact map; the compact maps are 

precisely the O-set contractions. Some results concerning the k-set 

contractive nature of certain embedding maps are given, botћ for 

bounded and unbounded зpace domains; tћe applications include the 

location of tћe essential spectrum of an elliptic operator in an un-

bounded domain. If tћe embedding map is compact it is desirable to 

classify it in some way, and to do this we use tћe approximation num-

bers of tћe map, in tћe sense of PIETSCH [18]; tћese measure tћe 

closeness w;ith whicћ tћe map can be approximated by maps witћ finite-

dimensional range. We obtain estimates for tћese numbers Ъy means 

somewћat different from tћose employeđ Ъy BIRMAN and SOLOMJAK [з] and 
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other writers on this topic. The results have applications to the 

theory of the asymptotic distribution of eigenvalues of elliptic 

operators, for example. 

2. Embeddings and ball-k-set contráctions 

Denote by x = (x., ..., x ) points of n-dimensional real 

Euclidean space R (n = 2 ) , and let ft be a non-empty ďomain in 

R ; that is, a connected open set. The closure and boundary of ft 

will be represented by ft and őft respectively. The symbol a 

will always be reserved for a multi-index (a., ..., a ) , where each 

n a. a 
faf = V a.,a! = a,! ... a !, and x = x, ... x 1 ' .£. i' 1 n ' 1 n 

Partial derivatives will be expressed by means of the symbol 

»a- - Ifľ 1 
i-i * Э X І > 

Given any positive integer m and any p , 1 = p < ~, the Sobolev 

space W (ft) is defined to be {u:D u € Lp(ft) for all a,}a| = m ) , 

endowed with the norm 

l l - H . . p . 0 - U < H D a - I I J . J 1 / P . 
' F' l|a|=m F* ' 

where 

І V | ' P . П = ( L , v o o , D d x ) 
i/p 

v ( x ) V dx| 

'ft 

Here the functions involved may be real- or complex-valued, but for 

definiteness we shall assume that they are complex-valued; the deri­

vatives are taken in the sense of distributions. The closure in 

W
m,p
(ft) of the set C~(ft) of all infinitely differentiable complex-

o_ _ 
valued functions with compact support in ft is denoted by W

 ,p
(ft). 

One of the most celebrated embedding theorems is that due to 

Rellich; it asserts that if ft is bounded and has a smooth enough 
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1 2 2 
boundary 3ft , then W ' (ft) is compactly embedded in L (ft). In 

1 2 2 
other words, the identity map I : W ' (ft) ->- L (ft) is compact. As 

for the conditions to be imposed on Sft , it is enough (cf. for exam­

ple, [l6]j, p. 17) that 9ft should be of class C , by which we mean 

that given any p€3ft , there exist an n-neighbourhood N(p) of p, 

a Cartesian co-ordinate system y = (y * , y ) , yr = (y-, , ...» y i) » 

with y =j 0 at x = p , and a function f such that "J P 
3ft CI N(p) - {(y\ f pCyM) : y

f 6 G p } , 

where G is a convex (n-l)-neighbourhood of 0 and f is a 
P P 

real-valued continuous function on the (n-1)—closure G of G . 
P P 

°1 2 2 

The corresponding natural map I~ : W ' (ft) -* L (ft) is always com­

pact, no matter what kind of boundary the bounded set ft may have. 

If 3ft is not of class C the embedding map I may not be 

compact, and to illustrate this we refer to an example constructed 

by FRAENKEL JTOj (see also \f>"\ » p.-521 for a somewhat similar exam­

ple in connection with the Poincare -inequality). The example consists 
2 

of a subset S of H referred to as 'rooms and passages1 and made 

up of an infinite sequence of square boxes of decreasing size joined 

together by pipes: the origin is a point of accumulation of S , and 

it is this point which is responsible for the failure of 3S to be 

of class C . However, S is not remarkably pathological, for 3S is 

a rectifiable Jordan curve and there are C ' homeomorphisms of 

— 2 

neighbourhoods of S which map S onto the open unit ball in R . 

Despite the relatively innocuous nature of 3S , however, the cor­

responding map I is not compact. Let us try to analyse what goes 

wrong in cases such as this. 

If ft is bounded and ft- is any open set such that ft-c ft > 

then there is an open set' JK , with 3ft- analytic, such that 

— — 1 2 
ftn C ft-, c ft- c ft , and hence the natural embedding of W ' (ft) in 
2 

L (̂ n) is compact, as it may be represented as the composition of 
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the natural maps 

W
1,2
(ft) -»• W

1 , 2
( ^ ) + L

2
(fi

1
)->- L

2
(fi

Q
) , 

in which the outer two maps are continuous and the middle one is com­

pact. This clarifies the role of the boundary in situations in which 

2 
I is not compact, and suggests that we should look at L integrals 

over boundary strips. Thus given any e > 0 , put fi(e) = 

= {x 6 ft : dist (x, 3fi) < e} and set 

Г (є) = sup í [ |u(x )|2dx/||uJ|2>2^: u € W1,2(fi) \ {0}| 

Evidently 0 < ~ (e) ̂  1 ; and T (e) is monotonic non-increasing 

as e 4- 0 , so that we may put 

rQ(0) = llm r (e) . 

e -> 0 

My colleague Amick has pursued this line of enquiry and has shown [ lj 

that I is compact if and only if T (0) = 0 . This result is a spe­

cial case of his work on I from the standpoint of ball-k-set con­

tractions, and to explain this we make a short digression. 

Let X and Y be Banach spaces and let B be a bounded subset 

of X . The ball-measure of non-compactness of B is defined to be 

3 (B) = inf {e > 0 : B can be covered by finitely many open 

balls of radius e} . 

A map T € B(X, Y) is called a ball-k-set contraction if for all 

bounded sets B C X , 8 (T(B)) ̂  k 6X(B) ; for such a map we put 

Y (T) - inf { k = 0 : T is a ball-k-set contraction} . 

Evidently T is compact if and only if y (T) = 0 ; note also that 

Y (T) = | | T| | for all T £ B(X,Y), so that new information about T 

is gained only if it turns out that y (T) < j | T] | . There is now a 

well-developed theory associated with these ideas, with a number of 

interesting theorems available; we mention in particular the results 

that if "X = Y , then lim (y (T11)) / n exists and equals the radius 
-; n*oo 

of the essential spectrum of T [ 17J , while i d
x ~

T (idv i s t n e i d e n ~ 
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tity mapping of X to X) is a Fredholm map of index 0 if Y ( T ) < 

< 1 . 

1 2 2 

Returning to the embedding I of W * (ft) in L (ft), a connec­

tion between rn(°) an<* Y(~) is provided by AMICK [lj , who has 

shown that 

(l) Y ( D = (r^(o)) 1 / 2 

for any bounded domain ft . To sketch the proof of this interesting 

result, suppose first that n = | Y ( I ) | - r
0(°)

 > ° > a n d choose 

e > 0 so small that ro^ e) 1 r n ^ + ^ n * L e t U b e a n °P e n s e t 

such that ft \fi(e) c U C Uc ft , with 3U of class C . Then since 

1 2 2 
W * (ft) is compactly embedded in L (U), the open unit ball B in 
1 2 2 

W ' (ft) is totally bounded as a subset of L (U), so that there 
2 

exist functions f., . . . » f, € L (U) such that given any u e B , 

| |u - f . | | 2 n = n/Q f o r s o m e i > 1 = i =̂ k * I f w e e x t e n d t n e f • 

to the whole of ft by setting them equal to 0 in ft\U, and denote 

the extensions by f., then since Y O ) = S ? (1(B)), there exists 
3 „ 9 9 L <fl> 

v € B such that | |v - -jll^n t I Y ( D | " n/8 for j = 1, 2, ..., 

k . Hence for a suitable j , 

H'll2.0(e) -• I M I
2 . ^ - II'- fjll2.0-H'-

?jlt2.n 

> IY CD I 2 - n/4 

• r .<°> + h • 
But this implies that 

r
n < e ) i r

n < ° > + ! 

which contradicts the inequality V (e) < r (0) + h r\ . 

Thus | Y ( I ) | < r
0^

0^ ' T o P r o v e equality, suppose that ~_(0) > 

> J Y ( 1 ) | » in which case there exists 6 > 0 such that 

- dS f(r n(o) - 28)h - Y(i) - 6 > 0 . 

2 
, , g € L (ft) such that given any u € B, 

llu ~ 8 • I I o o = y^1^ + 5 f o r s o m e
 S )i »

 l ± i ,1 l * Take Ej > 0 so 

small that T (e ) < ~ (0) + 6; there exists u . e B such that 
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i 1 l | _ n ( e . > r
a ( ° ) - «• L e t <=_ 6 ( 0 , E j ) b e s u c h t h a t 

1 i ' l 2 , S ! ( e 2 ) -. s> s o t h a t • I u i l l 2 . a ( c 1 > \ 0 c e _ > - V 0 ) " 2 6 ' I h u s 

+ү(I)+ 6 

J
2

y 

for some 1.9 1 4 £, 4 £, 

<ro(0) - 26)^ < ll» 1ll 2 > 0 ( e i) V 0 ( e 2) < U S t J I z . B C e . K l K B j ) ^ 

which shows that C <. l l 8 l i l l 2 f n ( e i ) s o ( e 2 ) • -et u 2 6 B be such 

that )|«21I2 „ , ) > r 0(°)
 _ s > t h e r e exist e, e (0,e2) and «,_ , 

1 < l_ < 1 , such that c < l l 8 l 2 l l 2 t 0 ( e 2 ) N 0 ( e 3 ) . Proceeding in this 

way we obtain a strictly decreasing sequence (e.) of positive num­

bers and a sequence (I.) of integers, with 1 4 £. _£ Jl for all i, 

such that 5 < ll8 J l ill 2 > 0 ( e i) X 0 ( e i_ i) for i - 2. 3 Infinite-

ly many of the £. must be equal, to iQ say; but this implies that 

IISo I I o o = °° • T n i s contradiction establishes (1). 

Since Y ( ^ ) 4 i j X[ J 4 1 for all bounded domains ft, it is natu­

ral to ask whether Y ( I ) can be equal to 1 , or whether Y ( * ) < t 

for all such sets ft, no matter what 8ft is like. It turns out that 

the former is the case, for [l] contains an example of 'rooms and 

passages1 type for which r (0) = 1 , and hence Y ( I ) = 1 •. 

One further comment on this circle of ideas should be made. This 

concerns the Poincare inequality, which asserts that for a bounded 

domain ft with suitable restrictions on 3ft , 

(|u(x)| dx 4 const. <\ I u(x)dx[ +• J Jgrad u(x)j dx > 
ft I. J ft -* ft J 

1 2 

for all u € W ' (ft), the constant being independent of the particu­

lar u . It emerges from the work of [l] that the Poincare inequality 

holds if and only if FQ(0) < 1 , or, of course, if and only Y ( * ) < 

< 1 . The.ubiquitous 'rooms and passages' can also be used to provide 

an example of a bounded domain ft for which the Poincare inequality 

holds but I is not compact. 

So far we have mentioned bjpundeji domains ft only. If ft is un-
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bounded the position is much worse as regards compact embeddings, 

for even if 9ft is very smooth, neither I nor I„ is compact un­

less ft becomes very thin for large values of J x j ; the compactness 

of I is a particularly rare phenomenon. However, there is still 

something that can be salvaged, for EVANS and I have shown |_7J that 

if W 1 , 2(Q) is normed by 7 |JDau|] , then 

|aj<l 

y(I0) < lim sup { |ftf)B(x, d)(/fB(x, d ) | } 1 / n , 

where d is any number such that 0 < d <_ 1 , B(x, d) is the open 

ball in E. with centre x and radius d , and |.f denotes Lebes-

gue n-measure. (Actually we used a measure of noncompactness slight­

ly different from that presented here, but the end result is unaffec­

ted.) This kind of result can be used (cf. [7]) to locate the essen­

tial spectrum of certain self-adjoint realisations of elliptic 

operators on unbounded domains, such as cylinders or strips, which 

do not open out at infinity. For the embedding maps I of W (ft) 

in Lp(ft) (p > n) estimates of y(l ) are given in [8j. Of course, 

weighted Sobolev spaces are, in various ways, more suitable for the 

study of problems involving unbounded domains, but the embeddings 

which then arise can often be handled by adaptations of the tech­

niques needed ror the results described above, and estimates for y 

obtained. 

3• Embeddings and approximation numbers 

Here we return to the case in which ft is a bounded domain in 

IR , and suppose that the boundary 8ft is smooth enough for various 

of the natural embeddings, such as that of the Rellich theorem, to 

be compact. For example, it is known that if 1 < _ P < ° ° , i i c l < c 0 

and r is a positive integer such that — > — - — , then W *p(ft) 

is compactly embedded in L^(ft) provided that 8ft is minimally 

smooth in the sense of STEIN ( L2()J , p. 189). The question then arise 
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as to whether it is possible to clasify these compact embedding maps 

in some useful way; this matter has been extensively discussed in 

recent times by numerous authors, in particular by BIRMAN and SOLOM-

JAK [3] and by TRIEBEL \l l] , [2 2]. 

The basic idea is that of the approximation numbers of a map, 

in the terminology of PIETSCH [l8]. Let X, Y be Banach spaces and 

let T e B(X, Y) . For each r € IN define 

a (T) = inf {|]T - F||: F €. B(X, Y) , dim F(X) < r} ; 

a (T) is called the r -approximation number of T , and it is clear 

that ||T|| = aQ(T) > a (T) > ... > 0 . By analogy with the familiar 

sequence spaces, given any real s > 0 , T is said to be of type I 

if I (a (T))s < »; T is of type cQ if lim a.r(T) = 0 . Every 

r=0 r-><» 

map of type cn is compact, as it is the limit of maps with finite-

dimensional range, but the converse is not true, even in separable 

spaces, as is shown by the result of Per Enflo on the existence of a 

separable Banach space without the approximation property. 

One of the most interesting properties of approximation numbers 

is that if X and Y are Hilbert spaces, T is compact and (X ) 

is the sequence of eigenvalues of the positive square root (T*T) 

arranged in descending order of magnitude, then a (T) = a (T*) = X 

for all r € IN . In particular, if X = Y and T is positive, self-

adjoint and compact, a (T) = X for all r € IN . It is this clas­

sical result which leads to one of the most natural applications of 

these notions, namely to questions of the distribution of eigenvalues 

of elliptic boundary-value problems. Consider, as a simple example, 

the following eigenvalue problem in a bounded domain ft in JR : 

- Au + Xu = 0 in ft , u = 0 on 3ft . 

2 2 Denote by V the closed subspace of W * (ft) consisting of all 

those elements u which are zero on 3ft . Under mild smoothness con-

2 
ditions on 3ft it is known that the map A : V -»• L (ft) defined by 
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Au = - Au (u € V) is an isomorphism. Denote by V the space V 

endowed with the inner product (u, v) = (Au, Av) _ , and let J. 
2 LZ(Q) A 

be the canonical embedding of V. in L (Q). Since A is an isomor­

phism, («»«)A induces a norm on V. equivalent to the original 
2 

norm on V , and A is an isometry between V. and L (ft). If 9ft 

* — 1 2 2 
J A = J A : L (ft) -v L (ft) has a countable sequence (y ) of 

eigenvalues, each of finite multiplicity and such that | y | «*- 0 a 

r ->• °°, the corresponding eigenfunctions u forming a complete 

orthonormal set in L (ft) . If we put T = J. A , then given any 

2 
u € L (ft) there is a unique v e V such that Av = u , so that 

(Tu, u) 9 = - I v(x) Av(x) dx > 0 . It follows that T is posi-Гu, u) = - v 
L (fì) Jft 

tive and each y > 0 . Thus T = (T T ) 2 (the positive square root) 

* * * * 
has eigenvalues y , and as T T = J A A J. = J. J. we have y = 

r A A A A r 

= a (JA) • The eigenvalues y satisfy J A u = y u , that is, 

- Au = y u ; hence the y are eigenvalues of the original 

eigenvalue problem. Further, all the eigenvalues of the original 

problem are included in the y , and we conclude that the r f pr ' 

eigenvalue of this problem, X say, is given by X = 1/a (J») • 

Knowledge of the approximation numbers thus gives the X , and this 

can be exploited when the distribution of the X for large r is 

of importance, as in the celebrated problem of the behaviour of 

def 

N(t) = I 1 
X < t r = 

for large t . For it turns out to be relatively easy to estimate 

a r(J A), and that
 a

T(J
A) * ^"^ f o r large r , so that N(t) ** t n / 2 

as t -*• °° . These crude estimates can be appreciably refined so as 

to give the leading term of the asymptotic development of N(t) and 

good estimates for the remainder; BIRMAN and SOLOMJAK.- [4] and 
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and MiSTIVIER [l5] have impressive results in this direction, valid 

for the eigenvalues of arbitrary uniformly elliptic operators. A par­

ticular virtue of this kind of approach is that it eliminates the 

need to have the very precise estimates related to Green's functions 

upon which most other methods of estimation of N(t) rely. 

Another natural use which can be made of estimates of approxim­

ation numbers is to determine the rapidity of convergence of approxim­

ative processes. This kind of question is taken up in AUBIN's book 

[2] and by SCHOCK [19]. 

We now give one of the fundamental results concerning the 

approximation numbers of embedding maps. 

THEOREM 1. Let a be a bounded domain in TRn
y let 1 <_ p < °°, 

r 1 1 
1 < q < 00 and let r be a positive integev such that —> — - — . 
=- H F y n p q 

Then the s appvoximation number a (I0) of the embedding map I : 

W r , p(a) -*• Lq(ft) is 0(s"h) as s -> «», wheve h = - -
n 

- max (0, — - —) ; thus I is of type I if ht > 1. When p = q., 
_ / 

a (IQ) > const, s fov all lavge s. All these vesults hold also 

fov the embedding I : Wr'p(ft) •> Lq(fi) pvovided that ZQ. is mini­

mally smooth. 

Results of this kind seem to have been obtained first by BIRMAN 

and SOLOMJAK [3] , who used a method involving piecewise polynomial 

a p p r o x i m a t i o n . Since their work there have been numerous developments 

and embellishments of the theory, and various alternative methods of 

procedure have emerged, including the Fourier approximation method of 

[9]. Here we shall present a short proof of the theorem which uses 

piecewise polynomial approximations but is different from that given 

in [3]. The key step is given by the following lemma, the proof of 

which is due to D. J. Harris: 
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LEMMA 1. Let Q = {x t£ TR : a. < x. < b. for i = 1, 2, ..., n>, 

r 1 1 
and suppose that 1 <_ p <̂  q <°°j — > — _ — ^ where r is a positive 
integer. For all u e W r , p(Q) and all x € H n put 

(P u)(x) - ̂ 1 7 f x <y)
 (X ;,Y)~ Dau(y) dy , 

'Q |Q| |a|<r-l V Q 

where x0 ^s £h e characteristic function of Q. Let Q be subdivided 

nN ^»£o 2 congruent boxes Q.., and set 
2nN 3 

(P u ) ( x ) = I X ( x ) ( P u ) ( x ) , 
j = l g j r , ^ j 

T/zen for all u € W r , p ( Q ) with | | u | | n = 1 
r > P »Q 

||u - P Nu|| q > Q < C(2-
n N|Q|) h , 

where C depends only on n, r, p and q . 

x € Ҡ . 

P r o o f . In view of the density of C (Q) in W
 ,F
(Q) it 

is enough to prove the lemma when u 6 C (Q) . For such a u we have, 

by Taylor's formula, when x 6 K. , 

u(x) - (P u)(x) -

- ^-^- 7 ^T xAl)^y (l-T)
r
"

1
(x-y)

a
D

a
u(

T
x+y-Ty)dT 

|Q| |af-r
a
- J

K
n <> JQ 

- . I fr F . ( x )
 •

 s a ^ 

Then 

Vx>! i ^ f f x„(x-f)d, I |
z ]
a

т
-n-l , a

u ( x
 _

 z )
,

d т
 ^ 

Let Q be the box centred at 0 and obtained by translation of Q. 

A simple calculation shows that 

X
Q
(x) X

Q
( X - |) < x

Q
(x - z)x

2 Q
 (Z/T) , 

and hence 
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- ІQГ
1
 <8 * (

Xo
|D

a
u|))(x), say. 

z)ІD u(x-z)|dz 

Now put Q
Q
 - kU , where k is a positive number so chosen 

that |U| = 1 , and set z - kp5 , £ € 3U . Thus 

g ( z ) í iz"!.-""1 

•lp/2 
X 2 Q 0 / т ) d т 

< ; í ^ ) n - 1} (kp)l°l|ça| x2Q («) 

<_ (f)n (kp)r |e°lx2Q (.) . 

f rom w h i c h we s e e t h a t 

r-m+n 

'l«.li:.m--(iг)" f c™+" / | ţ в , ' đ ţ f 
әu Jc 

( r - n ) m + n - l , 
P dp 

= 2
rm+n _.--. j

 Q
 . l+mr/n

{
 <___)_+_-.-- I J ^ m

 d
_ ^ 

provided that (r - n)m + n > 0 . We take m so that — = 1 + — - —, 

m q p' 

which ensures that this condition is satisfied since — - — > _ — . 

q p n 

Now use Young's theorem on convolutions and Holder's inequality for 

sums; we have 

l l " - F

r , Q « M q ) Q i | _ f _ r ^ l l F c , l U , Q 

M - 1 1 U J I JIxo" a- l Í Л ï r 
I 0 Ţ - Г 

± C M l l - l l r , p , Q . 

m,K n • I Л Q " 
p,Ж 

inequality, with Q. in place of Q , giv< 

where C is a constant depending only on n, r, p and q . This 

1/q 

1/q 

l » - V M , i Q - ( j MxQj<- *-VЧ;.Q_ 

< C(|Q|2-
n N
)

Һ ò , i в , ,-.p.O 
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< C ( | Q | 2 "
n N
)

Һ 

C(|Q]2-
nN
)

h 

(} »•"!..... 

1/q 

which establishes the lemma, 

COROLLARY. Under the same conditions as the lemma save that the 

condition 1 < p <_ q < <» is replaced by 1 <_ q <_ p < °°» 

_ . + 1 - i 
q p _™hnN I» - P

H
- l l

q
,

Q
i C | Q | -

for a U u e W
r , p

( Q ) w i t h | ]u| | = 1 . 

P r o o f . By Holder's inequality and the lemma, 

1 1 

lu - P.
т
u| I

 п
 < u - P„u Q 

i N ' ' q,Q =- ' ' N ''p,q '
н 

|Я P 

i I 

< C( 2 -
n N
| Q l )

r / n
 ]Q|1 "

 D
 , 

as required. 

The lemma and the corollary give the O-estimates of the theorem 

almost immediately in the special case when fi = Q . For the map 

2
nN 

P.
T
 : u -> J Yr. P r»

 u
 --

s
 linear and of rank at most 2 V 1 = 

N . *•-
 A

Q. r ,Q. i t 
3 = 1

 Hl , y
3 r ! J. '

a
'

< r 

= 2
n N
 M , say. Thus as I|I - * „ | |

q > Q
 < 2~

n N h
|Q|

n
 "

 p + q
 C , we see 

t h a t
 r

 +
 1 _ I 

a (I) < C|Ql
n q P

 M
h
 s"

h 

s ' ' 
nN 

when s is of the form 2 m . However, given any positive integer 

s , there exists N e IN such that 2
n N
 M <̂  s < 2

n
^

N + 1
' M , and 

a
 .„,i\ (I) < a (I) < a (I) , from which it easily follows that 
2
n(N+l)

M
 - s «

 2
n N

M 

a (I) = 0(s ) as s •* °° . 

In the more general case in which we merely assume that Q is 

bounded and has a minimally smooth boundary we know' (_2fj]> p. 181) 

that there is an extension map E : W
r , P

( Q ) ->• W
r , p

Q R
n
) such that for 
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all u € Wr,p(fi), 

||»llr p n < ll=«ll n < c !|u||r , 
r»P» « r, p ,1R ' p' w 

where c is a constant independent of u and p ; it depends, how­

ever, on r . Let Q be a box such that fl c Q • Since W ,P(Q) 

coincides with the set of restrictions to Q of functions in 

W r , p G R n ) , given any u e Wr,P(ft) we define u = Eu| € W r , p(Q) ; 

clearly u(x) = u(x) for all x 6 Q , and 

l l » l l r ! p , Q i H E u l l r > p , m I 1 i c I H I r , P , « • 
Hence 

2nN „nN 

II" " J x xQ j n nP r > Q j"llq > f i i l l " " Ix xQj P r > Q j » | | q > Q 

( 2 ) i + l 1 
< C c | Q l n q p 2 _ n N h 1 r , p , f t 

from which we conclude that, as before, a (I) = 0(s~ ) as s -> «> . 

For I- the results follow as for I , but without any conditions on 

3Q since the extensions needed may be made without them. 

R e m a r k . An examination of the arguments used above shows 

that the constant C may be taken to be of the form 

C(r, n, p, q) = K(r, n) 2nl l l h~l , 

where I = 1 - max (0, — - —) and h = — - max (0, — - —) . 

p q n p q 

To complete the proof of the theorem it is enough to obtain the 

lower bounds for the approximation numbers of the map IQ : W ,p(fi) -* 

•*• LP(ft) since a (I) :• a (IQ) for all s € IN . The argument given 

to establish this owes much to my colleague V. B. Moscatelli, and 

begins with two simple lemmas. 

Lemma 2. Let X be an r-dimensiohal Banaoh space (r >. I)3 and 

let id : X ->- X be the identity map. Then a .(id) = 1 . 

P r o o f . Let F e B(X) be such that dim F(X) 4 r - 1 . By 
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Riesz*s lemma, given any 9 € (0, 1), there exists xfi e X such that 

| | xQ | | = 1 and | | xQ - F (x) | | > 6 for all x e X . Hence. 

| | id - 3? | | = sup {| |x - F(x)| | : x € Xr,| |x| | = 1} > 9 • 

Thus ar_1(id) > 1 . But a ^ ^ i d ) < aQ(id) = 1 . The lemma follows. 

Lemma 3. -Let X and Y be Banach spaces such that X c Y 

algebraically and topologically3 and let i : X -> Y be the natural 

embedding map. Let X be an r-dimensional subspace of X (r ^ 1) and 

suppose there is a positive number c such that for all x € X 3 

l l x l l x 4
 C I I X I I Y •

 L e t p oe a projection of Y onto i(X ) . Then 

V l w ' ic -Mligr 1 . 

P r o o f . Let id : X -»» X be the identity map, let i : r r r r r 

X -*• X be the natural map and let j : i(X ) -> X be the identity 

map. Then id = i o P o i o i , so that by lemma 2, K r J r.- r r ' J ' 

1 = ar_1(idr) < ||j rH ||Pr|| ||i rH a r - 1(l) < c||Pr||ar_1(i) . 

Completion of the proof of Theorem 1. 

Take Q to be the unit cube (0, 1) , let s be a positive 

integer, let j be the integer such that (j - l ) n < s < j n , let K 

be the set of all multi-indices k - (k., ..., k ) such that 

1 n 
0 4 k. 4 j - 1 for i = 1, . . . , n, and for each k € K put Q, = 

= {x : k . / j < x. < (k. + l ) / j for i = 1, . . . , n} . Thus Q \ U Q, 
1 1 1 keK k 

has zero measure. Let <j> e CQ(Q) be such that | I <f> I I o Q = 1 » t n e n 

the functions <\>, (k € K) defined by <f>,(x) = j 4>(JX - k ) a r e i n 

Cn(Q, ) and sa t i s fy 

n(- - -) 
(*k> V > L 2 ( Q ) "

 6 k k - H*kllqfQ - ̂
 2 ' H * l l q f Q

 (<* * l> . ' 

Let V be the linear span of the 4>, (k e. K) and define P. : 
K J 

L2(Q) + V by 
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P u = I ( u , (j> ) <j>k ; 
3 keK K L Z ( Q ) K 

then P i s a p r o j e c t i o n and 

M V I ! P Q = j * ( 2 " ^ l ^ l l p Q " ' ( u ' *k> 2 IP ' 3 P , g P , g k€K fc L^(Q) 

S i n c e . . 

l< U '* k > 2 I ^ J n ( ? " ^ M - I l p Q l U H p . Q 
k L - i ( Q ) p , Q k p ,Q 

it follows easily that 

11?* I I i M + llp.Q H*llp',Q (P' = P^P-D)-
~ ° r o 

G i v e n any u € V, u - P . u € W * F ( Q ) and 

H u l l , - f T I !(u,*k) 2 |P | | D % k | | P } 1/P 

, P ' y l |a]< r keK k L Z ( Q ) fc p , y k j 

-1"<i"itlI
a,'"''"'","'-')"l..,<-',

l'<«ll 
- ( , ? ]

| - | ' I I » M I ; . Q ) (3) - | . i J ' - ' H I D ^ I I ^ n ) 1 P H u l l p , Q H * H p , Q 

< j r i u M r , P , Q n - i i p , Q n * n ; , Q 

< ( S
1 / n + D r I U l l r ) P ) Q ! l u | | P ) Q H t | | - | Q . 

Let X , be the linear span of any set of (s+1) functions <j>, ; 

this is possible because dim V = j >; s + 1 . Define a projection 

P . of L (Q) onto X . (viewed as a subspace of LP(Q)) by 

P s + l ( U ) = 6 A (U' ^ L 2 ^ ) ^ * 
*k€Xs+l L ( Q ) 

Then ||P8 + 1II < 1 IP] I I < I U I I p > Q H*IIpt f Q. so that by (3) and 

lemma 3, 

» . < v i (n*iip.Q H * I I P . . Q ) " 1 < - 1 / , 1 + 1>"r • 

which is the required lower bound for a (I 0), at least in the case 
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where ft - (0,1) and hence also for any cube in IR . T o finish 

the proof, let ft be any bounded domain in IR , and let Q be an 

open cube contained in ft . Then the natural embedding map I n : 

W r , p(Q) -> LP(Q) satisfies I = R o I Q o E , where R : Lp(ft) -v 

-> LP(Q) is the restriction map and E : W r , p(Q) -J- Wr,p(ft) is the 

°r p 
extension map which extends elements of W ,K(Q) by zero in ft \ Q 

Hence 

as(IQ) < ||R|| 1|E|| as(I0) = as(I0) , 

— r /n 
which gives a (I n) >. const, s 

4. Other developments 

The techniques used in § 3 can be adapted to analyse, from the 

same point of view, the embedding maps which turn up when we consider 

unbounded domains & , spaces of fractional order, traces on lower 

dimensional manifolds and non-isotropic spaces. For accounts of these 

topics we refer to [4], [5], [ll],[l2], [13], [ U ] , [21] and [2 2]. 

Rather than go into such matters in any detail here, however, we pre­

fer to conclude with a brief discussion of Sobolev spaces and Orlicz 

spaces. m 

Let us recall that an Orlicz function is a non-negative convex 

function <j> on [0,~) with <j>(0) = 0 , lim <f)(t)/t • 0 and 

lim $(t)/t = ~ . The Orlicz space L9(ft) is the Banach space of all 
t-M» 

(equivalence classes of) measurable functions u on ft such that 

for some X > 0 , 

/ (j)(|u(x)|/X)dX < 00 , 

with norm 

llull^ Q = inf {X > 0 : / <f>(|u(x)|/A)dx < 1> • 

- ' * 1 Q 

Note that L (ft) C L?(ft) C L (ft), the inclusions being proper, in 

general. The importance of these spaces in the theory of partial dif­

ferential equations with strong non-linearities is now well-known, 
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and a good deal of their interest stems from a remarkable result of 

TRUDINGER [23] which closes a gap in the Sobolev embedding theory by 

means of Orlicz spaces. The gap referred to arises in connection with 

the space W ,P(Q) when rp = n , and as a consequence of Trudin-

ger's work it is now known that if 1 ;< r < n and 1 < v < n/ (n-r) 

n/r * 

then W * (Q) is compactly embedded in L (Q) , where <j> (t) -

= exp (t ) - 1 . Here we shall estimate the approximation numbers of 

the embedding of W ,P(ft) in L (Q) , when this embedding exists, 

under the conditions 1 < n/r _< p < °°, v < 1 and Q bounded with 

minimally smooth boundary. »nN 

Let u e Wr,p(fi) and set U = u - £ Xn no
 P n " , with the 

j=l gj r ,^j 
notation used in (2) . Then if A > 0 we have from (2)? 

/ *<lu(x)|A)dx = I I ~r (|U(x)|/A)kV dx 
JQ ' i k=1 

v 1 1/-, / i \ „-nNh(kv)r~in kv p i t ,-ll 

k=i ̂ 1 V l u|r,P,n
x/ 

where h(kv) = — - max (0, — - -—) . It follows that if p > n/r , 
n p kv 

I $v(|u(x)|/x)dx < 1 
-*n 

provided that 1 

""Hr.p... (|Q|2-nN)n P < XA . 

where A is a certain positive c o n s t a n t . This implies that for the 

embedding J : Wr,p(f2) -> L V (Q) we have 

n p 1 a (J) = 0 Is y as s -> s \ ' 

a result first derived in J_̂l • 

If p = n/r we are in the interesting case treated by Trudin-

ger, and our estimates above become 
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L (|U(x)|/x)dx < 
Jo

 M
 °° - n(l--) . . . l+kv(l-~) 

0
 < const. |Q|2"

n N I i (cK||u|! 2
 P

 x"
1
)
 k v
{l+kv <l-±)}

 P
. 

k
=
l •

 r
 » P > « P 

We thus have to deal with the series 

1_ 
k! 

a / \ V 1 /-...v. \ 1+bk k 

S(z) = l rj (1 + bk) z k=l 

I /
 n ( 1

" n ) 

where b = v(l -
 i
) and z = (cK||u|L O

 2 P
 A ̂  J . This 

/
 n

O-~) ,\v 

(
cK
ll

u
llr,p,

fi

2
 " H 

series converges for all z if b < 1 , and can be majorised suc-
00 

cessively by constant multiple's of 7 e z , , l/(l-b)
N 

J J * L -——
 a n (

J
 e x p

 (
z
 >• ) . 

k=0 ( k ! )
1 _ b 

(J) = 0 ((log s)
 П  

It follows easily that 

a (J 
s 

so that J is of type c
ft
. This also was obtained in [9], by dif­

ferent methods. Whether this result can be improved I do not know. 

Our conclusions are summarised as follows: 

Theorem 2. Let °, be a bounded domain in m with minimally 

smooth boundavy3 let r and p be positive numbevs (r an integev) 

such that 1 <_ n/r < p < », and define (j> by <j> (t) = exp(t v
) - 1 

for t > Oj wheve v > 1 . Then the appvoximation numbevs of the em-

bedding map J : W r , p
(Q) -• L

 v
(fi) satisfy 

( - £ + i\ 

a (J) = 0 \s n p/ as s + <*> . 

If p = n/r > 1 and 1 < v < n/(n-r) , 

a (J) = 0 ((log s ) 1 " n " V)c 
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