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INITIAL VALUE PROBLEMS FOR ELASTOPLASTIC 

AND ELASTO-VISCOPLASTIC SYSTEMS 

Konrad Groger 

Introduction 

In this paper we want to summarize results on initial value 

problems for elastoplastic and elasto-viscoplastic systems, which 

have been obtained in recent years by several authors. Models des­

cribing the behaviour of elastoplastic systems have been known for a 

long time (see e. g. KOITER [l6], HODGE [l2]), but there did not 

exist a rigorous theory of the mathematical problems associated with 

these models. Several attempts were made to find formulations of 

models more suitable for theoretical purposes (see MOREAU [23, 24], 

DEL PIERO [3], HAUPT [lO], NGUYEN [27], HALPHEN-NGUYEN [9]). It seems 

that the most important results are those of NGUYEN [27] and HAL­

PHEN-NGUYEN [9]. In order to describe the influence of the "history" 

on a process they introduced internal state variables and internal 

stresses. Following MOREAU (cf. [23]) they used the language of con­

vex analysis. Existence results for materials without hardening 

effects were obtained first by DUVAUT-LIONS [4](dynamic processes) 

and then by JOHNSON [l5] (quasi-static processes). It was shown by 

MOREAU [24] that for materials without hardening it is invitable in 

general to use irreflexive spaces of L -type or C-type (cf. also 

NAYROLES [25] ). If some kind of hardening of the material is involved 

the situation is much simpler since satisfactory a priori estimates 

for the solutions to the problems are available under natural assump­

tions. This was shown for purely kinematic hardening by HALPHEN [8] 

and, independently, by GROGER [5, 6 ] . Models involving internal para­

meters were treated from the mathematical point of view by NECAS-

TRAVNICEK [26] and TRAVNICEK [_30l . They proved that hardening effects 
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associated with plastic, work also lead to satisfactory existence-

uniqueness results. Their method of proof is an approximation of 

elastoplastic materials by simpler materials with internal parameters, 

which were investigated by KRATOCHVIL-DILLON [l9], KRATOCHVIL-NECAS 

[20] and JOHN [l4] . Starting from the results of NESAS-TRAVNICEK [26], 

the author [7] treated materials subject to a combination of kinematic 

hardening and other types of hardening. Let us mention that mathema­

tical results on the behaviour of a single elastoplastic element were 

presented also by KRASNOSELSKI, POKROVSKI and others (see [l8, 29] 

and the papers quoted there). 

The present paper consists of seven sections. In Section 1 we 

introduce the necessary notation. Section 2 is devoted to the formul­

ation of constitutive relations and of the problems treated in this 

paper. The constitutive relations we consider include as special cases 

various models of elastoplastic and elasto-viscoplastic behaviour. 

Following HALPHEN-NGUYEN [9] we make use of internal state variables 

and internal stresses in the following way: We introduce spaces of 

generalized deformations (resp. generalized stresses) the elements of 

which may be interpreted as pairs consisting of usual deformations and 

internal state variables (resp. usual stresses and internal stresses). 

Since our formulation of the constitutive relations is a rather ab­

stract one we present some more concrete examples in Section 3. 

In Section 4, which is the main part of the paper, we consider 

quasi-static processes with a "definite" kinematic hardening property 

(not excluding other types of hardening). Systems with definite kine­

matic hardening are distinguished by the fact that the corresponding 

mathematical problems can be transformed easily to standard problems 

of the theory of evolution equations with maximal monotone operators 

in Hilbert spaces. Moreover, the results for such systems are somewhat 

better than those known for systems without definite kinematic harden­

ing. Section 4 is divided into three parts. In the first part we prove 
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an existence-uniqueness result. In the second part we show that 

quasi-static processes depend in a certain sense continuously on the 

law describing the plastic or viscoplastic properties of the system. 

In particular, we shall see that elastoplastic materials can be ap­

proximated by viscoplastic materials. The third part of Section 4 is 

devoted to questions arising in connection with a discretization of 

time. Discrete-time problems were considered by many authors (see 

NGUYEN [28] and the papers quoted t h e r e ) . NGUYEN [28] proposed an 

iteration method for solving equations which result from an implicit 

difference scheme in time. He proved that this iteration method con­

verges under a certain "hardening assumption", but he was not able to 

formulate conditions ensuring that this assumption is satisfied. More­

over, he did not answer the question whether the solutions to the 

discrete-time problems approximate the sdlution to the original pro­

blem, because he did not know any existence result for the original 

problem. We shall show that in the case of definite kinematic harden­

ing the convergence of the difference method as well as the conver­

gence of certain iteration methods can be proved by standard argu­

ments . 

In Section 5 we show that dynamic processes of systems with 

definite kinematic hardening lead to standard initial value problems 

for second order evolution equations. 

Section 6 is devoted to quasi-static processes of systems 

possessing a hardening property but not a definite kinematic harden­

ing. 

In Section 7 we present results on dynamic processes for sys­

tems with hardening different from definite kinematic hardening and 

for systems without any hardening. To this end we introduce a "weak 

formulation" of the corresponding mathematical p r o b l e m . In the case 

of Prandtl-Reuss* equations such a formulation was used already by 
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DUVAUT-LIONS [4] . 

In this paper we do not consider models describing the influ­

ence of the history on a process by means of integral operators. 

Furthermore, we do not investigate models including nonlinear rela­

tions between internal state variables and internal stresses. Such 

models are treated by TRAVNI.CEK [30] . 

1. Notation 

In this section we introduce the notation needed later. Most of 

it is commonly used. 

Let E be a Hilbert space. By E* we denote its dual and by 

<.,.> the dual pairing of E* and E . We shall use the same brac­

kets for different pairs of spaces E, E* . The norm and the scalar 

product on E are denoted by |J.||_ and (.,.)_, , respectively. 

The notation id_ is used for the identity map of E . We shall 

frequently use notions,, notation and results from convex analysis and 

the theory of maximal monotone operators as presented for instance by 

BREZIS [2] and BARBU [ij. Let us mention here only a few definitions 

and the corresponding notati 

of a space E is defined by 

r 
Ic(e) : = 

0 if e € C , 

+«> if e _ E X C . 

If <j> : E -J- ]-«>, +»J is proper convex and lower semicontinuous, the 

multivalued subdifferential mapping 3<j> from E to E* is defined 

by 

V e € E : 3<Ke) : = {f - E' | V e € E:<f ,e-e> 4 <j> (e) - cj>(e)}. 

We set 

D(<|>) : = { e € E | < j > ( e ) < °°}» D(3<f>) • = { e 6 E | a <f> ( e ) j - 0 } . 

The set D((f>) is called the effective domain of $ . 

Let S := [0, T] be a fixed finite interval of time. By C(S;E) 
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we denote the set of all continuous mappings from S into E 

equipped with the maximum norm. By L P(S;E), 1 ^ p ^ °° , we denote 

the set of all Bochner measurable mappings from S into E such 

that 

Í' |u(t)| |£ dt < oo if 1 < p < 

e S S SUp | | u ( t ) | | < oo i f p = oo , 
t € S 

equipped with its natural norm. If u € L (S;E) we denote by u T, 

u* * the first and the second derivative of u with respect to time 

in the sense of distributions on Jo, T£ with values in E . For 

1 <, P <, °° we define 

W 1 , P(S;E) := {u € C(S;E)|uT e LP(S;E)} , 

W 2 , P(S;E) := {u € C(S;E)|uffe LP(S;E)} 

1 2 
and we use the usual norms on these spaces. Instead of W * (S;E) we 

write H1(S;E) . 

If E T, E« are Hilbert spaces we denote by ££(E^;E„) the 

space of all linear continuous mappings from E. into E_ . If 

L e 3£(E..;E-) we denote by L the adjoint operator to L and we 

define 

Im L := {Le|e € E.}, Ker L := {e € E A L e = 0} . 

2 2 
To any operator Le<£(E ;E ) a mapping L e S6(L ( S ^ ) ; L (S;E )) 

is associated defined by 

Vu € L 2(S;E X): (Lgu) (t) : =- Lu(t) for a. e. t € S . 

Similarly, to any multivalued mapping M from E. into E ? (i. e. 

to any subset M of E. K E„) a multivalued mapping M_ from 

2 2 
a (S;EX) into L (S;E2) is associated defined by 

M s:={( U l,u 2) €L
2(S;E 1)xL

2(S;E 2)| (u1(t),u2(t))eM for a. e. t € S}. 

For the sake of simplicity we shall write L and M instead of L 

and M , respectively. This will not lead to misunderstandings. 
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Let G C E N be a domain. By 8G we denote the boundary of G. 

By L2(G; R N ) (H1(G; JRN)) we denote the Hilbert space of all map­

pings from G into 3RN the coordinates of which belong to L (G) 

(H*(G)) (equipped with its natural scalar product). In the same way 

2 N 
we shall use the notation L (9G; K. ) 

2. Constitutive relations; problems 

We assume that any mechanical system is associated with a Hil­

bert space Y the elements of which are called generalized defor­

mations of the system. The space dual to Y will be denoted by Z . 

Its elements are to be regarded as generalized stresses. Examples of 

such spaces will be given in the next section. Let S := [o, Tj be 

a fixed finite interval of time. Mappings from S into a Hilbert 

space will be called processes; for example a mapping from S into 

Y is called a deformation process. The behaviour of a system is 

governed by a constitutive relation, i. e. by a relation between its 

deformation processes and its stress processes. 

We shall call a mechanical system plastic if its deformation 

processes y and its stress processes z are related in the follow­

ing way: 

(2.1) y'(t) £ 3Ic(z(t)) for a. e. t € S 

where C denotes a convex closed nonempty subset of Z , 

If y £ 3Ic(z) then Xy € 31-Cz) for X > 0 . Therefore the 

constitutive relation (2.1) is rate independent, i. e. invariant with 

respect to any (absolutely continuous) transformation of the time 

scale. 

We shall call a mechanical system viscous if its deformation 

processes y and its stress processes z are related in the follow­

ing way: 

(2.2) z(t) = M yf(t) for a. e. t € S 

where M : Y ->• Z denotes a Lipschitzian and strongly monotone poten-
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tial operator. 

If the behaviour of a mechanical system can be explained by the 

parallel action of a plasticity law and a viscosity law then we have 

instead of (2.1) or (2.2) 

(2.3) z(t) e O I * + M)yf(t) for a. e. t £ S 

where I-, denotes the conjugate to the functional I-. Media charac­

terized by a relation of the type (2.3) are sometimes called Bingham-

Media. The serial action of a plasticity law and a viscosity law 

leads to a relation of the type 

(2.4) yf(t) e (3IC + M
-1)z(t) for a. e. t € S . 

Generalizing (2.3) and (2.4) we shall consider constitutive relations 

of the form 

(2.5) yf(t) € 34>(z(t)) for a. e. t € S 

where 

(2.6) <{> : Z -> J-00, +00] is proper convex and lower semicontinuous. 

The parallel or serial action of laws of this type leads (under mild 

conditions on the functionals involved) again to a law of the same 

type. Let us mention that KRASNOSELSKI [l8] investigated laws which 

are obtained by superposition of a family of "elementary" laws. 

In this paper we shall deal with constitutive relations de­

scribing the serial superposition of an elasticity law and a law 

which represents the parallel action of a law of the type (2.5), (2.6) 

and another elasticity law. Such constitutive relations can be writ­

ten as follows (cf. Figure 1): 

f y(t) = e(t) + p(t), z(t) = q(t) + r(t), z(t) = Ae(t), 

r(t) - Bp(t), p'(t) € 9<Kq(t)) for a. e. t € S 

where <j> satisfies (2.6) and A, B represent linear elasticity 

laws. We suppose that 

(2.8) A, B <£.S£(Y; Z) are symmetric and positive. 
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From (2.7) it follows that p f(t) 6 9<j>(z(t) - Bp(t)). If <J> ŁC » 

this implies z(t) € C + Bp(t), i. e. the set of possible stresses 

moves according to the plastic deformation p . Therefore we say that 

B determines a kinematic hardening property of the system. If B is 

positive definite we shall speak of definite kinematic hardening. 

elastic element 

Hooke*s tensor A 

element 

Df type 

(2.5), 

(2.6) 

A 

plastic 

Ф 
viscous or B 

plaí зt Lc 

deformations 

elastic 

element 

Hooka's 

tensor B 

ł t 

Figure 1 

The relation between y and z given by (2.7) could have been 

generated also by the parallel action of an elasticity law and a law 

representing the serial superposition of a law of the type (2.5), 

(2.6) and another elasticity law. Thus the choice of the law (2.7) is 

not as arbitrary with respect to parallel and serial superpositions 

laws as it might seem. 

Let us emphasize the fact that (2.7) includes elastoplasticity 

laws as well as viscoelasticity laws and laws of elasto-viscoplastic 

behaviour. 

Now we shall formulate problems describing quasi-static or dy­

namic processes of a system governed by a law of the type (2.7). We 

suppose that the system is associated with a Hilbert space U of 

displacements and that the deformation process y : S ->• Y correspond-
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ing to a displacement process u : S •*• U is given by 

(2.9) y(t) = Ku(t) for a. e. t € S 

where 

(2.10) K 6 # ( U ; Y ) , Vu € ¥: ] | Ku| IY > kQ | | u | | ^, kQ> 0 . 

(We shall consider small deformations only.) Concrete realizations of 

U and K will be given in the next section. 

Instead of (2.9) we could assume that 

y(t) = Ku(t) + g(t) for a. e. t € S 

where g : S -> Y is a given function representing internal defor­

mation sources. This would require only technical modifications of 

the results and proofs presented in this paper. 

The space U* dual to U is to be regarded as a space of for­

ces. If a forcv. f € U* acts on a system the generalized stress of 

which is z € Z then the work corresponding to a virtual displace­

ment h e U is given by 

W =- <z, Kh> - <f, h> = <K z - f, h> . 

Therefore the principle of virtual work yields that the condition of 

quasi-static equilibrium may be written as follows: 

(2.11) K*z(t) = f(t) for a. e. t € S 

where f denotes a given force p r o c e s s . The corresponding condition 

of dynamic equilibrium is 

(2.12) pu"(t) + K*z(t) « f(t) for a. e. t e S 

where p and u f' denote the density and the acceleration of the 

system, respectively. In order that (2.12) make sense we suppose that 

U is densely and continuously imbedded into U' . Besides U and Uf 

we shall need later the interpolation space H := [_u» u j ^ (see 

LIONS-MAGENES [21] ) the elements of which may be considered as 

special forces or as "generalized" displacements. For the sake of 

simplicity we assume p to be constant. 
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We have to supplement the relations (2.7), (2.9) and either 

(2.11) or (2.12) by reasonable initial conditions. In order to 

obtain precise formulations of the problems we are interested in we 

shall impose some regularity conditions on the data and on the func­

tions we are looking for. 

Pvoblem 1 (Quasi-static pvooesses). We ave given 

(2.13) 
f € H (SjU1), u € U, p e Y, q eD(<f>) suoh that K z = f(0) 

and q = z - Bp wheve z : =- A(Ku - p ) . 

We ave looking fov pvooesses u ^ y ^ e ^ p ^ z ^ q ^ r suoh that 

' (u, y, e, p, z, q, r) € H*(S;U x Y 3 x Z 3 ) , 

(2.14)4 
y = Ku, K z = f oompatibility and equilibvium oondition3 

y=e+p, z=q+r, z=Ae, r=Bp, p« € 8<j>(q) constitutive velations3 

(u, p, q) (0) = (u , p , q ) initial conditions. 

Pvoblem 2 (Dynamic pvooesses). We ave given 

(2.15) 
f 6 W * (S;H), u ,v 6 U, p € Y , q €D(3d>) suoh that 

o o o o 

K z £ H and q = z - Bp wheve z 

We ave looking fov pvooesses u3 y 3 e 

A(Kuo - P o > . 

q , r suoh that 

(2.16) 

(u, u', y, e, p, z, q, r) € W * (S;U x H x Y x Z ) , 

y=Ku, ou?t+K z=f oompatibility and equilibvium condition, 

y=e+p, z = q+rs z=Ae, r=Bp, p? £ 9 4>(q) constitutive velatioyis 3 

(u, u f, p, q)(0) = (u , v , p , q ) initial conditions. 

We shall denote by D. the set of all data (f, u , p , q ) J 1 * o *o no 

satisfying (2.13) and by D? the set of all data (f, u , v , p ,q ) 

satisfying (2.15). Eliminating some of the unknowns by elementary 

operations we can write the above problems as follows: 

Pvoblem 1'. We ave qiven data (f, u , p , q ) € D. and we 
— *J o o o 1 

ave looking fov processes u3 p., q suoh that 
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(u,p,q) e H ^ S ^ x Y x Z ) , (u,p,q)(0) = (u ,p ,q ) , 
(2.17) 1 * ° ° ° 

q + (A + B)p = AKu, K (q + Bp) = f, pf £ 3<j)(q) . 

Problem 2'. We are given data (f, u , v , p , q ) € D~ and we 

are looking for processes u, p, q such that 

f(u,u',p,q) e W1,0°(S;UxHxYxZ), (u, u» ,p , q) (0) = ( U Q , V Q , P Q , qQ) , 
• 18) \ * 

1 q + (A + B)p = AKu, p u n + K (q + Bp) = f, p* € 3<(>(q) . 
(2 

If (u, p, q) is a solution to Problem 1' (Problem 2*) then we 

obtain the corresponding solution to Problem 1 (Problem 2) by setting 

(2.19) y := Ku, e := y - p, z := Ae, r := Bp . 

3. Examples 

In the following examples we suppose that we are given a body 

3 
occupying a bounded Lipschitzian domain G c B • By r we denote a 

closed subset of the boundary 3G of G the surface measure of which 

is positive. By / we denote the six-dimensional Hilbert space of 

all symmetric 3x3 matrices. 

E x a m p l e 1 . Let U := {u € H 1 ( G ; » 3 ) | u r - 0 } , Y := Z := 

= L2(G; f) and l e t 

(3 .1 ) Vu e U: (Ku) := { ( u ^ . . + u j > ± ) . 

Condition (2.10) is satisfiedjit follows from Korn's inequality (see 

' v V r , 

HLAVACEK-NECAS LllJ). The dual space U1 contains body forces as well 

as surface forces acting on the part 3G \ r of the boundary. Let 

*#, •& €X(X;j) be positive and symmetric and let 

(3.2) Ve 6 Y: (Ae)(x) :=^e(x), (B&) (x) : = . $ e ( x ) for a. e. x € G. 

Moreover, let F : $ ->• JR. be convex and continuous and let 

(3.3) <f> := Ic where C := {a€ZJF(a(x)) < 0 for a. e. x € G> . 

In this case the constitutive relations (2.7) describe a homogeneous 
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eiastoplastic body with a linear kinematic hardening rule. The 

function F characterizes the yield condition of the material. 

E x a m p l e 2 . L e t U : » {u e. H1 (G;]R3) | u r = 0 } , Y: - Z : -

« L 2 ( G ; / ) x L 2 ( G ) and 

(3.4) Vu e U: Ku :- (K^, 0) where (K 1u) ± j :- |(u l f J+ u J f l) . 

Let F s f •¥ B. be convex and dif f erentiable with bounded F' . We set 

(3.5) $ :- Ic where C:-{(o,a)€ Z|F(o(x)) <_ a(x) for a. e. x € G}. 

It is easy to check that in this case (e,A) c 9Ic(a,a) if and only 

if 

"z9o € L 2(G;^), A,a€L 2(G), F(a(x)) 4 a(x) for a. e. x € G, 

(3.6) - e(x) - -A(x)Fs(a(x)) where A(x) 4 0 for a. e. x e G and 

A(x) » 0 for a, e. x € G such that F(a(x)) < a(x). 

Let A, B e #(Y;Z) be defined by 

(3.7) V(e,X) € Y: A(e,A) : - (A^, k AA), B(e,A) : - ( B ^ , kfiA) 

where A., B. are defined as A, B in Example 1 and k,> 0 , kR >, 

£ 0 . The operators A, B represent not only Hooke's law but also a 

relation between values which can be regarded as internal state 

variables and internal stresses. The function a characterizes the 

actual position of the yield surface. Let (u, p, q) -

" (u, (e ,$), (T,a)) be a solution to Problem 1'. Then (cf. (2.17), 
P 

(3.6)) 

a +'(kA+kB)B - 0, e^(t.x) - -B'(t,x)F'(T(t,x)), F(T(t,x)) < a(t,x), 

e'(t,x) 4 0, 0'(t,x)(F(t(t,x))-a(t,x)) - 0 for a. e. (t,x) € SxG. 

Hence a'(t,x) >. 0 for almost every (t,x) € SxG , i. e. the elastic 

range of the body is increasing. If F(a) depends only on the in­

variants of a € f we are given a material subject to a superposition 

of isotropic and kinematic hardening. 

We shall show that there is a simple connection between ot 
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and the plastic work of the body if 

(3.8) Va fi $ , Vt€ 1R : F(ta) = |t|F(a). 

The relation (3.8) implies F'(a).a = F(a) . Therefore, denoting by 

W (t,x) the plastic work at (t,x) € SxG, we obtain for almost 

every (t, x) € SxG: 

P P 
W (t,x)-W (0,x):= ef(s,x).T(s,x)ds=- / g'(s,x)F»(T(S,X)).T(S,x)ds 
P P P / 

••i' 3 *(s,x)F(т(s,x))ds = - j B'(s,x)a(s,x)ds 

'0 ^O 

{(a(t,x))
2
 - (a(0,x))

2
}. 

2(k
A
 + kß) 

Let us emphasize the fact that we defined the plastic work by means 

of the plastic strain e and the stress T acting on the plastic 

element (cf. Figure 1, note that q = (x,a)). 

The last considerations can be generalized to the case that 

F(a) = iKF (a)) where F satisfies the condition (3.8) and ty is 

a suitable real valued function. 

E x a m p 1 e 3 . Let U := H ^ G ^ R 3 ) , Y := Z := L2
(G;JЃ) 

x L
2
(r,IR

3
) x L

2
(G) and let 

(3.9) Vu € U: Ku := (K^u, Uj,, 0) where (-^u)^ : = |(u ± ̂  + U j ̂  ±) . 

Using a function F : /->IR as in Example 2 we define 

(3.10) *:-,Ic where C : ={ (a , T , a) € Z | F (a (x) ) ^ a ( x ) for a. e. x e G } . 

Let A£ € f be positive definite, kA >_ 0 , k > 0 , and let 

(3.11) V(e,6,X)eY: A(e , 6 , X ) : = ( A ^ , A26 ,kAX ) , B (e , 6 , X ) : = (Bje , 0, kBX) 

where (A_6)(x) := ^„6(x) for 9G - a. e. x e V and A-, B. are 

defined as A, B in Example 1 . We have (e,6,X) € 3<j>(a,T,a) if and 

2 3 
only if 6 = 0 , T 6 L (T;H ) and ( 3 . 6 ) holds. The constitutive 

relations (2.7) include an elastic support condition for the part r 

of 9G the elasticity law of which is given by J* „ 

The next example deals with the torsion of a cylindrical bar 
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2 
the cross section of which is a bounded domain G c IR 

E x a m p l e 4 . L e t U : - ft x U where U : -
1_ 0 0 

«- {w € H 1(G)| J wdx - 0} and let Y : - Z : - L2(G;JR2). Furthermore, 

let G 

V(u),w)€U: (Ku)(Xl,x2):= |(-a»x2+ |~-,wx1+ — ) for a. e. ( x p x 2 ) 6 G . 

The e l e m e n t s of U' a r e of t h e form f - ( u , f ) , y 6 R , £ € U ' j t h e 
o o o 

meaning of u is that of a momentum. If z - (o,x) fe Z then the 

* 
equilibrium condition K z * (u,frt) includes the equation 

1 
2 . (XjtCXj, X 2 ) - x20(xx, x2))dx . 

Ĝ 

The operators A, B and the functional 4 may be defined similarly 

#as in Example 1 ; one has only to replace / by ]R . 

Let us mention that MOREAU [23] has given examples of elasto-

plastic systems consisting of finite elements. In that case the 

spaces U, Y and Z are finite dimensional. Another example dealing 

with simultaneous torsion and axial strain of a cylindrical bar is 

presented in full detail by HUNLICH [l3]. Examples of models with 

internal state variables are given also by NGUYEN [28]. 

4. Quasi-static processes with definite kinematic hardening 

In this section as well as in all following sections we suppose 

that we are given Hilbert spaces U, H, U', Y, Z, a functional <J> 

and operators K, A, B as described in Section 2. In particular, we 

assume (2.6), (2.8) and (2.10) to be valid without mentioning this 

in the formulation of the r e s u l t s . 

Throughout this section we suppose in addition to (2.8) that 

(4.1) B € £(Y;Z) and K AK €^(U;U') are positive d e f i n i t e . 

We introduce P€,£(Z;Z), Q£i£(Z;Z) and R € ^ ( U ' ; Z ) by 

•'*• .2) R := AK(K*AK)~l"i Q := RK* , P := id - Q . 

•» r^Q 
iv/Ű 



The operator R is defined in such a way that Rf is the stress 

which would correspond to the force f if the system were purely 

2 
elastic with Hooke's tensor A . It is easy to check that P = P , 

Q 2 = Q and 

(4.3) Im P = Ker K* , Im Q = Im AK . 

Moreover, it is easy to see that PA € £t?(Y;Z) is symmetric and 

positive. Hence PA + B€©£(Y;Z) is symmetric and positive definite. 

4.1. Existence and uniqueness 

THEOREM 4.1. Suppose that (2.13) and (4.1) ave valid. Then 

Pvoblem lr has a unique solution (u,p,q) and the mapping 

(f,u ,p ,q ) ->- (u,p,q) is Lipsahitzian fvom D- (equipped with the 

metvia of W1,1(S;Ul)x u x Y x z) into C(S;U x Y x z ) . 

P r o o f . Let (u,p,q) be a solution to Problem l1. Then (cf. 

(2.17), (4.3)): 

(4.4) Pq + P(A + B)p = 0 , Q(q + Bp - Rf) = 0 , 

(4.5) q + (PA + B)p = Rf , 

(4.6) q* + (PA + B)3(J>(q) 3 Rff , q(0) = q , q £ H1(S;Z) . 

Conversely, let q be a solution to (4,6) and let p €. H (S;Y) be 

determined by (4.5). Since P(q + (A + B)p) = PRf = 0 , a function 

u € HX(S;U) can be defined by 

(4.7) AKu = q + (A + B)p (i. e. u = (K*AK)_1K*(q + (A+B)p)). 

It is easy to check that (u,p,q) is a solution to Problem 1*. Thus 

Problem 1" is reduced to the problem (4.6), which is a standard type 

of the initial value problem. In fact, defining on Z the scalar 

product (.,.)„ by 

(4.8) V Z l , z 2 € Z: (Zl,z2)_ := < Z l , (PA+B)"1z2> 

and denoting by 3_<j> the subdifferential of § with respect to 

this scalar product we can write (4.6) as 

(4.9) qf + 8_<Kq) 3 Rff , q(0) = q_ , q e H^S^) . 
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The assertions of Theorem 4.1 now follow from standard results on 

evolution equations and from (4.5), (4.7) (cf. BREZIS [2], Th. 3.6, 

Lemme 3.1). 

REMARK 4.1. Using Theorem 4.1 one can define the notion of -a 

weak solution to Problem l1 for data belonging to the closure of D. 

with respect to WX,1(S;U')x u x Y x Z . 

4.2 Dependence of the solution on the functional <j> 

THEOREM 4.2. Let the assumptions (2.IS) and (4.1) be satisfied. 

Moreover, let d> : Z •> 1-°°, +°°1 , ( f , u , p , q ) <= D-, n = 3 Tn J J ' n* on' *on Mon 1' 

= 1, 2, ..., be given such that § is proper convex and lower 

semi continuous and that 

(4.10) fn ->- f in H ^ S ; ^ ) , q Q n + qQ in Z , <t>n(qQn) - <J>(qQ), 

(4.11) { 
lw 

z € Z:<j,n(z) -* $(z), -c(l+| |z| | z) < <|>n(z) < a(| |z| |z)((j,(z) + l) 

here a :R -*- R is increasing and c = const. 3 

( 4 . 1 2 ) z --> z in z «-=-» l i m <f> (z ) >_ <j> ( z ) . 
n -.-——. n n — 

n->oo 

Let (u ,p ,q ) denote the solution to the problem 

f ( u >P„>q„) € H^SjUxYxZ), (u ,p ,q ) ( 0 ) = (u , p , q ) , 
/ / t 0 v j n n n n n n on on on 
(4.13) \ ^ 

[q + (A+B)p = AKu , K (q +Bp ) = f , pf € 3<J> (q ) . 
^Hn *n n nn *n n' *n rn Hn' 

Then if (u,p,q) denotes the solution to Problem lf we have 

(4.14) (u , p , q ) -> (u, p, q) in H1(S;UxYxZ) . 

n n n 

P r o o f . 1) In the same manner as (4 .9 ) one can prove t h a t 

(4.15) q; + 3z*n(qn) * Rf; , qn(0) = , o n. q n 6 H^SiZ) . 
From (4.15) it follows (cf. BREZIS [2], Lemme 3.3): 
ft /-t 

n < . ; < - > i i z d - • »n (%n» - * n ( i n ( t ) ) + J ( « ; < * ) ><.;<*) > zas 

< c j l+||q <t)|| +||fn|| 
I I П Ł П Ł - ( S ; U ł ) 

< c 2 + i | | q ; ( 8 ) | | 2 d . . 
Jo 

By (4 .10) t h i s i m p l i e s t h a t 
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(4.16) sup | | q l | , + sup 4 (q (t)) < - . 

n n H^S^) n,t n n 

2) By a standard argument it is seen that the limit of every sub­

sequence of (q ) converging weakly in H (S;Z) is q . Thus 

( 4 . 1 7 ) q n --* q i n H X ( S ; Z ) . 

3) We h a v e 

Tim" I K ' | | % - TIH- (•„(<-«„> " <Mq (T)) + (Rf» q») ? ) 
n-*» n L 2 ( S ; Z ) n+~ n on n n n n L 2 ( S ; Z ) 

< * ( q o ) ~ * (q (T) ) + ( R f ' . q ' ) , - | U M I ^ 
° L ( S ; Z ) L ( S ; Z ) 

This result along with (4.17) and (4.10) leads to q -> q in 

H (S;Z). Taking into account (4.5), (4.7) and the corresponding re­

lations for (u ,p ,q ) one can prove the remaining assertions of 

n**n Mn 

Theorem 4.2. 

REMARK 4.2. The conditions imposed on the functionals <b are 

satisfied if <b = d>, where A 4-0 and d>, denotes Yosida*s Tn TX n TX 
n n 

approximation of <j> corresponding to X . I n particular, if <f> = I.,, 

* 1 2 
C C Z convex closed, then we can choose <j> (z) := —(dist(z,C)) . 

n a 

REMARK 4.3. Yosida's approximation leads to Lipschitzian 

operators 3<j> . The existence of a solution to (4.15) then follows 

from the theory of ordinary differential equations in Hilbert spaces 

and the preceding proof can be regarded as a proof of the existence 

of a solution to (4.9). This is in fact the usual proof of the solv­

ability of initial value problems to evolution equations with maximal 

monotone operators. For problems closely related to Problems 1 and 2 

this type of proof was used by NECAS-TRAVNICEK [26], DUVAUT-LIONS [4] 

and MOREAU [2 3] . 

REMARK 4.4. It was possible to replace A and B in the for­

mulation of Theorem 4.2 by suitably chosen operators A and B 
J J * n n 

We did not do this only for the sake of simplicity. 
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4.3 Discretization of time 

For every natural number n we set h 
т л ok 
— and S 

n n n 

= ](k-l)h , kh ] , k = 1, ..., n. If E is a Hilbert space we denote 

2 2 

by L (S;E) the subspace of L (S;E) consisting of all functions 
k 2 

which are constant on each interval S . For w € L (S;E) we denote 
n n ' 

by w k the value of w on S k . We define P €#(L2(S;E);L2(S;E)) 
J n n ' ' ' n * " 

and AX: L2(S;E) + L2(S;E) by 

(4.18) V w € L
2(S;E): (P w ) k (t)dt , k = 1, ..., n; 

(4.19) Vw € L 2(S;E): (Д
X
w)

k
:= ^-(w

k
-w

k
 , k = 1, ..., n, w°:= x. 

Elementary estimations show that 

(4.20) Vw 6L
2
(S;E): | |P w| | i 11*11 , P w -> w in L (S;E) . 

L (S;E) L (S;E) 

We shall approximate (2.17) by the following discrete-time problems: 

r
2

y 

(4.21) {(û ,p ,q ) € L (S;ü x ү x Z), q + 
n *n

 n
n n * n 

K*(p + Bp ) = f , Д °p Є Әф(q ) v r
n
 r

n ' n ' n
 r
n

 т x
^ n ' 

(A+B)p = AKu , 

n n * n 

where f e L
2
(S;U

t
) is defined by f

k
 := f(kh ), k = 1, 

(f and p are the data appearing in Problem l
1
) . 

LEMMA 4.1. The operator A
x
 :L (S;Z) -• L (S;Z), x €. Z , is mono-<- n n n 

2 
tone. More precisely^ if z,,z,-, € L (S;Z) and z = z, ~ zo £ h s « 

(4.22) 

kh 

((AX
Zl- A

Xz2)(t),z(t))zdt > |ll
zkMz» k - 1* 

P r o o f . We have A z- - A z0 = A z . Therefore n 1 n 2 , , n 
kh rkh 

( ( An Zl " A n Z 2 ) ( t ) ' z ( t ) ) z d t ((A"z)(t), z(t))7dt 
П Ł 

o 'o 
k k 

= l (z^-zJ"1, z^)7 * l {||.J||7 - M ^ ^ I L M ^ I I z } > j-l j=l 

> \ i i\\^\\\ - \W-X\\\ } = T I I z I I 7 w h e r e z = 0 . 
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THEOREM 4.3. Suppose that (2.13) and (4.1) are valid. Then for 

every n € IN the problem (4.21) has a unique solution (u ,p ,q ). o r -i n n n 

Moreover, if (u,p,q) denotes the solution to Problem 1' then 

(4.23) (u ,p ,q ) -> (u,p,q) in L°°(S;U x Y x Z) , 
n *n Mn »r»n/ » 

u p q ? 
(4.24) (A °u ,A °p ,A °q ) -* (uf,pf,qf) in LZ(S;U x Y x z ) . 

n n' n *n' n nn , r ^ 
P r o o f . 1) From (4.21) it follows (cf. (4.5), (4.6), (4.9)): 

(4.25) q + (PA + B)p = Rf nn *n n 

(4.26) A °q + 9r7<J)(q ) 3 RA
f ( 0 )f = RP ff , q £ L2(S;Z) . 

n Mn Z r ̂ n n n n nn n 
q 

The operator A is monotone and Lipschitzian (cf. Lemma 4.1). 
qo 2 2 

Therefore A + 9„<b : L (S;Z) -> L (S;Z) is maximal monotone, 
n LT n n 

2) From (4.26) it follows that 

(4.27) ||A_°q_||20 + <f>(qn) - <Kq„) < 
L"(S;Z) 

< HRP. fMI , M A J V I I , 
; z ) 

Since 

< | | R P n f ' M 2 l | A n ° q n M 2 
n LZ(S;Z) n n LZ(S; 

Kqn) < c(||q
n||z + 1) = o (l | I (An°qn)(t)dt + q_ | | z + 1 

Ŝ 

<ł. 
by (4.27) it is immediate that (A ° + B ^ ) " 1 :L2(S;Z) -> L 2(S;Z) is 

n L n n 

bounded. In view of the maximal monotonicity of this operator this 

implies the solvability of (4.26) (cf. BREZIS [2], Th. 2.3). The 

unicity of the solution to (4.26) can be proved by a standard 

argument (using (4.22)). 

3) If q is a solution to (4.26) we obtain a solution to (4.21) if 

and only if we define p by (4.25) and u by AKu = q + 
J *n J n J n nn 

+ (A+B)p . The last step is possible since P(q + (A+B)p ) = PRf =0. r n r r v^n *n n 

Thus we have established the unique solvability of (4.21) for each 

n € ]N . 

4) Let w e L2(S;Z) be defined by w k := q(kh ) , k - 1, ..., n. 

n n n n 
q 

Then A °w = P qf and (cf. (4.20)): 
n n n n 
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(4.28) w -> q in L (S;Z), A w •> q' in L (S;Z) . 
П

П
 v > / > П П ^ v » / 

Using (4.22) we obtain for k = 1, ..., n: 
*kh 

k, | 2 
*n *nHz 

^0 
rkh 

1 j i k ki | : 
((A °q - A °w )(t), (q - w )(t))_dt 

n n n n n n Z 

n 
((Д q„ - RP fł + Rf ł- q ł)(t), (q - wj(t)) 7dt < n an n 

kh 

( ( l V q n - qf)(t),(q-wn)(t))zdt 

£ c 11 q - w 
L (S;Z) 

Thus q -> q in L (S;Z) . 

5) By the previous results it is easily seen that the limit of every 

subsequence of (A q ) converging weakly in L (S;Z) is necessari­

ly q' . Therefore A °q -* q' in L2(S;Z) . 

6) By arguments similar to those of the last step of the proof of 
q 

Theorem 4.2 one can prove first the assertion A °q "*" q' in L (S;Z) 
n nn n 

and then the remaining assertions of Theorem 4.3. 

REMARK 4.5. The discrete-time problem (4.21) can be written more 

q*+ (AH-B)p^ AKu*, K*(q*+Bp*)= f*. i r ^ - P ^ " 1 ) * !>•(<£), 
n 

k = l , ..., n, p = p Iuk
 Є U , p

k € Y , qk € Z 

Eliminating p we obtain 

' K*(B(A+B) 1AKu k + A(A+B)"1qk) = fk, 
n n n 

( 4 . 3 0 ) i ( A + B ) " 1 ( q k - q^"1- AKuk+ A K u k - 1 ) + h 9<Kq k ) * 0 n n ^ n n n n Mn 

k , „ k , , . , o o u e U , q € Z , k = l , . . . , n , q = q , u V. n n n o n 

Since 3 <j> c Z x Y is maximal monotone, the operator (A+B) + h 3<J: 

has a Lipschitzian inverse o p e r a t o r . From (4.30) it follows that 

qk = ((A+B)"1+ h 3(J>)-1((A+B)"1AKuk+ rk™1) 
n n n n 

k-1 -1 k-1 k-1 
where r := (A+B) (q* - ARu ) . Obviously, the operator 
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Mk : Y -> Z defined by 
n J 

Vy € Y : Mky := A(A+B)~1((A+B)_1 + h 3 <f>) _ 1 ( (A+B)_1Ay+ r1*""1) 
n n n 

is monotone and Lipschitzian. Using the notation M we can write 

(4.30)x as follows: 

(4.31) K*(B(A+B)_1A + M k)Ku k = fk . 
n n n 

We shall show in the following lemma that K B(A+B)-1AK e i£(U;U') is 

symmetric and positive definite. Therefore tYve. equations (4.31) can 

be solved successively for k = 1, ..., n by means of standard 
k iteration or projection-iteration methods if the operator M 

appearing in (4.31) can be handled numerically. This is the case for 

some nontrivial examples (cf. HUNLICH \\3]). 

LEMMA 4.2. If A + B is positive definite then B(A+B)_1A 6 

6£S(Y;Z) is symmetric and positive. If (4.1) is satisfied then 

* -1 K B(A+B) AK €«Sc(U;U') is positive defonite. (As before we assume 

(2. 8) to be valid.) 

P r o o f . 1) Since B(A+B)-1A = B(A+B)-1(A+B-B) = B-B(A+B)-1B= 

= B - (A+B-A)(A+B)~1B = A(A+B)_1B the operator B(A+B)_1A is sym­

metric. The positivity of this operator follows from 

cB(A+B)_1Ay, y> = <B(A+B)_1Ay, (A+B)_1Ay + (A+B)~1By> 
( 4 - 3 2 ) i -1 -1 -1 -1 

<B(A+B) Ay, (A+B) Ay> + <A(A+B) By, (A+B) By>. 

2) If (4.1) is satisfied then by (4.32) we obtain for u e U 

<K*B(A+B)_1AKu, u> = <B (A+B) _ 1AKu, Ku> >_ c | | (A+B) _1AKu ( | ? >. 

> c2||AKu| \ \ > c3||K*AKu| \ \ , > c4||u| \ \ where c. > 0 , i-1,2,3,4. 

REMARK 4.6. The discretization of time considered in this 

section may be combined with Galerkin's method and also with a 

regularization of the functional <f> of the type mentioned in the 

second part of this s e c t i o n . 
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5. Dynamic processes with definite kinematic hardening 

THEOREM 5.1. Suppose that (2.15) and (4.1) are valid and that 

p > 0 is fixed. Then Problem 2f has a unique solution (u,p,q) and 

the mapping (f,u ,v ,p , q ) -»• (uju'jp^q) is Lipschitzian from T) 

(equipped with the metric of (W1,1(S;U,)+ L1(S;H))xu x H x Y x z) 

into C(S;U x H x Y x z ) . 

The proof of this theorem is based on two lemmas. First we 

introduce some notation. Let 

(5.1) U := U x Z , H := H x Z , UJ[ := Uf x z . 

In this section we define a scalar product on Z by 

(5.2) Vz-., z2 € Z : ( z l f z 2 ) z := ^< Z ; L, (A+B)_1z2>. 

Using this scalar product we regard Ul as dual to U- and identify 

Hx with its dual. 

LEMMA 5. 1. Let L 6 S£(U ;U') be defined by 

(5.3) V(u,z) 6 U- : L(u,z) := -(K*B(A+B) 1AKu, 0) . 
1 P 

Then L is symmetric and 

(5.4) V(u,z) € U 1 :<L(u,z),(u,z)> > CQ(||(u,z)||J -||(u,z)||£ ) , C Q > 0 . 

P r o o f . This lemma is an immediate consequence of Lemma 4.2. 

LEMMA 5.2. Let M := M + M where 

(5.5) V(u,z) € U^ : 
M.(u,z):=(-K*A(A+B) ^z, -AKu) , 
1 p 

ч
M (u,z):= {(0,(A+B)n)|n € Әф(z)}. 

Then M c U- x u' is maximal monotone. 

P r o o f . By the choice of the scalar product on Z (cf . 

(5.2)) it is easy to see that M
1
 and M„ are monotone. Since M.. 

is continuous it is maximal monotone. M^ is maximal monotone becaus 

subdifferential mappings are maximal monotone. The maximal monotoni-

city of M now follows from a basic result on the maximality of 

monotone operators (see BREZIS [2], Cor. 2.7). 
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P r o o f o f T h e o r e m 5.1. 1) Eliminating p from 

(2.18) and introducing a new unknown function w by 

f 
(5.6) Vt £ S : w(t) := q(s)ds 0 

we can formulate Problem 2f in the following way: 

(5.7) u € w1,0°(S;U), (u,w) e W2,°°(S;H1), (u, uf , w, wf ) (0) = ( U Q , V Q , 0, q j , 

(5.8)І 
p u " + K B(A+B)

_ 1
AKu + K A(A+B)

_ 1
w

f
 == f , 

L w
f f
 + (A+B)3<j)(w

f
 ) B AKu f

 . 

Using the operators L and M introduced before we can rewrite 

(5.8) as follows: 

(5.9) (u
f f
, w

f f
) + M(u

f
, w

f
) + L(u,w) 3 (-f, 0 ) . 

The existence-uniqueness result of Theorem 5.1 now follows from a 

result on second order evolution equations formulated by BARBU [l] 

(Th. 1.1, Ch. V ) . We are allowed to apply this result to the problem 

(5.7), (5.9) because of Lemma 5.1, Lemma 5.2 and the following re­

lations (cf. (2.15)): 

( f , 0 ) € W 1 , 1 ( S ; H 1 ) , ( v o , q o ) * D ( M ) ' 

L ( u o , 0 ) + M ( v o , q Q ) -

« { (~K*(B(A+B)" 1 AKu + A ( A + B ) _ 1 q , -AKv + ( A + B ) n ) | n e 8<j>(q ) } 

= { ( ^ K * Z Q , -AKv o +(A+B)n) |n € 9<|>(qJ} C H 1 . 

2) L e t ( f ± V u o l , V o . , p o . , q o i ) e D 2 > i - 1 , 2 , and l e t ( u . - P ^ q . ) 

denote the solution to Problem 2f corresponding to the data 

(f , u ., v ,# p ., q . ) . Furthermore, let u := u, - u„ , p := 
i oi* ox *ox Mox 1 2 r 

• Pi - P 2
 e t c* Finally.*, l e t f̂  = g + h where g e W1,3"(S;Uf) , 

h € L*(S;H) . Then (cf. (5.7), (5.8) and Lemma 4.2) 

{ < ( p u f ^ + K ^ B U + B ^ A K u - g - ћ ) ( s ) , u f ( s ) > + < q f ( s ) , ( A + B ) " ^ q ( s ) > } d s l > 
Jo 

> c 0 ( | | » ' ( t ) | | J + | | í ( t ) | | í + | | - ( t ) | | * ) - - . . ( I l v j l ^ l l u j l j + U i j l ^ 
' 0 

1 2 , , , - , , 2 , , , -

- < g ( t ) , u ( t ) > + < g ( 0 ) , u o > - í { | | g f ( s ) | | ü f | | u ( s ) | | u + | | h ( s ) | н | | u f ( s ) | н } d s , 

^O c > 0 . 
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This implies (cf. BREZIS [2], Lemme A.5) 

||(u,u\i)|| < c(||f|| + H % i l u + H % i l H + 

C ( & , U X H X Z ; W1'1(S;U')+L (S;H) ° U ° M 

Since p. - (A+B) (AKu.-q.) this result establishes the desired 

Lipschitz continuity of the mapping (f,u ,v , p , q ) •+• (u,uf,p,q). 

REMARK 5.1. Using Theorem 5.1 one can define the notion of a 

weak solution to Problem 2' for data belonging to the closure of D~ 

with respect to (W1,1(S;Ut) + L1(S;H))x U x H x Y x Z . 

6. Quasi-static processes without definite kinematic hardening 

In this section we shall use instead of (4.1) the following 

assumptions: 

(6.1) A + B € S£(Y;Z) and R AK 6 J6(U;U') are positive definite, 

(6.2) w + (A+B)_1AKv € 3 <|> (z ) ===>! | v | | y < c(||w||y +| |z| lz + D , 

c = const. 

For some results we shall need the assumption 

f(v ,w ,z ) € L2(S;UxYxZ), w + (A+B)_1AKv € 3<f>(z ) , 

(6.3) ") ? 2 
( (w ,z ) -> (w,z) in L (S;Y Z ) ===> v -> v in L (S;U) . 
^ n n n 

A justification of the assumptions (6.2), (6,3) is given by the 

following r e m a r k s . 

REMARK 6.1, The relations (6.2), (6.3) hold if Әф is Lipschitz-

C 

* -1 
continuous. This is true in particular if 3<j» = (3I„ + M) provided 

M : Y -y Z is strongly monotone (cf. (2.3)). 

REMARK 6.2. Let the suppositions of Example 2 (Section 3) be 

satisfied. Then condition (6.2) is also satisfied: 

(e,X) + (A+B)
_1
AKv = (e + ( A ^ B ^ " ^ A ^ v , X) € 3<J,(o,a) 

implies (cf. (3.6)) e + (A1 + B]L) " ^ A ^ v = - AF'(a) . Thus 

||v|| < cJ |e+XF'(a)|| < c ( | | £ | | +||A|| ) < 
U X LZ(G;/) l LZ(G;/) LZ(G) 

4 C,| |(€,A)| L . 
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Let us suppose in addition that FT is continuous. If the premises 

of (6.3) are satisfied for w = (e ,X ), z = (a ,ct ) then 
n n n n n n 

n,m+<» * m L Z ( S ; U ) 
< c n l i m | | e - e + X F ' ( a ) - X F ' ( a ) | | 0 0 < 
" V m - n m n n m m ^2 ( g . ^2 ( ( , . f ) )-

< ^ T i m " | | x ( F ' ( a n ) - F ' ( a m ) | | 2 = ° 
n,m->°° L ( S ; L ( G ; / ) ) 

2 2 where X denotes the limit of (X ) in L (S;L (G)). We made use n 

of Krasnoselski's theorem on the continuity of Nemycki operators (cf. 

KRASNOSELSKI [l7]). Thus the assumption (6.3) is satisfied in the 

case mentioned here. 

In what follows we denote by D the set D(<j>) equipped with 

the topology generated by the basis {V j§ > 0, r, trD(<j>)} where 

V 6 := {z e D(<f>)| ||z -C|| z < 6, <|>(z) < <1>(C) + «} . 

The topology of D is chosen so that 4> : D -> 3R is continuous. 

THEOREM 6.1. Suppose that (2.13), (6.1) and (6.2) are valid. 

Then Problem 1' has a solution (u,p,q) where q is uniquely deter­

mined. If in addition (6.3) is satisfied then the solution (u,p,q) 

to Problem 1* is unique and the mapping (f,u ,p ,q ) »-> (u,p,q) is 

continuous from D (equipped with the topology of H (S;U')XUXYXD ) 

into H1(S;UxYxZ) . 

P r o o f . 1) We shall approximate Problem l f by a problem 

describing a system with definite kinematic hardening. We choose a 

sequence (6 ) such that 5 + 0 and we set 

(6.4) 
+ Ő (A + B) . (A + B ) (AKu - q ) , 

Vt 6 S : f (t) := f(t) - f(0) + K (q + B p ) . 
n o n ron 

This choice ensures that K z = f (0) and q 
on n c 

:= A(Ku p ) (cf. (2.13)). Let (u ,p ,q ) denote the unique 

solution to the problem 

( 6 . 5 ) < 
(u ,p ,q ) £ H ( S ; U x Y x Z ) , (u , p ,q ) ( 0 ) = (u , p ,q ) n , K n M n / s ' * n * n ' M n o ' K o n ' \ 

q + (A+B )p = AKu . n " n *n v K <Ч„+Vn> = V P n Є 3 Ф ( % > • 
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2) A priori e s t i m a t e s . We have A + B = (1 + 6 )(A+B). Therefore 
n n 

(6.5) yields 

(6.6) (1 + 6 )_1(A + B)~1(AKuf - qf) € 3<j»(q ) . 
n n n n 

By (6.5) and (6.2) this implies (cf. BREZIS [2], Lemme 3.3) 

(1 + 6n)~
1<qn} (A+B)~1q^> + <>(qn(T)) - 4>(qQ) -

= (1 + 6 )~1<qf, (A+B)_1AKuf> = <qf - B (A+B )~1qf, Kuf> « 
n' Hn' n nn n n Mn' n 

- <qf + B pf - B (A+B )~1AKuf, Kuf> < <ff , uf> < nn n n n n n* n = n ^ 

< cjlf'll 2 (||qnll 2 + l|qnll 2 + D -
X L"(S;Uf) n L (S;Z) n L"(S;Z) 

Hence (q ) is bounded in H (S;Z). Using once more (6.6) and (6.2) 

we see that (u ) is bounded in H (S;U). Finally, the relation 
p = (A + B ) (AKu - q ) proves the boundedness of (p ) in H (S;Y), rn n n nn v *n 

3) Existence. Extracting, if necessary, a subsequence we may assume 

(6.7) (u ,p ,q ) •--* (u,p,q) in H1(S;U x Y x Z) . 
n n n 

By (6 .5 ) t h i s imp l i e s t h a t 

( 6 . 8 ) q + (A+B)p = AKu, K (q+Bp) = f, ( u , p , q ) ( 0 ) = (u , p ,q ) . 

I n v i e w of t h e p r e v i o u s r e s u l t s and of Lemma 4 . 2 

Tim <q , p f > - Tim <q , (A+B ) _ 1 ( A K t i f - q f )> = n n ' vxx Mn n n n 7 

n-*-°° n->°° 

= Tim <A(A+B ) ~ 1 q , Ku f> - <q , ( A + B ) " 1 q f > < n Mn n Mn* n n = n->«> 

< < f , u f > + -^{<B(A+B)"1AKu , Ku > - <B (A+B) _ 1AKu (T) , Ku(T)> + 
~ 2 0 0 

+ <qQ, (A+B)"JqQ> - <q(T), (A+B)~1q (T)>} = 

= <q + Bp-B(A+B)~1AKus Kuf> - <q , (A+B)_1q?> = <q , pf>. 

This inequality along with (6.5), (6.7) shows that pf € 3<j>(q) (cf. 

BREZIS [2], Prop. 2.5). Thus (u,p,q) is a solution to Problem lf. 

4) Uniqueness.\Let (u ,p,,q.), i = 1, 2, be two solutions to Problem 

lf and let (u,p,q) := (u--u2, V-^~V1'>
 q l ~ q 2 ^ T h e n (u,p,q)(0) = 

•k 

= (0,0,0), q + (A+B)p = AKu, K (p + Bp) = 0 and (since B(j> is mono­

tone) 
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Jn 

0 < l <q(s),p' (s)>ds = - -|{*.,s(A+B) 1AKu(t),Ku(t)>+<q(t), (A+B) 1q(t)>} 

^0 

(cf. the preceding calculation). Thus q̂  = q„ . If (6.3) is satisfied 

then u± = u 2 in view of (A+B)_1(AKu^ - q|) e d$(q±), i = 1, 2. 

Finally, p 1 = p 2 since p ± = (A+B)"1(AKui - q±) , i = 1, 2. 

5) The asserted continuity of the dependence of the solution on the 

data can be proved by arguments quite similar to those used in the 

previous steps of the proof. Therefore we omit the details. 

REMARK 6.3. MANDEL [22] has pointed out that u is not neces­

sarily unique in cases of isotropic hardening governed by TRESCA's 

yield condition. These cases are special cases of our Example 2 with 

a function F such that F1 is bounded but not continuous (con­

dition (6.2) is satisfied but not necessarily condition (6.3), cf. 

Remark 6.2). 

REMARK 6.4. Under the hypotheses of Theorem 6.1 it is possible 

to prove results on discrete-time problems analogous to those es­

tablished in Theorem 4.3. The crucial step is again to find sufficient­

ly strong a priori estimates. Let us mention that it would be possible 

to prove the existence result of Theorem 6.1 via dicretization of 

time. 

7. Dynamic processes without kine .tatic hardening 

In this section we shall show that it is possible to prove 

results on dynamic processes for systems without definite kinematic 

hardening. For the sake of simplicity we restrict ourselves to pro­

cesses without any kinematic hardening, i. e. to B = 0 . Simul­

taneously we suppose that 

(7.1) A 6 ;|£(U;Uf) is positive d e f i n i t e . 

In this case we have q = z (cf. Figure 1 and (2.7)). Introducing 

v := u' as a new unknown function we may formulate Problem 2' as 

follows: 
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We are given 

( 7 . 2 ) f e W
1 , X

(S;H), v 6 U , z <c D(S<j>) such that K*z e H 

o o o 

We are looking for processes v, z such that 

pv
f
 + K*z = f, A~

1
z' + 3<J>(z) -> Kv . 

(7.3) І 

v «= L
2
(S;U), (v,z) Є W

1 , 0
°(S;HxZ), (v,z)(0) = (v , z ) , 

THEOREM 7.1. If (7.1), (7.2) and (6.2) (with B = 0) ave satis­

fied then theve exists a unique solution (v,z) to the problem (7.3) 

and the mapping (f,v ,z ) H* (V,Z) is Lipsehitzian from the set of 

data satisfying (7,2) (equipped with the metric of L (S;H)xHx z) 

into C(S;H x z) . 

The proof of this theorem is based on two l e m m a s . We shall use 

again the spaces U, , H
1
 , U.! introduced in Section 5 (cf. (5.1), 

(5.2)). We define a multivalued mapping M
u
 in H

1
 by 

n 1 
( 7 . 4 ) V ( v , z ) € H : M ( v , z ) : = { (-K z , A (n-Kv) ) | v € U , K z € H , n e 3 <j> ( z ) } . 

, 1 . The operátor M C H H is maximal monotone. 

P r o o f . E v i d e n t l y , Mu = M A (H. x H ) w h e r e M C U . x U' 
H 1 1 1 1 

denotes the operator introduced in Lemma 5.2 (with B = 0 ) . Therefore 

M„ is monotone. To prove the maximality of Mu we show first that 
n ii 

(M + id ) is bounded. Let (M + id )(v,z) - (v,z), i. e. 

(7.5) 1-,* К z + v = v , A ( n ™ K v ) + z = z , п е Э ф ( г ) , 

where (v,z) e U.! . From (7.5) it follows (if we denote by n 

element from 3 <j> (z ), cf. (7.2)) 

0 .< <Kv - A ~ ( z - z ) - n , z - z > . 

( 7 . 6 ) 

< A _ 1 z , z> <r C l ( | | z | | z | | z | | z + | | z | | z + 1) + < v , K * z - K * z Q > 

.< c 1 C | | z | | z | | z 1 l z + l l z | | z + 1) + < v , p ( v - v ) - K*z> 

< c 2 ( | | z | | z | | 2 | | z + | | z | | z + M v M J I v l l ^ + H V I I , . + 1) 

I n v iew of ( 6 . 2 ) the. r e l a t i o n s d o n o t d e p e n d o n v , 

( 7 . 5 ) i m p l y t h a t 
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(7.7) ||v||n < c(||-|| z + ||5|| z + 1) • 

The inequalities (7.6), (7.7) show that for ||(v,z)|| there exists 

a bound depending only on ||(v, z ) | | , . Thus (M + id ) is 
Ul Ul 

bounded and, consequently, the range of M + id is the whole U' 
1 

(cf. BREZIS [2], Th. 2.3). If (v,z) <6 H then K z e H , i. e. 

(v,z) € D(M ) . Therefore M + id is surjective and this implies 

the maximality of M C Hn * H, . 

LEMMA 7.2. Let Kva and MTTO be multivalued mappings from 
Ho Hb 

0 

L (S;H ) into itself defined by 
M H S(v,z): = {(v,7) eL

2(S;H 1) I (v,z)(t) 6M R(v,z) (t) for a. e. t € S } , 

MHS(v,z):={ (-jK*v,A(n-Kv)) 6 L 2 ( S ; H , ) | v e L 2 ( S ; U ) , n(t)€3<f>(z(t)) 

for a. e. t e S}. 

Then M H g - 5 H S . 

P r o o f . The operator M is maximal monotone (see BREZIS 

[2J, Example 2.3.3). The operator M ^ s als° maximal monotone. This 

a ma 

Since MTTCI is an extension of MUC1 both operators must be equal. 
Hb Hb 

P r o o f o f T h e o r e m 7 . 1 . The p r o b l e m ( 7 . 3 ) may be 

w r i t t e n a s 

( 7 . 8 ) ( v , , z , ) + M „ ( v , z ) S ( - f , 0 ) , ( v , z ) ( 0 ) = ( v , z ) , (v , z ) € W1 ' °° (S ; H1 ) . 
ti p o O I 
2 

Note that v € L (S;U) if (v,z) is a solution to (7.8) by Lemma 

well known results on evolution equations with maximal monotone oper­

ators (see BREZIS [2], Prop. 3.3 and Lemme 3.1). 

In what follows we shall show that there exists a "weak formul­

ation" of the problem (7.3) which leads to an existence-uniqueness 

result even without the assumption (6.2). We need the following 

notations 
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(7.9) Z:-{z€Z|K z e H } , | | z | | ̂ : = ( | | z \ \ *+ \ \ K z \ \ ^ * , Y:-Z'f 4:-+|z . 

Since Z is dense in Z we can regard Y as a subset of Y . 

Obviously 

Vu € U:I|Ku|I- = sup <z,Ku> = sup <K z,u> < IlulI„ . 
Y l z « r i | , | r i - " " H 

Thus K can be extended by continuity to a mapping K € S6(H;Y) . The 

adjoint operator K of K is the restriction of K to Z . Later 

on we shall make use of the trivial implication 

(7.10) n e 9<j)(z), z € "z==->n € 9i(z) . 

If (7.2) holds and (v,z) is a solution to (7.3) then 

((v,z) € W1,0°(S;HxZ), (v,z)(0) = (v , z ) , 

(7.11) \ , _ ° ° 

[pv' + K z = f , A z' + 3*(z) 3 Rv . 

Therefore we may regard (7.11) as a weak formulation of 1.7.3) . Let U3 

mention that in the case of Prandtl-Reuss' equations, DUVAUT-LIONS 

[4] used a formulation equivalent to (7.11). 

THEOREM 7.2. If (7.1)3 (7.2) ave satisfied then theve exists a 

unique solution (v,z) to the pvoblem (7.11) and the mapping 

(f,v ,z )«-* (v,z) is Lipschitzian fvom the set of data satisfying 

(7.2) (equipped with the metric of L (S;H)x H * Z) into C(S;HxZ). 

P r o o f . We define M C H x H1 by 
(7.12) V(v,z)€H 1: MH(v,z) : = {(-K*z,A(n-Kv) |n € 8"f(z) ,n -Kv € Y } . 

Then (7.11) is valid if and only if 

(7.13) (v,z) e W1,°°(S;H1), (v, z) (0) = (v , z ) , (v ' , z » )+M„ (v , z ) 3 (|f , 0) . 
1 O O n p 

By (7.2) we have (v ,z )eD(M„). Therefore Theorem 7.2 follows from 
0 0 ti 

the theory of evolution equations if we can prove M„ C H, x H. to 

be maximal m o n o t o n e . This will be done in the following l emma . 

LEMMA 7.3. The opevatov M defined by (7.12) is maximal mono­

tone. 

P r o o f . It is easy to see that M is mono tone . - To prove 

its maximality we show that M + id is surjective. To this end 
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we consider the problem 

(7.14) -jK*z + v = v, A(ri - Kv) + z = z,n€3"$"(z), n - Kv € Y , 

where (v,z) 6H. is given arbitrarily. From (7.14) it follows 

(7.15) 3?(z) + ("jjKK* + A _ 1)z a A _ 1z + Kv . 

Evidently, -jKK* + A~ l <£ ££(Z~;Y) is positive definite. This fact along 

with the maximal monotonicity of 3 k Z x Y proves the existence of 

— ~ 1—* 

a solution z e Z to (7.15). Defining v 6 H by v := v - —K z we 

obtain a solution to (7.14). This completes the proof of Lemma 7.3. 

REMARK 7.2. If we are given a solution (v,z) to problem (7.11) 

and an initial value u for the displacement we can define 

o * 
u€ W2,°°(S;H), y € W1,0°(S;Y), e€W1,0°(S;Y) and peW1,0°(S;Y) by r 

Vt €S: u(t) := u + ( v(s)ds, y := Ku , e := A z , p := y - e 
^0 

(cf. (2.19)). 
ACKNOWLEDGEMENT. The author thanks Dr. R. Hunlich and Prof. H. 

Gajewski for numerous helpful discussions and comments. 

References 

[l] V. BARBU: Nonlinear semigroups and differential equations in 

Banach spaces. Bucuresti, Leyden 1976. 

[2j H. BREZIS: Operateurs maximaus monotones et semi-groupes de con­

tractions dans les espaces de Hilbert. Nort.i-Holland Mathematics 

Studies 5 (1973). 

[3] G. DEL PIERO: On the elastic-plastic material element. Arch, for 

Rat. Mech. and Anal. 59 (1975), 111-129. 

l_4J G. DUVAUT, J.-L. LIONS: Les inequations en mecanique et en phy­

sique. Paris 1972. 

[5] K. GROGER: Zur Theorie des quasi-statischen Verhaltensvon elas-

tisch-plastischen Korpern. Z. Angew. Math. Mech.58 (1978), 81-88. 

L6J K. GROGER:Zur Theorie des dynamischen Verhaltens von elastisch-

plastischen Korpern. Z. Angew. Math. Mech. (to appear). 

125 



[7J K. GROGER: Evolution equations in the theory of plasticity. 

Proceedings of the Fifth Summer School on Nonlinear Operators 

held at Berlin 1977 (to appear). 

[8] B. HALPHEN: LTaccomodation des structures elastoplastiques a 

ecrouissage cinematique. C. R. Acad. Sci. Paris Ser. A 283 (1976), 

799-802. 

[9] B. HALPHEN, Q. S, NGUYEN: Sur les materiaux standards generalises. 

J. Mecanique 14 (1975), 39-63. 

[10] P. HAUPT: Viskoelastizitat und Plastizitat. Berlin, Heidelberg, 

New York 1977. 

[ll] I. HLAVACEK, J. NECAS: On inequalities of Korn's type (I, II). 

Arch, for Rat. Mech. and Anal. 36 (1970), 305-311, 312-334. 

[12] P. G. HODGE: The mathematical theory of plasticity. New York, 

London 1958. 

[l3] R. HUNLICH: Simultaneous torsion and tension of a circular cylin­

drical bare consisting of an elasto-plastic material with linear 

hardening. Z. Angew. Math. Mech. (to appear). 

[l4] 0. JOHN: On the solution of the displacement boundary value 

problem for elastic-inelastic materials. Aplikace matematiky 19 

(1974), 61-71. 

[15] C. JOHNSON: Existence theorems for plasticity p r o b l e m s . J. de 

Math. Pures et Appl. 55 (1976), 431-444. 

[16] W. T. KOITER: General theorems for elastic plastic solids. In: 

Progress in Solid Mechanics, Vol. 1, Amsterdam 1960, 165-221. 

[17] M. A, KRASN0SELSKI: Topological methods in the theory of non­

linear integral equations. (Russian) Moscow 1956. 

[l8] M. A. KRASNOSELSKI: A mathematical description of the oscilla­

tions of a material point on an elasto-plastic element. Amer. 

Math. Soc. Transl. 105 (1976), 206-210. 

[19] J. KRATOCHVIL, 0. W. DILLON: Plastic materials as a theory with 

internal state variables. J. Appl. Phys. 40 (1969), 3207-3218. 

126 



[20] J. KRATOCHVIL, J. NECAS: On the solution of the traction boundary 

value problem for elastic-inelastic materials. CMUC 14 (1973), 

755-760. 

[2l] J.-L. LIONS, E. MAGENES: Problemes aux limites non homogenes et 

a p p l i c a t i o n . Paris 1968. 

[22] J. MANDEL: Note sur 1 f application du critere de Tresca au pro-

bleme de la flexion circulaire dfun cylindre elasto-plastique. 

Arch. Mech. Stos. 24 (1972), 863-872,, 

[23] J. J. MOREAU: On unilateral constraints, friction and plasticity. 

In: New Variational Techniques in Mathematical Physics, CIME, 

II Ciclo 1973, Ed. G. Capriz, G. Stampacchia(1974), 175-322. 

[24] J. J. MOREAU: Application of convex analysis to the treatment of 

elastoplastic systems. Lecture Notes in Mathematics Vol. 503, 

Berlin 1976, 56-89. 

[25] B. NAYROLES: J. J. Moreau's approach to a fundamental problem: 

the quasi-static evolution of a perfectly elasto-plastic body. 

Arch. Mech. Stos. 28 (1976), 115-132,. 

[26] J. NECAS, L. TRAVNICEK: Evolutionary variational inequalities 

and applications in the p l a s t i c i t y . Aplikace Matematiky (to ap­

pear) . 

[2 7] Q. S. NGUYEN: Materiaux elastoplastiques ecrouissable. Distribu­

tion de la contrainte dans une evolution quasi-statique. Arch. 

Mech. Stos. 25 (1973), 695-702. 

[28] Q. S. NGUYEN: On the elastic plastic initial-boundary value pro­

blem and its numerical i n t e g r a t i o n . I n t e r n a t . J . Numer. Math . 

E n g . 11 (1977) , 8 1 7 - 8 3 2 . 

[29] A, V . POKROVSKI: On the theory of hysteresis nonlinearities. 

D o k l . AN SSSR 14 (1973), 8 9 6 - 9 0 0 . 

r -\ / / v 

[301 L . TRAVNICEK: Existence and uniqueness of solution of the bound­

ary value problem for elasto-plastic m a t e r i a l s . (Czech) Thesis, 

Prague 1 9 7 7 . 

127 


		webmaster@dml.cz
	2012-08-03T16:01:23+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




