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MOLLIFYING OPERATORS WITH VARIABLE STEP AND THEIR APPLICATION 

T O APPROXIMATION BY INFINITELY DIFFERENTIABLE FUNCTIONS 

V. I. Burenkov 
Moscow, USSR 

1. M o l l i f i c a t i o n w i t h v a r i a b l e S t e p 

The mollification of functions plays an important part in various 

problems of the modern analysis. The operation of mollification makes 

it possible to construct a sequence of infinitely differentiable 

functions converging in a prescribed sense to the given function. By 

a special choice of the mollifying kernel we can achieve that the 

sequence possesses some further properties. The properties of molli

fication are presented in detail in the books of S. L. Sobolev [l], 

[2]. The mollification can also be applied to other purposes? in order 

to construct partitions of unity (see, e.g., Sec. 1.3 b e l o w ) , to find 

integral representations of a function in terms of its derivatives or 

differences (this problem is dealt with in detail in the book by 0. 

V. Besov, V. P. II'in and S. M. Nikol'skii [3], Chap. I I ) , to extend 

functions to spaces of larger dimensions the parameter of mollifica

tion can be regarded as another variable (such a method of extension, 

involving the mean functions of V. A. Steklov, was presented by A. A. 

Dezin [4]) . 

In the present section we describe the method of mollification 

with a variable step in the form in which it will be applied in Chap

ters 2, 3 to the proof of theorems on approximation by infinitely 

differentiable functions. 

In 1.1 we establish a general lemma on the partition of unity 

similar to that of Whitney [5] . In 1.2 we describe the nonlinear mol-

lifiers with a variable step, which was introduced by Deny and Lions 

[6], while in 1.3 we describe the linear mollifiers with a variable 

step, studied by the author [7] . Sec. 1.4 deals with another variant 

of linear mollification with a variable step, the construction of 

which makes use of the regularized distance. For open sets of a spe

cial form, similar mollifiers were introduced and studied in detail 

by L. D. Kudryavcev [8], [9], Chap. I. 

The main object of our study will be the Sobolev spaces of func-

5 defined on an open set Q C E , whei 

Euclidean space of points x -= ( x 1 , . . . , x n ) 

tions defined on an open set Q C E_ , where E^ is the n-dimensional 
*• n n 



Throughout the text we shall use the following notation: Q -
an open set in E , C°°(Q) - the family of all functions f(x) = 
* f(x1,...,x ) , infinitely differentiable in Q ; C*(fi) - the family 
of all functions infinitely differentiable in Q , whose support 
supp f is compact and included in Q ; L oc(Q) - the family of all 
functions locally integrable in Q . Given a -» (a.,....,a ) , a, > 0 

integers, we denote by Daf = ; f the generalized deriva-
dx.a...ax„n P i n 

tive, and by WI(Q) - the Sobolev space of functions f which have 

generalized derivatives Daf , |a| <, I , and with a finite norm * 

VT(Q) fa|<£ L p W 

Other function spaces will be introduced when necessary. 

1.1. Partitions of unity 

In this section we introduce a general lemma on the partitions 
of unity that was proved by the author in [10] and whose particular 
cases will be used in the present paper. A countable partition of 
unity with the corresponding estimates for the derivatives was for 
the first time constructed and employed by Whitney [5]. 

In what follows we shall use the notations ( X C E ) 

X,-. -* {x€X : Q(x,6) C X} , X6 - U Q(x,6) , 
K°' X6X 

6 » (6a, . ..»<5n) » <$i > 0 ; 

Q(x,«) *- {y . \x± - y ± \ < 6i , i = l,...,n} . 

If 6^ * 6 > 0 , i = 1,...,n , we replace the rectangle Q(x,6) by 
the ball B(x,6) « {y : |y - x| < 6} . 

Let X be a set in E n and let a finite or countable system of 
sati-i ss-Fv 

where 

* As usual, we denote 

and 

1*1 II (a) " (íl*<*)lpdx) . 1 < P 
P t. 

!*IIL (n)
 = vraí S UP l*<x>l • 

X € ß 



(D x c u xm . 
m 

Further, let X' C X_ similarlv satisfy 
m m " 

(2) X C U x m , 
m 

and let p = (p 1,... , P . ^ ) » P m i > 0 , be such a vector that 

O) x;- - <xm)
Pmcxm •' 

For x € U X let us denote by K(x) the number of sets X which _ m m m 
contain the point x , and let us call the number K = sup K(x) 

the multiplicity of the covering {x } . 

x 6 U Xm 
m 

Further, for x e U X denote by K(X) the least of all posi-
m 

tive integers with the following property: there is a neighbourhood 

U„ such that the number of sets X that intersect U„ is equal x m x •* 
to K(x) . The number K = sup K(x) will be called the regular 

xcux m 

multiplicity of the covering {X} . Notice that always K(x) <, K(X) 

and K 4 K .On the other hand, it is not difficult to give an example 
^ 1 

of a covering with K < «> but K = «> . (Let n = 1 , XQ = (-1, j) , 
Xm = (2~ia~1>2""m+1) » m = 1,2,... ; then K = 3 , K = «> since 

K(0) = « .) 

Let us notice that K(x) = K(x) for x 6 U X provided 
m r = inf dist(x,X„) > 0 , 

It xiXt
 L-x 

since in this case the ball B(x, •-—) intersects only those X 
which contain x . In the opposite case we have K(X) < K(X) . 

Finally, let p m = (pml, ... .p^) , where 

(4) p . = inf p.. > 0 , i = l,...,n . 
m i It X £OX m ?- 0

 l:L 

LEMMA 1.1. Let (4) be fulfilled for all m in question, K ( { X " } ) < 

< «> and e = (e.,...^ ) , 0 < e. < 1 , i = l,...,n . There are 

suoh nonnegative functions i\» 6 C (E ) that 



(i) I>m<
x) - 1 . x e u X' ; E* m

( x ) = ° • x € (U -O ; 
m m m m 

(ii) X' C supp * C (X') m C Xm ; 
m r c rm *- K mJ m 

(iii) X C U supp # , and the multiplicity of the covering 
m 

{supp tf } does n o t exceed K -= K((X''}) ; 

(iv) for any veotor a =- (a.,...,a ) w-tth nonnegative integer com
ponents, 

|D% m(x)| < c(a,e,K)p~
a , 

holds with c(a,e,<) depending only on a , e and K (p~a = 

~a^ *"a ^ 1 ^ n. 
pml *"*pmn ' * 

REMARK 1. If X = U X m -~ U *m and if there is a positive integer 
ra m 

N such that for any m in question the number of sets X* that 

intersect X_ (including X itself) does not exceed N , then 
m -* m 
<({X''}) < £({X''}) < N .. K m ' — K m J ~ 

REMARK 2. The constant c(a,e,tc) in (iv) satisfies the inequality 

, N , . lal ~*a 
c(a,e,ic) < sc 1(a,n)K 's 

1.2. Nonlinear mollifiers with variable step 

Let us consider a function w(x) , x £ E (the kernel of the 
n 

mollifier) that possesses the following properties: 

(1) w(x) € C0°(En) , 

(2) w(x) = 0 for |x| • >, 1 , . 
| ш(x) (3) »(x)dx = 1 . 

E
n 

Let a locally integrable function f be given on an open set 

Q C E . Consider the mollifier of the function f with a radius of 
n 

mollification 6 > 0 

(4) (A
fi
f)(x) - | f(x - 6z)u>(z)dz - 2~ |

 W
(2-Z-X)f(

y
)dy -

3
 6

 E 

n n 



( « ( в ) * f ) < x > . 

where w...(x) = S~
n
c»j(6~ x) . The functions (A.f) (x) given by the 

identity (4) are defined for x € Q& . I n order to define (A.f)(x) 

for arbitrary x € Q (and, in general, for arbitrary x e E ) we 

put f(x) equal to zero outside ft , preserving the original nota

tion. Thus we can write 

(5) (A6f)(x) - ij- L(£-r-X)f(y)dy . 

It is well known (see S. L. Sobolev [ij , [2j) that the function 

(A.f)(x) , x e E , possesses the following properties: if f e 

€ Lloc(«) , then 

(6) (Afif) € C*(Q) 

(and, in general, (A.f) € C°°(E ) ) and for almost all x e Q , 

(7) lim (A.f)(x) = f(x) ; 
6-0 6 

if f € L (Q) , then 
sr 

(8) I I V H L (0) £ c l l f U L (a) • ! i P i -
p p 

(here c =» |w(x)|dx , the condition (3) need not hold for the ine-

En 
quality (8)) and 

(9) lim |JA5f ~ * IlL (Q) » 0 , 1 < p < - . 

Generally speaking, the mollifiers (A f)(x) do not satisfy 

the identity lim ||A.f - f|| 9 = 0 . Using them we can only prove 

that for an arbitrary e > 0 , 

(10) lim ||A.f - f|| , - 0 . 
6-*0 6 V ( 0 ) P c 

This situation is caused by the fact that when introducing these mol
lifiers, the original function f(x) was extended outside Q by 
zero. In the case of the spaces L (a) , the extension by zero pre
serves the class; however, this is not the case for the spaces 

Wr(fi) . Obviously, it is possible to extend the function from Si to 

E in such a way as to preserve the class. However, this possibility 

occurs only provided the boundary r(G) of the set Q possesses a 

certain degree of smoothness. On the other hand, the very possibility 



of an arbitrarily accurate approximation of a function f e Vr CO) 

by infinitely differentiable functions will be seen to be independent 

of the properties of the boundary r(Q) . 

In order to obtain an approximation in the case of an arbitrary 

open set, it is suitable to employ the following mollifiers, which 

can be naturally called the mollifiers with a variable step (depen

ding on the point x € ft ). The construction given below is due to 

Deny and Lions [6] (see also Meyers, Serrin [n]). 

Consider a sequence of bounded open sets V1, V2, ... , such 

that 

v , C v l C v 2 C v 2 c . . . . m U v n « Q . 
m--l 

We construct a partition of unity (see Lemma 1.1 with X = ft, X' =-

= Vm\ V«. 1 > X«. " Vm4.1 N V m 1 » Pm " diSt (]X£,E \ X j , £ m I ) 
m m - l m m+l m - l m v m' n nv I 

CO 

E <j> (x) = l , x € a , 
m-l 

such t h a t * € C*(E ) , m = 0 , 1 , 2 , . . . and 

supp * m C ( V m N V m ^ ) 2 C V m + 1 \ V 2 , m = l , 2 , . . . 

(V0 » Va = 0 ) . Now l e t 7 = ( 6 1 , 6 2 , . . . ) . Put 

(11) (B--f)(x) - £ f * (x - 6 z ) f ( x - 6 z ) « ( z ) d z • 6 m-4 m m m 
E n 

V"<« ) * *mf)(x) - ^ K (фmf))(x) 
ía=l m m-=l m 

where w(z) is the above mentioned kernel of the mollifier. The 

numbers 6_ > 0 are chosen so that 6.< "*• p_ ; then for I z I < 1 , 
m m 2 Km • ' *•* 

(12) s u p p * m ( x - V > C V m + 1 \ V m _ 2 . 

We assume that ^»m(y)f (y) - 0 for y ft supp * , even if f(y) is 

not defined ( y fi ft ). 

By virtue of (12) the functions (B-rf) (x) are defined for x 6 

6 ft . Moreover, (11) actually represents a finite sum: if x e ft and 

the number s = s(x) is chosen so that x e V but x 0 vs->i » 

then 

10 



S+l Ѓ 

(13) (B
?
f)(x) * S Ф

m
(x - ő m z

) f ( x " ő

m

z ) ш ( z ) d z 

m-s-1 L 
n 

Further, there exists a neighbourhood of the point x such that y 

belonging to this neighbourhood also satisfies the identity (13). 

Hence (B*f)(x) , x e Q , are infinitely differentiable functions. 

By means of the mollifiers (11) it is possible (see Deny and 

Lions [6] and also Chap. 2 below) to choose numbers T^3' = (
f i
i» 

62 >•••) , dependent on f , such that the sequence 4>(x) = 

* ( B . » / S \ f } ( x ) has the property 

6 

(14) ||f - * || . — 0 , • - • . . . 
S w£(fi) 

Generally speaking, the functions <j>s(x) —• f obtained with the 

help of the mollifiers (11) depend on f nonlinearly (for s fixed, 
/e\ 

6> f are chosen in dependence on f ). Therefore, the mollifiers 
(11) will be called nonlinear mollifiers with a variable step. (Alt
hough the operator B-f for fixed 1 « (6„ ,6«,...) is essentially 

o XI 
linear.) 

When proving the property (14), we substantially use the fact 

that the functions f € W~(ft) (1 <. P < «) exhibit continuity with 

respect to translation. In Chap. 2 we will consider general function 

spaces Z(a) and, using the mollifiers B*f , we will establish some 

conditions for the infinitely differentiable functions to be dense in 

such spaces. It will be shown that, under some apriori assumptions on 

Z(a) , the density of the infinitely differentiable functions is equi

valent to the continuity with respect to translation for any function 

f € Z(a) with compact support supp f C ft • It will be also proved 

that the sequence of infinitely differentiable functions ** that 

converges to f in the norm | | »||Z/Q\
 c a n ke s©--ected so that the 

functions 4>s(x) have the same boundary values as f (x) . 

In a number of cases it is more suitable to use mollifiers which 

are close to (11), given by 

(15) (C*f)(x) - £ * (x) f f(x - 6 z)w(z)dz -
m-=l L 

En 

m--i m m=i m 

11 



(For instance, for f(x) = 1 and arbitrary 6. , 6? , ... , 
(C-,f)(x) 5 1.) 

Starting from the mollifiers C-f and choosing both the parti

tion of unity and the 6 (in the form 6v ) in a special way, we 

will construct linear mollifiers with a variable step, which will 

enable us to amend the results of Chap. 2 for the spaces Vr(ft) . 

1.3. Linear mollifiers with variable step 

We divide the open set Q C E into "layers" in the following 
manner: denote 

p(x) = dist(x,cQ) 
and for a > 1 , m = 0,-1,-2,... put 

(D Qm « 0 m - \ 0 m = {x € Q, a"m"a < p(x) < a"m} . 
m (a"111"1) (a"m) 

First we construct a partition of unity. 

LEMMA 1,2, There exists such a sequence of nonnegative functions 

$m G C°°(En) , m = 0,-1,-2,..., that 

<o 09 

(2) (i) E • (x) = 1 , X 6 Q ; E • (x) = 0 , X € CQ ; 
m=-» m=-» 

(3) (ii) nm c supp *m c \ a V l U nm U n m + 1 ; 

00 

(iii) Q = U supp $ with the multiplicity of the covering 
m=-co 

{supp if> } equal to 2 ; 

(iv) for an arbitrary vector a = (a,.,-.--a ) , 

(4) l D % m <
x ) | < c(a,a)am(a| , 

where c(a,a) depends only on a and a . 

Lemma 1.2 follows from Lemma 1.1 with X = Q , X ' = Q , X = 

m m m 

= 8 m , p m = dist(flm,
cftm) = a"

m"2(a - 1) , e = -| . Moreover, 

P A 

supp i(/. C (-O » which implies that the multiplicity of the cove

ring {supp ty } equals 2 . 

REMARK. In most cases it is sufficient to consider a = 2 ; nonethe-

12 



less, when proving Theorem 3.1 we have to take into account numbers 

a arbitrarily close to one. 

Using the partition of unity from Lemma 1.2 we construct molli-

fiers of a function f 6 L oc(&) in the following way: 

(5) (E f)(x) - £ *m(x) f f(x - 6vmz)w(z)dz « 
m=-«> J, 

n 

" * *m(xX»(5v ) * f ) ( x ) " 2 *m(
x)(A5v f^(x) • m-=-« m m-=-<» m 

where the kernel w(x) of the mollifier satisfies the conditions (1) 

- (3) from Sec. 1.2 as well as the condition 

(6) j w(x)xkdx = 0 , 0 < |k| < I , 

E 
n 

1 n + + 
(x = x^ ...x ) . Here v , m = 0,-1,-2,..., is a given sequence 

of positive numbers which satisfy the inequality 

(7) • v. < a" m . 

Concerning 6 we will always assume that 

(8) 0 < 6 < 6Q , 6Q « a"
3(a - 1) . 

For the above introduced v_ and 5 , we have 
m 

(9) «vm < a *
3 ( a - 1) - dist(Qm+1,

cSm+1) . 

-s—1 Let x € Q . Then there is s » s(x) such that x e Q ( a 

< P (x) <. a"s ); in virtue of the property (3) of the function * , 

for this x the only nonvanishing summands in the sum (5) may be 

those with m =- s-1, s, s+1 , which means that 

s+1 f 
(10) (E.f)(x) « Z 1J> (x) f(x - $v z)»(z)dz , 6 m-s-1 m I m 

n 

the identity being valid not only for the point x but also for y 

belonging to a certain neighbourhood of x . 

Thus the values of the mollifier (E f)(x) are determined by 

the values of the function f (y) for y =- x - Sv z ( m =- s-1, s, s+1, 

|z| .< 1 ) satisfying for 0 < 6 < 50 the inequality 

(11) |x - y| < dist(as,
c$s) 

13 



(in virtue of (9)) and 

(12) |x - y| < 6a2p(x) < p(x) , 

since l$vmz| <. 6a~ < 6a p(x) < p(x) . 

In particular, this implies that for 6 introduced above the 

raollifiers (Efif)(x) are correctly defined for any x € Q . 

It follows from (10) that the mollifiers (Egf)(x) , x e Q , are 

infinitely differentiable, similarly to those defined by the identity 

(11) in Sec. 1.2. 

The mollifiers (5) possess the same properties (6) - (9) from 

Sec. 1.2 as the usual mollifiers: see Chap. 3 below (the condition (6) 

is not used). 

Making use of the mollifiers E.f we complete the result of Chap. 

2 for the spaces W^(Q) , constructing such a sequence $ € C*(n) , 

<j>s —* f , s —J- » (in wf(Q) ), that <j> depend linearly on f , $g 

do not depend of p , the growth of the derivatives Da<j> , |a| > I , 

is bounded from above when approaching the boundary. 

Changing in (5) the variable according to the rule x - 6v z - y 

we obtain 

(13) (E6f) - JK(x,y,6)f(y)dy , 
ft 

where 

(14) K(x,y,6) « E V ^ ^ V ' ^ t ^ T T * ) ' 
Itirs—oo HI 

Comparing the formulas (13), (14) with the formula (5) from Sec. 

1.2 we see that, analogously to the usual mollifiers, the linear mol

lifiers represent an integral operator, however, with a more complex 

kernel K(x,y,<$) instead of 6""na.(- I y) . 
o 

1.4. Regularized distance and mollifiers with a variable step 

We turn once more to the formula (5) from Sec. 1.3. Since the 

values (E.f)(x) are determined by the values f(y) from the ball 
o 

|x - y| < 6a p(x) , which means that for a fixed x the radius of 
2 

mollification does not exceed 5a p(x) , we may attempt to construct 

mollifiers with a variable step in a simpler way, namely, putting 

14 



(1) ( H 4 f ) ( x ) = f f ( x - í p ( x ) z ) u ( z ) d z -

= («p(x)) " ţa{ffå)tWйr 

for í < 1 . 

In the case Q = E M
S E^ A a similar mollifier with a fixed 6 n n-1 

and a certain special kernel o. was studied in detail by L. D. Kud-

ryavcev [8], [9], Chap. 1, being applied to the construction of such 

extensions of functions from E_ A to E_ , which are the best pos-
n—1 n 

sible frora the point of view of the growth of their derivatives when 

approaching Enmm* • 
For Q =- E N E A the distance p (x) = x represents an infini--

n n—i n , 

tely differentiable function. However, for a general open set this is 

generally not the case. Accordingly, the function (Hfif)(x) need not 

be infinitely differentiable. 

This drawback can be removed by replacing the distance p(x) by 

the so-called regularized distance A(x) which is an infinitely dif

ferentiable function. 

LEMMA 1.3. Let Q be an open set in E and p(x) the distance of 

x € Q from the boundary V(Q) . For an arbitrary 0 < e < 1 there 

is such an infinitely differentiable function A(x) = A(x,ft,e) that 

for x € Q , 

(2) (1 - e)p(x) < A(x) < (1 + e)p(x) 

and 

(3) |D°4(x)| < Cac-
,°,p(x)1-,a' . 

where c depends only on a . 

This lemma, which is of versatile usefulness, was proved by Cal-

deron and Zygmund [12] with the relations 

ctP(x) 4 A(x) <, c2p(x) , c1 = -| , c2 -= -| 12
n 

instead of (2). (See also the detailed account in the book by Stein 

[13], Chap. VI.) The above version of Lemma 1.3 appears in the author's 

paper [14]. Calderon and Zygmund in their proof used the partition 

of unity constructed by Whitney [5], while the proof in [14] is based 

on the partition of unity given in Lemma 1.2, which makes it possible 

to improve the result obtained in the former paper. The function A(x) 

15 



has the form A(x) = (E£p)(x) , where vm = 2~
m~2 

2. A p p r o x i m a t i o n b y i n f i n i t e l y d i f f e -

r e n t i a b l e f u n c t i o n s p r e s e r v i n g t h e 

b o u n d a r y v a l u e s f o r g e n e r a l f u n c -

t i o n s p a c e s 

In this chapter we use nonlinear mollifiers with a variable step 

to deal with the problem of density of infinitely differentiable func

tions in general function spaces. The major part of results of this 

chapter are included in the author's paper [16]. 

2.1. Conditions imposed on the function spaces 

Let Q C E be an open set and let a complete normed (or semi-

normed) function space Z(&) with a norm I I * I IzCQ> s a t i s fy the fol

lowing conditions: 

(1) (a) CQ(Q) C Z(Q) C hloc(Q) . 

(b) (Minkowski inequality.) If A C E is a measurable set 

and $(x,y) a function measurable on Q x A , then 

(2) Ф(x.y)dy||
z(n)

 < í||ф<x,У>||
z(ß)

đ
У 

(c) If f € Z(Q) and 4 € CQ(Q) , then £• e Z(Q) . 

Moreover, we will frequently assume that the following conditions 

are fulfilled as well: 

(d) If f € Z(fi) and <j> € c£(ft) , then' f* € Z(Q) and 

<3> llf*IU(0)'-ic*llfll8(Q) 

with c. independent of f . 

Further, we shall assume that | | . | | „ ( Q . has sense for any open 

subset G C Q . 

(e 

C 8 , then 

(e) (Monotonicity of the norm.) If f € Z(u) and G. C G C 

H^lsCGj) i iifHZ(G2) • 

(f) (Additivity of the norm.) If open bounded sets G , G 

16 



satisfy G. C G. C 6„ C G2 ̂
 a » t n e n f o r a n arbitrary f € Z(Q) , 

ll'llso.) -.«!(! I-H«(G 2)
 + N'M-tn^)) 

with c1 independent of f . 

(g) If f € Z(Q) , then 

(4) ||f(x + h ) | | 8 ( 0 | w ) < o 2||f(x)||, ( Q ) 

with c7 independent of f . 

Actually we shall employ a weaker condition: 

(g') The inequality (4) is fulfilled for functions f 6 Z (Q) 

' with a constant c2 depending on supp f . 

A constant (multiplicative) factor independent of the function 

may be added on the right-hand sides of the conditions (b) and (e) 

without affecting the result given below. 

The conditions (a) - (g) are fulfilled for the majority of func
tion spaces usually considered in the theory of differentiable func
tions of several variables. 

If Z(8) - Wl(fl) , then the conditions (a), (e), (f), (g) are 

obvious, 'the conditions (c), (d) follow from the Leibniz formula; the 

Minkowski inequality is also valid in the spaces W^(Q) (see [16J). 

The conditions (a) - (g) are also fulfilled for the Sobolev weight 

spaces W~ _/v\(Q) with an arbitrary continuous, positive in ft p,a\X/ 
function 

^p,a(x) 

of spaces WI"(&) with a finite seminoma ||f||** P *£«-) 

(||f|| / - E ||a(x)Daf(x)||T r o J . In the case 

Z ||Daf||T ,-o\
 a 1 1 t h e conditions are fulfilled except (d). 

|a|-* V ' 

2.2. Approximation theorems 

THEOREM 2.2. If the conditions (a) - (c) are fulfilled, then a suf
ficient condition for the set C°°(&) to be dense in Z(Q) is 

(1) V f € ZQ(n) lim ||f(x + h) - f(x)|| z ( n ) - 0 

' f 6 Zfl(G) 4r^ f € Z(Q) and the support supp f is compact and 

included in Si . 
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(outside Q the function f is supposed to be equal to zero). More-

overt if also (d) - (g) are fulfilled, then the condition (1) is neces

sary as well. 

REMARK. If the conditions (e), (f) are fulfilled, then the condition 

(1) is equivalent to 

(2) vf 6 Zn<0) lim | |f(x + h) - f (x) | | ( N = 0 . 

P r o o f . Necessity; First we prove that C* is dense in 

ZQ(fi) . Indeed, let f 6 ZQ(sl) , * e C*(Si) O Z(«) and let G1 , G2 

be open bounded sets such that supp f C G. C ^ C G2 C G„ C S . Put 

• = *X » where x ^ C*(fi) , x W s 1 for x e G1 , x 00 = 0 for 

x € Q\G2 . Then <j> e C~(fi) and, by virtue of the properties (f), (e) 

and (d), 

llf - •ll z ( Q ) i ^ d l f - • M - j ^ + ||f - •ll z ( Q N5 i )) -

= c l ( H f - •П Í(G2) + f l ( f " • í x П g ţ o v i j ) ) 

< c Л l l f - • l l í ( a ) + i l ( f - * ) x l l z ( Q ) ) i 

i ° l H f " • H s ( Q ) + C 2 M f ' • H í ( Q ) 

C , | | f !z(П) ' 

Let us note that the constant cu depends on f (since c
1
 and 

c
2
 depend on the sets supp f , G , G , a ) but not on ty . Thus 

the inequality obtained implies our assertion. 

Further, for <j> € C°°(fl) we have 

||£(x + h) - f(x)|| 8 ( 0 | h | ) < ||f(x + h) - *(x + h > H Z a . | h | ) + 

+ || + (x + h) - •(x>||8(0 , + ||f(x) - •<->H«(Q|h|) • 

In virtue of the property (g) we have 

||f(x + h) - + (x + h>llz(fi|l_l) < c \\f(x) - •<*>IIZ(Q) 

|h| ' 

with c^ independent of f and <j> . If we employ the property (g') 

instead of (g), then c^ -= c^ (supp (f - <j>)) » c^(G2>) * that is, c^ 

depends on f but not on <J> . 
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Let us continue the function <(>(x) outside of Si by zero. Then 
<f>(x) e

 c
n (

E

n
) •

 F o r n
 sufficiently small (such that 

supp <)>(x + h) C G )
 t n e

 function <j>(x + h) belongs to C~(G) C --(*-)• 

Since 

• (x + h) - •(x) - Z h± J§|~(x + th)dt , 
i=l

 Q
 i 

we have 

||ф(x + Һ) - Ф(x)||
Z ( й }

 < ||ф(x + h) - ф ( x ) | |
z ( ß ) < 

n 1 
| h ^J l | fђ ( x + t h > I І 8 < « > đ t 

0 
by the properties (e) and (b)• 

Let the open bounded sets G , G ? satisfy supp <f> C G* C cL C 
C G 2 C G 2 C ft . We choose h so small that supp <j> (x + th) C G* 
for 0 <, t 4 1 and that Go **- Q \h\ • T h e f u n c t i o n av""(x + t n ) € 

£ C*(fi) C z(-^) an<-l t n e properties (f) and (g) (or (g')) yield 

H ^ + t h ) | | z ( n ) <c5(|||±-(x + t h ) | | z ( G 2 ) + 

+ HB-<- + *->lli(aNV
)4 

< C5|||±-(X + t h ) | | a ( B | t h | ) < c 6||f±-(K)|| Z ( s ) . 

Notice that the constant cg depends on <j> (since it depends on the 
sets supp <j> , G1 , G2 , Si ) but not on h . 

Hence 

||f(x + h) - f(x)|| z ( Q ) < (1 + clf)||f(x) - •<*>II B ( 0 )
 + 

+ cc|h| Z ll-U-l 
i*l 

Given e > 0 , we first choose <j> £ C~(ft) such that the first sum-
1 mand on the right-hand side of this inequality is less than -j e , 

and then for this <j> we take 6 so small that 

n 8, 1 
c 6 6 . ^ l'dxTllz(Q) < 2 e * T h e n for 'hl < 6 t h e ine<3ualitY 

||f(x + h) - f(x)||t7/_ x < e holds, which implies (2) and hence z(ajhj; 
also (1) (see Remark), thus completing the proof. 
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Sufficiency; Let us consider the mollifiers 

(B--f)(x) - E [ *m(x - « m z ) f ( x - 6mz)u)(z)dz . 

En 

Since £ <J> (x) = 1 , x e ft ; w(z)dz = 1 ; w(z) -- 0 , | z | .> 1 , 
m=! m £ 

n 

we have 

(3) (B-A:)(x) - f(x) -

- E f [*n(x - « mz
) f ( x " 6mz) " *m(x)f(x)]»(z)dz . 

m=sl|z[<l 

According to the Minkowski inequality (2) from Sec. 2.1 we find 

||(Byf)<X) - f(x)|| z ( a ) < 

- J J I f [^(x" 6^z)f(x" 6*z)" v x ) f ( x ) > ( 2 H | z w -
iziil 

< £ | ||*n(x - « n«
) f ( x ' 6mz) ~ *m(x)f(x)i|z(Q)|w(z)|dz . 

m 1 |Z|<1 

By virtue of the property (c) the function fm(x) = * (x)f(x) with 

compact support supp f C & belongs to Z(Q) . Now for the given 

e > 0 and fixed m we find (making use of the property (1)) $ 

so small that for | z | <_ 1 , 
(4) ||fm(x - 6mz) - f m ( x ) | | z w < 2~m( ( |w(y)|dy 

lY|<--
holds. Hence 

-1 

(5) HBjf " f||g(a) < J Z ^ ' - £ • 

which was to be proved. 

COROLLARY, Infinitely differentiable functions are dense in the 

spaces wf(Q) , sf(Q) , wf a,vv(a) , wf(8) with 1 <_ p < » , in the 
P P p»a\.x.j p — 

-C-1, . . . ,^n 
space W (&) w i t h 1 < p. < «> j in the spaces 

P1»...,Pn 1 

r > i > . . . » r
n --"-i » • • • » - - , . n 

P 1 , . . . , p n , e 1 , . . . , e n p 1,....,p n,e 1,...,e n 1 

1 £ 8. < «> . 
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For the definitions and properties of the above spaces we refer 

the reader to the books [15] , [3] and [17] . 

Theorem 2.1 asserts that, if the space Z(Q) satisfies the con

ditions (a) - (c) and the condition (1), then there is a sequence 

$ € C°°(Q) such that 

(6) ||f - •_||8(a) - 0 . s -> - . 

Now we shall show that <J> can be chosen in such a way that these 

functions have in a certain sense the same boundary values as f . 

THEOREM 2.2. Let Q be an open set in E and let a complete nor-
med (or seminormed) space Z(Q) satisfy the conditions (a) - (d) 
and (1). For any functions y (x) 6 C (Q) and f € Z(Q) there is a 
sequence <!>g(x) e C°°(ft) satisfying (6) and. 

(7) ||(f - • _ > P | I _ ( 0 ) — 0 . s - > - . 

P r o o f . We will consider the same mollifiers B-rf as in 
o 

the proof of Theorem 2.1 but, given e > 0 , we will choose <5 in 

a little different way. In virtue of (3), we have 
[(B?f)(x) - f(x)]y(x) = 

£ y(x) J [>m<x "" 6 m z ) f ( x ~ 6mz) " * m ( x ) f < x 0 w < z > d z 

І z i <_a 

anđ 

H ( B J f - f>"Hz«.) i S ll"<->V*>ll-(0> • 

m=l 

where the support of the infinitely differentiable function 

Fm(x) = | [>m(x - «m

z)f(x - 6mz) - * m(x)f(x»(z)dz 

.z|<.l 

belongs to v

m + i
v V

m - 2
 i n v i r t u e o f t J i e condition (12) from Sec. 1.2. 

Denote by xm(x) a function from C*(fi) equal to 1 on v

m + i ^
 V

m . 9
# 

Then 

y(x)Fm(x) -= y(x)xm(x)Fm(x) = ym(x)Fm(x) , 

where Pm(x) € C^(Q) , Fm(x) € Z(Q) (since Fm(x) € C™(Q) ). Conse

quently , 

M»F
mll_(„) - ll^Jl.to, i^H'mllaxB) 

in virtue of the property (d) and without loss of generality we may 
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assume that c >_ 1 . m — 

Hence 

(8) ||<Bjf - f)u||z(Q) < 

^ ^ C m f H V X - 6m z ) f ( x " 6m 2 ) " *m ( x ) f (x) I I Z(ft) I«<«> l d z • 
m lz|<l 

Now we choose 5 so small as to guarantee the validity $£ an inequa
lity stronger than (4), namely, 

(9) ||fm(x- amz) - V
x > M z « » < 2 _ I V ( I l»(y)lH"le 

l y l i i 

for |z| < 1 . Then in addition to (5) we obtain from (8) and (9) that 

||(Bjf - f)M||-(a) < E 2
_ m

e = e . 

which was to be proved. 

Let us specify Theorem 2.2 for the case Z(Q) = VT(Q) . 
P 

THEOREM 2.3. For any continuous> positive in Q function y (x) and 

any function f € WI(J-) , 1 .< p < • , there is a sequence <j> (x) € 
oo P 

€ C (Q) such that 
(10) ||f - • || . -> 0 , s -» • 

S w£<0) 
and 

(11) ||(Daf " Da<|,s)y(x)||L (Q) ~» 0 , S — • , \ a \ < l . 

P r o o f . Given a function ji , we consider such an infinitely 

differentiable function y that |D% (X) | < y (x) , |a| <_£ . It fol

lows from the proof of Theorem 2.2 that there are such <f>s(x) € C°°(ft) 

that (10) is fulfilled and 

(12) E ||Da[(f - ^ s)D
a^]|| L - 0 , 8 - * - , \y\<l 

I a I <.I P 

holds. To this end we have to take DYy , I YI* <. £ > instead of y 
in the proof of Theorem 2.2, establish the inequality (8) with c^J' 
instead of c and choose 6 so as to guarantee the validity of 

(9) with max c Y ) instead of c . Then the inequality 
lYl<-£ m m 

|(B^f - f)DYy|| p < e holds for \v\ < I . 
6 w£(Q) 
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Now we shall prove 

(13) | | ( D a f - D % s ) D Y y | | L ( Q ) - + 0 , s - * • , | a | < £ , 
P
 |Y| < l - |a| . 

For a = 0 this is a consequence of (12). Proceeding by induction, 

we assume that (13) holds for |a| < k , and consider a with |a| = 

= k + 1 . The Leibniz formula together with the Minkowski inequality 

yields 

(14) | | (D°f - D % s ) D ^ | | L (fl) < | |D°[(f - • g)D^] | | L (fl) + 

+ o<5<. T T ^ T T T 11»—<* " •.>-»•*- SI lS<0> •• 

Now (13) for |a| - k + 1 follows from (14), (12) and the induction 

hypothesis (in the second term we have | a - 31 <. k , | 3 + Y | 4 

4 t - |a - 3| ). This completes the proof. 

Notice that, generally speaking, the sequence A depends non

linear ly on f and moreover, depends on the parameters of the space 

r : on p and I . 

Since the rate of growth of the weight y(x) may be arbitrary 

when y approaches the boundary T(Q) , the condition (11) expresses 

the fact that, when approaching the boundary, the behavior of the 

functions Daf and Da<|> differs only little in the above described 

3. A p p r o x i m a t i o n b y i n f i n i t e l y d i f f e -

r e n t i a b l e f u n c t i o n s i n S o b o l e v 

s p a c e s 

In this chapter we prove a theorem that in several points comple

tes Theorem 2.3. We shall construct such a sequence of functions 

<|>s(x) € C°°(fi) , <j> —• f in wf (ft) that (J> linearly depends on 

f , 4> is independent of p and the growth of the derivatives 

Da<f>s > lal > £ » when approaching the boundary is in a certain sense 

bounded from above. We will consider weight functions y(x) = 

= A(x),a'"' , depending on the order of the derivatives involved. The 

case X(x) = p(x) , where p(x) is the distance from x € Q to the 

boundary r(Q) , was treated and the result given in this section 

obtained in the author's paper [6j. 
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3.1. Auxiliary inequalities 

We shall use the following two simple but useful inequalities. 

n 
the finite or countable sum Ea.(x) consists of at most N nonzero 

i 1 

LEMMA 3.1. If for every x e X (X being a measurable set in E ) 

the finite or c 

summands, then 

(D .HEaiWll-, (x) £ H 1 " 1 ^ ! !•«.<-> IIS (X))
 P. i i P i - . 

LEMMA 3.2. If X is either a finite or a countable union of measur

able sets: X «• U X, , the multiplicity of the covering {X.} being 
i x x 

equal to K , then 

(2) (SIl-llEp(Xi))
1/P i *1/PIlfIII (X) • l 4 P 4 - • 

3.2. Properties of linear mollifiers with a variable step 

We shall show that the linear mollifiers with a variable step 

(1) (E f)<x) - E *m(x> f f(x - 6vm2)a»(2)d2 = E *m(x)fm(x) , 
m=-oo ) m=-<*> 

En 
where 

(2) fm(x) - f f(x - 6vm2)a)(2)d2 -- (A6v f)(x) , 
L m 
En 

which were introduced in Sec. 1.3, possess the same properties (6) -

(9) from Sec. 1.2 as the usual mollifiers. Let us recall that 

s+1 
(3) (E.f)(x) = E *m(x)f (x) , 

m=s-l 
-*S~"1 "~S 

where s =- s (x) is determined from the condition a < p (x) <, a , 

the identity being valid even for the points y belonging to a cer

tain neighbourhood of the point x . 

In the present section we assume that w(x) satisfies only the 

conditions (1) - (3) from Sec. 1.2. 

LEMMA 3.3. If f 6 Ll0C(fl) , then 

Efif € C°°(fl) 

for 0 < 6 <. 6Q (6Q «- a"
3 (a - 1) ), and 
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(4) D°(V ) (x) = ^ B 1 ( t t
a;e ) 1 j : ^ - * v*>DV*> . 

= V ttl T
( 6 ) t v ^ 

" ~ o B!(a - 8)1 a3 v ' 04,8 <,a 

holds with 

(5) Jaft' (x ) = E D°"P V ( x ) I ) P f m ( x ) 

m=-<» 

Lffm4 g.4. If f € L loc(Q) , then for almost all x 6 Q , 

lim (E.f)(x) = f(x) . 

Lemmas 3.3 and 3.4 follow from the formula (2) and from the re

spective properties of the usual mollifiers. 

LEMMA 3.5. If f 6 L (Q) , 1 <, p <, • , then 

( 6 ) I I V H L (Q) £ « l | f | l L (Q) 
P P 

holds for 0 < 6 < L with c = 5 |to(x)|dx . 

En 

P r o o f . According to Lemma 1.3 the multiplicity of the co

vering {supp ij> } equals 2 , hence 
т
m 

! - - . • / t 1/p 

'Ví. (0) - 2 Pt E íl*m(x)í f(x " «V0*>(-)d-lP<ix) 
TU Tn .5S .->CO •* L p m! Q E_ 

n 

in virtue of Lemma 3.1. 

Taking into account that supp * C 2f 2 Q_ „ U Q„ U G.^* » we 
r r m m m—1 m m+i 

obtain by applying the Minkowski inequality 

<7> l l E
s

f l l L p w - = 

! - -f " fl f IP ) 1 / P 

< 2 p E I I f (x - «vmz)a.(z)dz dx < 
m=~" K lz'-.a 

l - i f . , p l / P 
4 2 P E ( I •»<->! | | f ( x - «v « > | | t (JJ .d«) < 

l m = - " iz <1 P m J 
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-- sr - r PI 1 / P 

< 2 p E ( l ed) | | | f (y ) | | fiv di) • -
l m = - i 2 j < i L pC(! .m) -3 

i- i , r - > - / P 
- 2 P |«>(z)|dz E l | f | | P

 fiv 

.-ki w ~ -pCsca.) ^ 

Since v_ < a""m and 0 < 5 < 6A , we have 

(8) (Q) m c (a m o ^ Q m+1 )
a (a"1} -

m (a"m-2) (a~m+1) 

= "(a"""1-2 - a - m - 3 ( a - D ) % " ( a ~ m + 1 + a -
m " 3 ( a - l ) ) C 

m+2 £ 
C- m q \ Q .0 - U G = 2L • /,-m-ov / - m + A ___ 0 s m (a ) (a ) ss-m-2 

As the multiplicity of the covering {ft} equals 5 , we con

clude by Lemma 3.2 that 

1- - t • 1/p 
(9) llB.fllj, (0) < 2 P |o,( Z)|dz(E ||f|| p y ) < 

IZ | £1 P 
1/P 

I L../-\M-I Iťl , 

'L W 

R 1/P Г 

<2(f) J |ca(z)|đz||f|I3 U|<1 P 

( 
ІZ|<1

 p 

< 5 | |
и
(ж)|dж||f|| Ł (fl) , 

which completes the proof. 

COROLLARY. Under the assumptions of Lemma 3.5 we have 

<10> rs= M,mL* n , ( X ) f m ( X )"V" ) " 
ioCU-ell <a ) + l|f|L(a.B >) • 

P (as -) P (a s + a ) 

P r o o f . By the same argument as above we obtain instead of 
(9) the inequality 

r s < 2
1 _P" ( |~.(.)|d-( E ||f||P ft ) 1 / P . 

|zj<l ,m'>s V ^ > 
which implies (10) in virtue of 
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00 Ч, - S + l 'V 

U l C Q N f l _ s + 1 . U &mC a 2 
m-s+1 ш (a s + 1 ) m — m ( a s г) 

LEMMA 3.6. If f € L («) , 1 < p < » , then 

l i ш | | E s f - f | | L p ( í г ) = 0 . 

P r o o f . C o n s i d e r t h e d i f f e r e n c e 

(11) ( E f i f ) ( x ) - f ( x ) -

00 # 00 

" E * m ( x ) [ f ( x - 6v m z) - f ( x ) ] o > ( z ) d z = E a m ( x , 6 ) 

E n 

We shall prove that the series (11) converges uniformly with respect 

V") 
E a

m
(x,«) < 

1
 |m| >s 

-1 E 

Ч-Ч'-
 E 

E if> (x) f f(x - «v z)«(z)dz| + |f(x)| E * (x) 
ml>s i ' imi>s 

n 

as well as the inequality (10), we find 

".^/-^"llv-) i r - + l | f | i V^ > s «w V " 
^c.Ddlfll^^^.Hfll^,^^) . 

which implies the uniform convergence. 

Since with 6 —> 0 each summand a_(x,6) —*• 0 in L f&) (see 

m ' p 

the property (9) from Sec. 1.2), we have (the limit in L(ft) ) 

lim [(E f)(x) - f(x)] = E lira a
m
(x,6) = 0 . 

6+0 m---* 6->0 

3.3. Approximation theorem for Sobolev spaces 

In this section we shall assume that the mollifier kernel u>(x) 

possesses in addition to the properties (1) - (3) from Sec. 1.2 also 

the property 

(1) J o)(x)x
k
dx « 0 , 0 < |k| < I , 
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k kl kn where x - x. ...x„ 1 n 

The following lemma concerning the "usual" mollifiers A^f will 

be useful in the sequel. It essentially employs the condition (1). 

Denote 

l|f|U, - E l|D°£||L (0) . 
W£(0) lal-̂ C V ; 

LEMMA 3.7. Let Q be an open set in E , 1 < p < * , f €• w (ft) , 

G C 8 a measurable set and G C Q . Then 

(2) | |DB(Asf) - D
Bf | | L p ( G ) < ClS

£-|Bl | |f | | ^ ( Q i ) 

for |3| < I and 

(3) I H > S ( V ) | | V G ) < o / - '
B l | | f | | ^ ( G 6 ) 

for |$| £ Z with c . and c« independent of f and 6 . 

P r o o f . First we prove the inequality (3). To this aim we 

shall differentiate inside the integral for x € G (since G C -- » 

the function i(y) =- f (y - 6z) has a generalized derivative DYr(y) -

= DYf(y - 6z) in an open ball with its center at the point x ): 

D3(A6f)(x) = D
3 ] f(x - 6z)aj(z)dz -

iz{<l 

- D3"*Y f (DYf)(x - 6z)a)(z)dz -

D ^ Ҷ Г
1 1 [• •.(-!—-.)_*_ <y)đy) -

Ix-yj^ä 

6-l<H
 + M ( ä -

n J (Dß-rш
)(Ł-_2)DYf(y)đy) 

I X - y j ^ 

6£~\&\ f ( DY f)( x - 6Z)D
3""Y

t_(2)dz . 

Izl__.--

(Here the vector Y satisfies the conditions Y <_ B » IYI - &• •) 

Now it suffices to use the inequality ( 

instead of w ): we obtain (3) with c0 

8 — Y 

Now it suffices to use the inequality (8) from Sec. 1.2 (with Dp Tw 
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í |D$~Yü>(z)|dz . 
tzţ ,<! 

In order to prove the inequality (2) it is sufficient to estab

lish it for 3 = 0 and then use this particular case applying it to 

Def instead of f , with I - |3| instead of I (taking into acco

unt that, due to G6 C Q , we have [De(Afif)](x) » [A6(D
3f)J(x) for 

x e G ). 

Thus, let 3 = 0 and let at first f € C°°(fi) . Using the Taylor 

formula and taking into account (1), we obtain 

(A6f)(x) - f(x) == f [f(x - fiz) - f(x)]w(z)dz 

121:41 

- f r - --if---(-«-)8i.(-)d« + 
„!<,><'«•<* °- j 

o i 
+ l f f £ SzML. f(1 _ t)-

£"1Daf(x - tsz)dtL(z)dz -

,z|<lL'a'=' "' J J 

1 

= {-I)ll6l | T £ ft f(l "" t)£"1Daf(x - t5z)dtlw(z)dz . 

IZ|<1 ,a|=^ ° 

Applying the Minkowski inequality, we conclude that 

I I V - fHLp(G) i \ 

<Ul J £_ £ - J d - t ) * - 1 | | D a f ( i x - t « 2 ) | | L ( G ) dtJ |o , ( z ) |dz< 
l z | < l ia[~l 0 P 

1 

~lsl \ ( E , M ( 1 " t>*-1llDaf«y>ll trum at)|M(z)|dz < 
iz i< i ' a ' = £ o ; L

P
( G > 

< 6* [ |a,(z)|dz £ iy ||Daf|| j < 

< «* f |u(z)|dz( min a l ) " a | | f | L . ! . . 

,z|<l '-'^ V 6 * > 

which implies (2) (for instance with c1 «-j |u(z)|dz ). 

! izi^i 

If f € W.~(&) , then we consider a sequence of functions 

<J>g(x) e C°°(Q) , <j>g —* f in W^(Q) (see j Chap. 2), write down the 
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inequality (2) for <j> and, passing to the limit, obtain (2) for f 

(taking into account that due to the boundedness of the operator A., 

we have | |A <j> —>• A.f | |, ,Qs —• 0 with s —-*•«>) . 
P 

COROLLARY. Let f € W^(fi) , 1 < p < « , 0 < 6 < &Q . Then 

(4, | I D ^ - D ^ f l l ^ ^ i o / - ' « v * " ' » ' H f l l ^ J 
p ч"яr 

holds for |3{ < t and 

(5) i i D Miv-. ) i 0 -^ , M ^ ' " I I-II^S, 
P 

for | $ | > I s where 

m+1 £ m+2 

пi _Jl 4 s m _J~ 0 s 
s=m- 1 s=m~ 2 

P r o o f . I t s u f f i c e s t o app ly Lemma 3 . 7 w i t h 6 - 8 and 
m
 <5v 

with $v instead of 6 and to take into account that (8 )
 m c 

m m
 v

— 
*\» 

C 8 for 6 < $„ (see (8) from Sec. 3.2). 

m •• o 

Let A(x) , x e Q , be a continuous positive function. Put 

X
1
(x) = min{x(x),p(x)} , where p(x) is the distance of x € Q from 

the boundary r(Q) . Let us consider an arbitrary continuous positive 

function A(x) = A ( x , e ) , x € & , satisfying the following condition: 
(6) sup A(x) < c- inf A,, (x) 

t<p(x)<t(l+e) t<p(x)<t(l+e) 
for all t > 0 . 

Let us discuss some examples. If x(x) = p(x) , then we can set 

A(x) = x(x) . If x(x) = g(p(x)) with g(u) - a continuous function 

monotonously increasing on (0,») , g(u) <, u , then we can set 

A(x) = g((1 - e)p(x)) . If X(x) = g(p(x)) with g(u) - a conti

nuous positive function, monotone in a neighbourhood of the origin 

as well as in a neighbourhood of infinity , then we can set 

A(x) = min g ^ Y P O O ) » <3+ (u) =min{g(u),u} . 

l~e<,Y<l+e 

Finally, let us note that (6) implies 

A(x) 4 c.p(x) , x 6 Q . 
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THEOREM 3.1. Let Q be an open set in\ E , 1 <, p < «> and f €• 

€ w (Q) . Then there is such a sequence of functions § (x) € C°°(ft) 
p s 

($ (x) linearly depends on f and is independent of p ) that 

(7) lim ||f - • l| . = 0 , 
S-M» & VT"(Q) 

and 

(8) lim ||(Daf - D % )X(X) , a |^|| L ( . = 0 
S-K» P 

fo r |a| <s I 9 while 

O) M-V<-)ls,'*llVa)i«l..ll'llll*w) 

/ o r |a| > t s with c independent of f and Q . 

P r o o f . Consider a mollifier E^ , where the number a 
o 

involved in the construction of the partition of unity is chosen so 

that 
(10) a3 < 1 + e . 

The sequence of numbers v is introduced in the following way: 

(11) v_ -= c. sup A(x) , 

a-m-2<p(x)<aHm+1 

where the constant c. independent of m is chosen so that v <. 

£ a""m (condition (7) from Sec. 1.3). Since 

vm < c^g inf Xl(x) < c4c3a-
m-2 

a-m~2<p(x)<a~m+1 

in virtue of (6) with t « a"
m"'2 an<j Qf (11), it is sufficient to 

put c^ - a 2c 3
1 . 

Using the formula (4) from Sec. 3.12 and taking into account that 

J 00 00 

w(x)dx =- 1 , £ <Pm
(x) = l provided ! $ - a and E D a " e ^ m (x) » 

- . —CO —00 
n . -
-= D a e Z ^m(

x) provided |g| < |a| , w!e obtain for x € Q and 

l»l s.t" 
d2) D-(B.fxx) - D«f(x) = oz j n t e i n K¥™ ' 
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where 

(13) J ^ O . ) - E Da"B*m(x)(D
8fm(x) - D

Bf(x)) 

m=-<» 

( 3f^}(x) E J^ }(x) provided |$| < |a| ). 

Let ]i (x) be a continuous, positive in Q function. Then 

(14) ||Ma(x)[(D
aE6f)(x) - D

af(x)3||L (Q) < 

4 oi<a »'<-*>' " ^ ^ " " y ) * 

If 0 = a , |a| =- I and sup y (x) < + « , then according to 
xe Q 

Lemma 3.6, 

<15) Um ||af<«>||L (a) - 0 . | . | - Z . 
5+0 p 

Now let |0| < I . The multiplicity of the covering of the set 
Q by the sets supp * is equal to 2 , hence by Lemma 3.1 we have 

1- 1 oo D -•/-? 

< 2 P ( £ fvS(x)|D a"S m(x)(D
Pf (X) - D*f(x))| dx) 

Q 

Since supp D a ~ % m C S-m ~ ^ m « 1 U fim U « m + 1 and the condition (iv) 

from Lemma 1.2 is fulfilled, we conclude, taking into account the 
inequality (4), 

ll".*i!>HVn> i 

< O ( E ( s u p u (x)) P a m | a -« ! | P f|D6f (x) - D 8 f (x) |Pdx] « 
lln— x e a jr J 

m m 
* 1/P 

-V*" ' [ i_<-- . --«-»-——-4—•j'll-Hje.S ,) • 
x 6 £3 p m 

m r 

Assume that the function p (x) and the numbers v < a"m are 
a m 

chosen so that 
(16) eM = sup » (x)am,a~01 v f ~ m < c, , 0 < 8 < a , 

xe S 
m + + 

| ex | « 0,1,,,, , m = 0,-1,-2,... , 32 



with c
?
 independent of m . Then according to Lemma 3.2, 

к-^н 
P w£(fì) 

< l . 

In the case |a| > I we again apply the formula (4) from Sec. 

3.2. If |3| < I , then £ Da""%m(x) $ 0 and J^ } (x) = S ^ O O 
m=-«i 

and we can employ the inequality ( 1 7 ) . if |6| >. I , then analogously 

to the above argument we shall immediately estimate the norm including 

J o , applying the inequality (5 ) instead of ( 4 ) . Eventually, we 
ap 

obtain the inequality 

<18> i i". jyii v a) iv'""" 
Now ( 1 5 ) , (17) and (18 ) imply 

.a. 

| f I |
л /
 , |a| > £, 0 <. 3 < a . 

(19) lim | | (Da(E6f) - D a f ) y J | L ( Q ) 4 0 , | a | < l 

provided (16) holds ( ( 16 ) implies that sup \i (x) < «> provided 

!x e?L 
| a | = I ) and m 

(20) MDa(E6f)MJ|Lp(^ < V J I f l ^ . |»| > I 

with c independent of f and ft . 

Let us discuss the inequality (16) . ; First of all, if | a | = I , 

then (16) is equivalent to the inequalities 

(21) sup y (x) < 
X € ӣ a 

and 

(22) 

Indeed, (16) for |a| = I and 3 = a ikplies that sup y (x) 4 c
7
, 

and for |3| < |a| , (22) follows. Reverjsely, ( 2 1 ) and (22) imply 

(16) provided |a| =- I . 

Further, let |a| < I and y j x ) HACx)
1
*

1 ~l . Then (16) assu

mes the form 

(23) 0 
t|-.Є

a
m( lal-lß| Ь l- Ißl _. 

Ы < г 

0 < ß < a , 

, m = 0,^1,-2,... 
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The inequality (23) under the condition (22) is equivalent to the 

inequality 

(24) vm < cg inf X(x) . 

m 

Indeed, (23) implies (24) provided 3 = o . Conversely, if 

inf X(x) < a"m , then em < cj ( inf X(x)) ,a| " ,3! a m ( ,a| ~ ,$l > < cj , 

X € ?L X 6 ?L 
m m 

and if the converse inequality is valid, then 8 <, 
< c ^ ( i n f X ( x ) ) , a l ^ a m ( | a , ^ ) < c - . 

x *2L 
m 

Now let |a| > I and ya(x) - A(x)
,al ""* . Then the inequality 

(16) assumes the form 

(25) 8 m - [ s u p A(x)]'-I-* .»<••! "I »DVJ-«B« < 0? , 
X € ft 

m 

0 <, $ <, a , |a| > £ , m - 0,-1,-2 
Under the condition (22) the inequality (25) is equivalent to the 
inequality 

(26) vm >, c 1 0 sup A(x) , 

X € ft 

m 
which can be verified as above. 

Combining (22), (24) and (26) we conclude that for the functions 

u (x) considered, the inequality (16) is equivalent to the inequa

lity 
(27) c1JL sup A(x) < vm <, c12 inf x^x) . 

x € ft x e ?L 
m m 

The conditions (6), (10) and (11) imply the validity of the ine
quality (27) and also (16). Consequently, the inequalities (19) with 

v (x) = X(x),a|""'e and (20) with y. (x) = A(x),a,~'e are valid. The 
a a 
inequality (19) also holds with y (x) = 1 . 

In this way, the sequence 6 « (Efif) , where 6 —•*• 0 , s —• 
—*• 00 9 meets the requirements of Theorem 3.1. 

Let us deal in more detail with the particular case of X(x) « 
• A(x) = p(x) . *In this case, 
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(28) lim ||(Daf - D04,s)p(x)
la,"4||L = o 

S-J-oo P 

holds provided |a| <, I while 

<29) l l D V « , a , " £ | l V n ) 4 C 4 ) S | | f | | w , ( f l ) 

provided |a| > I . 

We shall show that the factor p(xja' in (29) cannot be gene

rally replaced by p (xja{~l~e, e> 0- 1-©t | x - (x,xn) , x « (x±  

x 1) and Q = E = {x:x > 0} . Consider a function f € wl(E
n) » 

such that its .trace f(x,0) € B * " 1 ^ ^ ^ ) , while f(x,0) £ 

rfBj-^P+'CB^) , 1 < p < co . 

(The definition of the spaces IT* as weill as the proof of the embed

ding theorem formulated can be found for: example in the book by S. M. 

Nikol'skil [15].) Notice that in virtue jof (28) the functions 

$s(x",0) • f(x,0) almost everywhere in |E - . Indeed, 

x^ffCx.O) - • B(x io))- xn
1(f(x,0) - f(x,xn)) + 

+ X;
1(f(x,xn) - •8<x,xn)) + ^ ( ^ ( x . V . " *s(x'0)) = 

*n a 

" *n | I f ( x ^ n ) ^ n + x;1(f(x) - * <*» + x ; 1 j ^(x, C n)d 5 n . 
^ n > n 

Applying the Minkowski and Hardy inequalities and (28) with a = 0 , 
we obtain 

() - ' - / ^ P 

(30.) y x n
p J |f(x,0) - <j>s(x,0)|^dx dxnj < 

0 V i 

•IIИУI L p ( E n - l * t-0'1)) 

* l l - ^ ( f < * > - •.<«)) I l ^ . , ( 0 > 1 ) ) + 

+ l l 9 *- l l • 1 i 
n L p ( E n - l x ( 0 ' 1 ) ) J I 

since f , <f>
g
 6 ̂ <

E
n>

 a n d
 <

28
>
 w i t h a

 :" ° holds. Now (30) implies 

that ||f(x,0) - 4> (x,0> j I_. („ . = 0 (since in the opposite case 
p

v
 n-1' 
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the left hand side of the inequality is infinite), that is, f(x,0) i> 

•v- *s(x,0) on En_1 . 

If (29) holds with p(x)'al - e , e > 0 , then according to a 

theorem by S. V. Uspenskil [17] and by (29), 

11-'(-.0)11 /_1 / D + E = I U s(x,o) 11 t_1/x>+e < 
B p / P < V l » Bp / P <En-l) 

i c l l t ( | | . . | | + + E l l x ^ 1 - * - * D % _ | | + ) < 
Lp(E+) |«,-m Lp(E+) 

i c
1 5 H f l 

which i s not poss ible . 
-""- aí, 
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