
NAFSA 2

Mariano Giaquinta
On differentiability of the extremals of variational integrals

In: Oldřich John and Alois Kufner (eds.): Nonlinear Analysis, Function Spaces and
Applications, Proceedings of the Spring School held in Písek, 1982, Vol. 2. BSB B. G.
Teubner Verlagsgesellschaft, Leipzig, 1982. Teubner Texte zur Mathematik, Band 49.
pp. 38--92.

Persistent URL: http://dml.cz/dmlcz/702416

Terms of use:
© Institute of Mathematics AS CR, 1982

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides
access to digitized documents strictly for personal use. Each copy of any part of this
document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech
Digital Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/702416
http://project.dml.cz


ON DIFFERENTIABILITY OF THE EXTREMALS OF VARIATIONAL INTEGRALS 

Mariano Giaquinta 
Firenze, Italy 

In these lectures we shall be concerned with the differenti
ability properties of the extremals of multiple integrals in the Cal
culus of Variations and, more generally, with the regularity proper
ties of weak solutions of nonlinear elliptic systems that arise as 
natural extensions of Euler equations or equations in variation. 

Our aim is to describe some results and methods that have been 

used. Proofs are given only in simple situations and are omitted most 

of the time. For more information we refer to the original papers 

quoted, as well as to the notes [36]. 

Because of the time and space restrictions, many contributions 
are not even mentioned; in particular we say very little on the func-
tionals with general polynomial growth, on the regularity theory for 
diagonal systems and its connections with the problem of regularity 
of weakly harmonic mappings and H-surfaces, on Liouville's type theo
rems and, finally, on applications. 

Anyway we hope that these lectures can be a somehow useful intro

duction to a field which still offers so many open problems, especially 

in connection with differential geometry and mathematical physics. 
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I n t r o d u c t i o n 

Let si be a bounded connected open set with smooth boundary in 

the Euclidean n-dimensional space Rn !, n £ 2 . We shall denote by 

x = (x1,...,xn) points in b n . 

Let u(x) = (u (x),...,u (x)) be a vector valued function defi-
N ned in ft with values in R , N >, 1 '• We shall denote by Du the 

gradient of u , i.e. the set { D u }, a = l,...,n , i = 1,...,N 
1 a 

where D = -r—— . a dx a 

A variational integral is a functional of the type 

(0.1) ?[ujQ} = JF(x,u(x),Du(x))dx 

ft 

N nN where F(x,u,p) is a map from ft x R >< R —-> R . Dependence on 

higher order derivatives could be also permitted, but in the sequel 

we shall confine ourselves to the simplest case (0.1). 

Variational integrals arise in different fields of mathematics 

and in applications (for example in differential geometry and in the 

theory of elasticity) and two of the classical problems are: 

a) 20 Hilbert's problem: existence of minimum points in class K 

of admissible functions; 

b) 19fc Hilbert's problem: the differehtiability properties of such 

minimum points. 

In the sequel we shall mainly consider the problem of regularity 

of such minimum points or more generally of stationary points. But let 

us start briefly with the problem of existence. 

1. Existence 

Surely one of the simplest and classical ways of proving the 

existence of a minimum point for iF[u;p] in a class K of competing 

(or admissible) functions is using the direct methods of the Calculus 
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of Variations. 

The idea is very simple and well known. The set K is not a 

priori equipped with a topology. So the problem of minimizing & on 

K can be seen as the problem of introducing a topology on K for which 

both K [or more precisely the (or one of the) minimizing sequences 

in K ] is sequentially compact and f is sequentially lower semi-

continuous (s.l.s.c.) on K . Note that in order to grant that 3F be 

s.l.s.c. we need in general a rich topology, while for the compactness 

of K the topology must not be too rich: so the two requests are one 

against the other. But a satisfactory compromise can be reached for 

example for a large class of variational integrals working on the 

Sobolev spaces. In fact we have 

THEOREM 1.1. Suppose that 

(i) F(x,u,p) >. 0 , 

(ii) F is measurable in x for all (u,p) and continuous in u 

for all p and almost all x , 

(iii) F is convex in p for all u and almost every x . 

Then the functional *[u;ft]] in (0.1) is s.l.s.c. with respect to 

the weak convergence in H-j*m(Q,iR ) for 1 ̂  m < + «> . 

In order to prove the existence of a minimum point in K C 

C H ,m(&,lR ) it is now enough to impose a condition that ensures 

compactness of the minimizing sequences (or of K ). 

For example in the case of the Dirichlet problem, i.e. of the 

problem of minimizing $F [u;flQ among the questions with prescribed 

value un at the boundary, it is sufficient to assume that: a) for 

an extension u of uft in Q we have ^[uQ;sf| < + °° ; b) for 

some m > l 

(1.1) F(x,u,p) > X|p|m , A > 0 . 

This is the case, for example, if 

(1.2) x|p|m < F(x,u,p) < y|p|m , m > 1 , X > 0 , 

and uQ is the trace on dQ of an H , m function. Now remembering 

that H ,m(ft,R ) is a reflexive Banach space for m > 1 , proving 

the existence of a minimum point is a very simple exercise. 

The range of applicability of the above method and of Theorem 

1.1 is quite large and on the other hand quite well known, so we shall 
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not insist on that point. We only mention that Theorem 1.1 under 

stronger regularity assumptions on F jis proved in [95, Theorem 

1.8.2J. There is a very large literature on the semicontinuity theo

rems, starting from the results by L. ionelli and C. B. Morrey till 

nowadays; we refer to [19] for the proc-f of Theorem 1.1 and to [36j 

for a sketch of it and for further references. 

The convexity assumption in (iii) ,j Theorem 1.1, is natural in 

the scalar case N = 1 , actually it i$ essentially necessary (clas

sical proofs of this fact are availably, we refer to [6], [75] for 

proofs under sufficiently weak assumptions); but it is very far from 

being necessary in the vector valued c4se N > 1 . It should be sub

stituted with the quasi-convexity condition of C. B. Morrey [95, 

Sec. 4.4J : 

00 N 

for a.e. x e Q and for all sQ ;, £ , <J> e CQ (Q,IR ) , 

TOT f F (V V 0̂ + D*(x))dx > F(^,s0,C0) , 
0 ; 

which generally is a weaker condition tjhan the convexity and reduces 

to it for N =- 1 . Although uneasy to hjandle, the quasi-convexity 

condition arises in a natural way in many problems, especially in 

elastostatics see [5] , [6] , [7] , [8] . por example, if n = N any 

convex function of the invariants of thie Jacobian matrix of u is 

a quasi-convex function. 

Semicontinuity theorems under the fouasi-convexity condition plus 

quite strong assumptions were proved inj [88], [81] , [95, Sec. 4.4] 

and in [5j , [8] . Recently the works [29J , [76] , [1] have given a 

strong contribution to the question. Let us state the main theorem 

of [1J without proof: 

THEOREM 1,2, Let F(x,u,p) be measurable in x and continuous in 

(u,p) . Assume moreover that 

0 < F(x,u,p) < 1 + X(|u|m jf |p|m) , m > 1 . 

Then the functional (0.1) is weakly s.l|.s.c. on H ,m(Q,R ) if and 

only if F is quasi-convex. 

The p r o o f of this theorem is! quite complicated. It is 

simpler to prove instead 

THEOREM 1,3, Let F(x,u,p) be measurable in x and continuous in 

(u,p) • Assume moreover that 
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|F(x,u,p)| < 1 + X(|u|m + |p|m) , m > 1 , 

and that F is quasi-oonvex. Then «F[u;#J is weakly s.l.s.c. on 
H1,i3(fi,RN) for q > m . 

See [29j and [76] for a simpler proof. 

Unfortunately the assumption q > m is crucial: the result 

fails if q • m as an example of L.Tartar and F.Murat [looj shows. 

Note that in view of Theorem 1.2 it would be true provided F > 0 , 

But Theorem 1.3 permits, by combining two results in [22j , [39], to 

obtain the existence of a minimum point, as P. Marcellini and C. 

Sbordone have shown [76j . We shall go back to this question in Sec. 

4, Chap. II. 

Since we want to avoid any complications due to the boundary 

data, from now on " u is a minimum for £F in Q " means that for 

all <j> 6 c"(ft,R ) with supp <(> C C & 

<F[u; supp 4>J <. JFQi + $> supp <f] . 

2. The problem of regularity 

As we have seen, by enlarging the spaces of competing functions, 

it is possible to prove quite simply the existence of generalized 

solutions* to minimum problems for variational integrals; but we pay 

for this simplicity by the new problem of showing, if possible, the 

differentiability (in the classical sense) of the generalized solu

tions • 

It would be very difficult to quote all the many contributions to 

the regularity problem, and even more difficult to record the many 

influences that methods and results have had in different fields of 

mathematics. Let us recall that they start at the beginning of this 

century, have run till nowadays and that many problems remain still 

open. 

We can anyway distinguish, at least from the point of view we 

are adopting, two main steps: 

1 1 
a) "from C on'! The concluding result can be stated as: any C 

stationary point of "regular" multiple integrals in the Calculus of 
Variations is as regular as the data permit. 

The starting point of this result (apart from Hilbert's work 

for n = 1 ) is probably due to S. Bernstein in 1904 who proved that 
3 

each solution of class C of a nonlinear elliptic analytic second 

order equation in the plane is an analytic function. Through the 
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fundamental contributions of L. Lichte^istein, E. Hopf, I. G. Petrov-

skil, J. Leray, J. Schauder, R.Cacciop^oli, K.O. Friedrichs, H. Lewy, 

0. A. Ladyzhenskaya, F. John, L. Niren^>erg (among others) we arrive 

at the result stated in a) - see C. B. Morrey [89], 1954. 

This step, seen a posteriori, hasj mainly to do with the linear 

theory of elliptic system and we shalli try to describe the main points 

in the next two sections. 

The theory of boundary value problems for linear elliptic system 

received relevant contributions during! the fifties and culminated in 

the work of S. Agmon - A. Douglis - L 

contributions should be mentioned, but 

are not really related to what follows 

Nirenberg. Actually even later 

we shall omit them, since they 

But except for the two-dimensional! case (the results of C. B. 

Morrey 1938-39 [85j, see also [86] [87J]) no real progress was made in 

the direction of filling the gap 

b) "from H 1 , m to C1 " until the famous result of E. De Giorgi in 

1957 £17] (see also J. Nash [101 J) whoj proved that any weak solution 

of a second order linear elliptic equation with measurable coeffici

ents is Holder-continuous, deducing in! this way that any extremal of 

a functional of the type 

|F(Du)dx ; 

Q 

is as regular as the data permit. 

The paper £17] opened a new stagej, which reached its culmination 

in the works by G. Stampacchia, C. B. korrey and 0. A. Ladyzhenskaya 

and N. N. Uraltseva. Under suitable growth conditions on F and on 

the derivatives of F plus the elliptipity condition step b) was 

accomplished, thus solving the 19 Hijlbert's problem for a large 

class of functionals, in the scalar case N = l . 

This theory can now be considered! as classical; we refer to the 

two books £73] £95j . Anyway we shall return to it in the next sections. 

Besides a result by J. Necas £102J for a class of higher order 

equations in dimension 2, no result was obtained during the years 

1957-68 for the case N > l . Many new proofs of De Giorgi*s result 

were given, but none of them could be Extended to cover the case of 

systems. 

In 1968 E. De Giorgi £18] showed (that his result for equations 

could not be extended to systems. By modifying De Giorgi*s example 
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E. Giusti and C. Miranda [55] showed that functionals of the type 

JA^(u)Dau
iD3ujdx 

ft 
ct 8 

with analytic coefficients A.|r satisfying 

may have singular minima for large dimension n , and the same holds 

for weak solutions of elliptic guasilinear systems of the type 

JA^(u)Dou
iD3*

jdx = 0 y* € C~(ft,JRN) 

a 

in dimension n ^ 3 . Similar exaples were presented in the meantime 

by Maz'ya [77] and now different extensions and improvements in vari

ous directions are available [4], [24], £25], [32], [47], [62], [106], 

£107] ; we especially point out the examples in [32j , [106J. We shall 

discuss some of these counterexamples to the regularity in the next 

sections. But already now we can state that vector valued minima or 

extremals of regular integrals or weak solutions to nonlinear elliptic 

systems are in general non-smooth. There is hope only for "partial 

regularity", i.e. regularity except an a closed singular set hopefully 

of small dimension. 

Results on the partial regularity of solutions to nonlinear ellip

tic systems, essentially systems of the type of systems in variation 

for multiple integrals of the kind 

F(x,Du)dx , 

ft 
were obtained by C. B. Morrey [96J , E. Giusti, C. Miranda [56j, E. 

Giusti [52j , L. Pepe [112J during the years 1968-71. The method used 

relies on an indirect argument, very similar to the one introduced 

by E. De Giorgi and J. F. Almgren for proving the regularity of para

metric minimal surfaces. We refer to [96j , [56j, [36j for a descrip

tion of the main idea and to [36j for an account of the results. 

During the years 1975-79 elliptic systems of diagonal form, i.e. 

of the type 

- D (Aa3(x,u)D u1) = f±(x,u,Du) 

with 

| f ( x , u , p ) | < a | p | 2 + b , A a ^ o C e > U | 2 

have been particularly studied, mainly in connection with the problem 

of the regularity of weak harmonic maps between Riemannian manifolds 

and of the regularity of H-surfaces (we refer to [60j for an account 
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of methods and results), and more recently in connection with the 
theory of stochastic differential game^ (see for example [9]). Under 
suitable assumptions, regularity everywhere has been proved. In the 
sequel we shall not mention these results with a few exceptions. 

In 1978 a new argument of direct type was introduced by M. Gia-

quinta and E. Giusti [38] , and improve^ in [43] , [44] , for proving 

partial regularity of solutions of nonlinear elliptic systems. In 

this way results of partial regularity\were obtained for solutions 
of a large class of nonlinear ellipticj systems [38], [43], [44] as 

well as for minimum points of certain Regular functionals [39] , [40] . 

But the regularity problem for general; functionals 

F(x,u,Du)dx 
ft 

is still an open question. In the sequel we shall be mainly concerned 
with these results and with some ideas| which lead to them. 

We conclude this section with a sample remark on the first step 

of stage a). Let u be a minimum point of 

F[u;fi] =- |F(x,u,Du)dx 
ft 

and suppose t h a t u € C 1 (Q,(R N ) C\ H^£(|2,.RN) . Then, as i s well known, 
u i s a so lu t ion to the Euler system iji the weak formulation, i . e . 

f(F i(x,u,Du)D .j,1 + F i(x^u,Du)<j)
1)dx = 0 V<J> € C*(Q,IRN). 

i P a U ' 
Q * a j 

CO N 

Now choosing <|> = D ^ , \J> € C.(Q,IR ) and integrating by parts, we 
deduce that the derivatives of u are!solutions of the so-called 
system in variation 

ffiyr i(x,u,Du)Da^
i - F i(x,u,j)u)Ds^

ildx « 0 V* € c£(Q,RN) , 

Q Pa 

i.e. ! 
(2.1) ffp ± j(x,u,Du)DeDgu

j + F ± .. (x,u,Du)Dgu
j + 

0 Pa P3 P a U 

+ F . (x,u,Du) + 6 F . (}c,u,Du)|D ib1 = 0 . 1 as J. • l a p X u -i u 

If we now read the coefficients as functions of x , the system in 
variation shows its c 
tinuous coefficients. 

variation shows its character of a linear system for D u3 with con-
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3. Linear systems 

Two results from the linear theory of elliptic systems are rele

vant in order to accomplish step a) of Section 2. 

Let us consider the linear system 

(3.1) - D6(A^(x)DoU
i) = - DB£j 

and assume that it is elliptic, i.e. 

(3.2) Aij(x)^i5jTla
T13 - U | 2 M 2 V* > n • 

Then we have 

THEOREM 3.1. Assume that A*? € Ck(fi) and fjj € Hk
QC(Q) , k > 0 . 

Then any weak solution u e H:' (Q,IR ) to system (3.1) belongs to 

H 1 O > , R N > ' 

THEOREM 3.2. Assume that A*? € Ck,Y(Q) and fjj € Ck,Y(fl) , k > 0, 

0 < Y < 1 • Then any weak solution u 6 H-Ac(
ß»lR ) to system (3.1) 

belongs to Ck+1,Y(a) . 

Since not only the results but also the way of proving them is 

relevant for our purpose, let us hint at the proof. For the sake of 

simplicity we shall assume from now on the stronger ellipticity con

dition 

(3.3) Aij*a*3 ^ !*|2 V * ' 

Hilbert space regularity. There are several ways of proving Theorem 

3.1 '. But probably the simplest proof and surely the most suitable 

for our purpose is the one by L. Nirenberg [110J who replaced the 

mollifiers by the difference quotients.**/ This proof is nowadays 

well known, but let us sketch it, assuming moreover the coefficients 

A?? to be constant. 

*) 

One method employs F. John's construction of the fundamental so

lution; another employed by F. John is the method of spherical means; 

a third one introduced by K, 0. Fridrichs employs mollifiers and a 

priori estimates of higher derivatives (we should at this point men

tion also R. Caccioppoli, J. Leray, 0. A. Ladyzhenskaya). Finally, 

still another method has been used by P. D. Lax. 
**) 

we mention that difference quotients were already used by L.Lich-
tenstein. 
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ft - f t . 
we immediately obtain by simple tricks 

Let n 6 C*(B2R(x0)) *>, 0 < , n 4 1 , n s l in B
R(x0) , 

2 ' 
,< 2/R . Inserting <j> = r\ u in th^ weak formulation of (3.1), 
in 

JAj^D^D^dx = Jfj>Dg*
J4 V* € C~(ft,lRN) , 

ft ft 

y obtain by simple tricks 

(3.4) | |Du|2dx < £-r f |u|2dx 4 c | |f|2dx , 

BR B2R J B2R 

which is called the Caccioppoli inequality J and plays a fundamental 
role in the theory of elliptic systemsi 

Now differencing equation (3.1) we deduce 

J A J J D ^ C X + h) - u*(x)]Dgujdi *- }[f^(x + h) - f3(x)]Dg«,jdx 
ft ft 

and therefore 

( 3 . 5 ) f ID u(xn-h) - u W | 2
d x < * f |u<x+h) - . ( x ) ! ^ + 

J I n I £ J I h | 
Br B2R 

+ c [ I f(x+h) j f(x)| 2
d x m 

B2R 

It is simple to show that (3.5) implied Du 6 H i o c and 

[ |D2u|2dx < °--j [ |Du|2dx + [ |Df |2dx <, 

BR B2R BiR 

3 < c(R) J |u|2dx + c||f||2^2 . 
B4R 

By induction, Theorem 3.1 then followsjin the case of constant coef
ficients. Moreover, we have, if f = 0 , 

* ) 
BR(xQ) denotes the ball of radiusj R around xQ 

**) 2 I 
More precisely, inserting <f> • n (U - u 2 R) , 

U2R = ч. ,2R = ł 
B 2R ( З C 0 

udx 

) 

- 1 

WV 
udx , 

i 

U2R = ч. ,2R = ł 
B 2R ( З C 0 

udx 

) 

-
l B 2 R І E WV 

udx , 

i 

WЄ have 

j |Du| I
2 dx *Ь I " " U2RІ 

| 2 dx! + • J - | f | 2 d x • 
BR B 2 E B2R 
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IMI k < c(R,k)||u|| 
HK(BR)

 L <BR> 

Extensions to systems with variable coefficients need only formal 
changes. 

The p r o o f of Theorem 3.1 under the ellipticity condition 
o 

(3.2) needs more care. Still by inserting <J> = n u one deduces 

jA^Da(u
in)D3(u

j
n)dx < cj|u| |Dn| |D(un)| dx + 

+ cJ|u|2|Dn|2dx + J|f| |D(un)| dx . 

Now, by means of Fourier transform and using (3.2), one sees that 

J|D(un)|2dx < jA^Da(u
in)D3(u

jn)dx 

and the proof can be easily completed in the case of constant coeffi
cients. For variable coefficients one uses Korn's device (compare with 
the proof of Garding inequality), one freezes the coefficients at a 
point and looks at the remainders as a small perturbation (assuming 
the coefficients at least continuous). Remark that this procedure does 
not work for example, for quasilinear systems ( A?T = A??(u) ) while 
inequality (3.4) still holds assuming the strong ellipticity condition 
(3.3). This is the reason why almost nothing is known when considering 
nonlinear systems satisfying the ellipticity condition (3.2). 

HSlder regularity. As we have remarked, if u is a weak solution of 

(3.6) jA^DaU
iD3(f,

jdx = 0 v* e C~(fl,iRN) 

then u € H, for all k and loc 

||u|| k N < c(R,k)||u|| 
HK(BR,R

W) L (B2R) 

Then we have for all p < R/2 , using also Sobolev imbedding theorem, 

f |u| 2dx<cp n sup |u|2 < c(R)pn||u||2, < 
Bp

J(x0) VV H <BR/2> 

<, c(R)pn J |u|2dx . 

w 
Now it is easily seen from the equation, by using a dilatation argu

ment, that c(R) = const R n , i.e. 

(3.7) f lu|2dx < c(|) n J |u|2dx 

vv W 
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for all p < R/2 . Since (3.7) is obvious for R/2 < p < R we have 

(3.7) for all p < R . Since now any derivative of n is also a so

lution of (3.6) we can state 

PROPOSITION 3.3. Let u be a solutionof system (3.6). For x € Q, 
p 4 R < dist(x0,3Q) we have ! 

(3.8) | |Du|2dx<c(|) | j|Du|2dx. 

W W 
We are now ready to prove the following 

THEOREM 3.4. Let u be a weak solution to 

(3.9) - Da(A^(x)D3u
j) + Daf£ - 0 , i - 1 M , 

and suppose that A^? , f* € C° . Then ju 6 c!j^c for all y < 1 . 

Remark that Theorem 3.4 applies to!system (2.1) at the end of 
j 1 2 2 

Sec. 2 and permits to conclude that any|extremal of class C O H ' 

actually has H51der-continuous first derivatives. Therefore the coef

ficients of system (2.1) are H61der-coniinuous. 
P r o o f . Let B_(xrt) r r (1 . la B_(xrt) , u is a weak solu-

x\ 0 ; K U 
tion of 

- Da(Ag(-0)DB«-} + DoF« -jo . 

Fj = fj + l>"S(V " Aij<X|lD6uJ ' 

Let v be the solution to the Dirichlei problem 

[ A I j < V V J V i d X = ^ ** 6 H ot B R ( X 0 ) ' R N ! ' 
BR(x0) 

v - u e HJ(BR(X0),IR
N) . ; 

By Proposition 3.3 we have 

(3.10) f |Dv|2dx < c(|) f l|Dv|2dx. 

BP ( X0 ) 

On the other hand, 
W 

| A^(X0)DB(U
3 - Vj)Da*

idx - | F ^ D ^ d x 

¥4> € H^(BR(x0).p
N) 

B R(X 0) W 
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and inserting <j> = u - v we obtain 

( 3 . 1 1 ) f |D(u - v)|2dx 4 

W 
< c{ J|f| 2dx+ J |A(xQ) - A(x)|

2|Du|2dx} . 

BR(xQ) BR(xQ) 

Putting together (3.10), (3.11) we deduce 

(3.12) J |Du|2dx < c[(|) + w(R)l J|Du|2dx + c J|f|2dx 

BP BR BR 

where w(R) is the modulus of continuity of the coefficients A"? . 

Now we have: 
let 4>(t) be a non-negative and non-decreasing function; if 

• <P> < A[(|) + el M R ) + BR3 

for all p 4 R 4 R0 with A, B, a, $, e positive constants, 

a > 3 and e < eQ = e Q ( A , a , 3 ) , then for all p 4 R 4 R 

Mp ) < C [ R " % ( R ) + Bjp3 

with c = c ( a , B , A ) . 

Since |f| dx^ sup |f|2u> Rn , from ( 3 . 1 2 ) we deduce taking «j>(p) = 
BR 

|Du|2dx - I 
B 
P 

( 3 . 1 3 ) | |Du|2dx 4 c (e )p n "" e [R e - n ||Du|2dx + sup | f 121 

V-e > 0 . 

. folio* 

the Dirichlet growth theorem of C. B. Morrey [95, Theor.3.5.2j, 

V V " BR BR 

Observing now that ( 3 . 1 3 ) holds for all x , the result follows from 

Q.E.D. 

Remark that actually we have only used that f € L°° and that it 

would be sufficient to assume that 

R~n If - f D| dx <_ const, independent of x_ and R . j x ,K« - 0 

w 
The proof we have given appears in C. B. Morrey [89j , an analo

gous argument was also used in []84j . We have to remark that Morrey's 
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proof uses in a strong way potential theory; the proof we have given 

is due to S. Campanato [13]. When passing on to prove that if the 

coefficients and the data f? in (3.9) are H61der-continuous then i 
the first derivatives of the solutions ire H6Tder-continuous, Morrey's 

proof in [89] becomes less transparent.|0n the other hand, Campanato's 

approach [J3] is very simple and usefuli 
i 

The first result is the following Characterization of HSlder-

continuous functions, see £12], which replaces the Dirichlet growth 

theorem. 

THEOREM 3.5. Let ft be a smooth open set. Then u e C ,a(ft) if and 

only if for all x0 € ft and all R < Rj we have 

i i- i • 
BR(x0)Oft BR(x0)Hft 

dx < dR П + 2 a
 , 0 < a <_ 1 . 

See £12], [69], or [36] where also further references are given, for 

the proof. 

In the same way we proved inequality (3.8), or using Poincare 

inequality on the left hand side and Caccioppoli inequality on the 

right hand side we easily deduce 

PROPOSITION 3.6. Let u be a weak solution to system (3.6). For 

xQ e ft , p < R < dist(x0,dft) we have 

(3.14) J | u - u | 2 d x < c ® | •[ | u - u | 2 d x . 

V V i W 
! k 

Moreover* (3.14) also holds when replacing u with D u . 

By the same method as in the proof |of Theorem 3.4 we can now 

prove (see [13]) the following 

THEOREM 3.7. Suppose Aa? , fa € C0,y I and let u be a weak solu-
-* 0 u 

foon to system (3.8). Then Du € Cir';~ . j 
! 

P r o o f . Splitting u as in th^ proof of Theorem 3.4 and 

using (3.14) (with u replaced by Du )| instead of (3.8) we obtain 

for B p C B R C A | 

(3.15) | |Du - (Du)p|
2dx < Cl(|) | |Du - (Du)R|

2dx + 

| BR<V 
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+ C 2 | |f - f R|
2dX + C3 S U P [ A ^ ] 0 p R2V [ |Du|2dX 

BR C ' BR<V 

We know from the proof of Theorem 3.4 that 

I' 
B R 

Du| 2đX < CR П
~

Є 

and, because of the assumptions, 

E
R 

B
R 

f - f„| 2đx < c*n+2v 

Hence, by the same algebraic argument as in the proof of Theorem 3.4 

and of Theorem 3.5, we deduce that Du € C^*T ' for y < p . In 

particular, Du is locally bounded, therefore from (3.15) we deduce 

n+2. 
| |Du - (Du)p|

2dx < C l(|) | |Du - (Du)R|
2dx + Cj+R

3 

B 
P 

which concludes the proof 

n+2y 

B B D 

p R 

Q.E.D. 

Theorem 3.2 now follows by induction, by differentiating the 

system. 

4. From the functional to the system in variation 

Consider the multiple integral 

(4.1) & £u;Q] = |F(x,u,Du)dx 

ft 

and suppose, for simplicity, that 

|p|2 < F(x,u,p) < c|p|2 . 

The possibility of differentiating & in the direction of a function 
1 ? **") 

$ € 'H * ' at a minimum point u depends strongly on the growth 

*) 2 
' Note that the L -norm plus the H61der seminorm is a norm equiva

lent to the HSlder norm. 
' As is well known, functionals of type (4.1) in general do not 

possess derivatives in the sense of Frechet, compare for example 
[[119] . On the other hand, we may hope to get information on u 
(a priori estimate) only by choosing suitable variations, which* 
of course, must involve u ; therefore we need to have the possi
bility of making variations at least in the same class to which 
u belongs (plus zero boundary conditions, in order not to change 
the boundary value of u as requested at the end of See. 1 ) . 
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conditions we have for the derivatives >̂f F . 

EULER SYSTEM. Formally the derivative pf & in the direction of <j> 

at u should be 

(4.2) [ [F .(x,u,Du)D ф* + F .(x.^DuH^dx 
* p

 a
 u 

ӣ 

Noting that D<|> € L and that, because! of the Sobolev imbedding the-
2* 

or em, <j> e L , in order for (4.2) to pave a meaning we must assume 
that 

F .(x,U,DU) 6 L2 ; F .(x,ti,Du) 6 L2*' ; 
p u 

2*' -= the dual exponent of j 2* ( » ~~-- ) (n > 3) . 

This is granted, taking into account thi Sobolev imbedding theorem, 

for example by the following growth conditions 

j n 

" |Fp(x,u,p)| < p[Xl(x) + |u|
n~2 + |p|] , 

in+2 1+ 2 

u(x,u,p)| < y[x2(x) + \u\n~2 + |p| n] , (4.3) < F. 

чeь2 , x 2 £ L
2 n / ( n + 2  

І f П > 3 , OГ 

( 4 . 3 ' ) 

|F p(x,u,p)| < y [ X l + | u | q / * + |p |] , 

|F u (x,u,p) | < y [ X 2 + | u | q - f + |p| " q ] , 

^ X a ^ L* x 2 e ^ 1 )

> | i < q < + . , 

if n - 2 . 

Now it is easy to verify that 

conditions (4.3), (4.3') are als<j> sufficient for the differen

tiability of .?[u;fl] in the direction of <j> € H*^,RN) • 

While conditions (4.3), (4.3'), which we shall call controllable 

growth conditions, are "natural" if thete is no explicit dependence 

on u in F , i.e. F(x,u,p) * F(x,p) .j they are quite unnatural in 

the general case, as it is unnatural to assume that F increases 

of the same order, with respect to p , as F . For instance, for 

the simple functional 
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fa(u)|Du|
2
dx , N - 1 , 0 < m < a(u) , a'(u) < M 

we have 

|F_| * ІPІ , |F
U
| =a'(u)|p|

2
 * |p|

2 

P 

Hence it is more suitable to assume 

' for |u| < R and V = (1 + | p |
2
)

1 / 2
 , 

(4.4) 4 |P
u
| < y(R)V

2
 , 

. |F
p
| < y(R)V . 

Conditions (4.4) are not sufficient to ensure the differentia

bility of f in the direction of $ e H 1
 but this is true if we 

work in H
1
 O L°° instead of H

1
 . We shall refer to (4.4) as the 

uncontrollable growth conditions. 

Concluding, we are able to consider extremals of p C
U
»*Q (and 

the Euler system for f ) in the following two situations: 

1 2 N 

a) controllable growth conditions hold, u 6 H ' (__,|R ) ; u satis

fies 

(4.5) J IF
 i
(x,u,Du)D

a
<|

>

1
 + F

 i
(x,u,Du)(|

>

:L
ldx == 0 V^6H^(»

9
R

N
)

V 

ft
 P

ct
 U 

b) uncontrollable growth conditions hold, u e H ' O L°°(S.,IR ) ; u 

satisfies (4.5) for all <j> € H1 nL°0(ft,lRN) . 

Analogous meaning should be given to the notion of weak solu

tions to nonlinear elliptic system of the type 

(4.6) - DaA^(x,u,Du) + B±(x,u,Du) = 0 , i = 1,...,N 

with the obvious analogy. 

As we shall see, this distinction really corresponds to a dif

ferent behaviour of the solutions. 

Analogous considerations can be carried out in the more general 

situation 

|p|m < F(x,u,p) < c|p|m »• m > 1 . 

SYSTEM IN VARIATION. According to controllable or uncontrollable 

growth conditions, we also need different assumptions in order to 

deduce the system in variation. 
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Let us start with extremals of the| simple integral 

|P(Du)dx 

ft J 
or more generally with weak solutions t£> a system 

(4.7) - DoA
a(Du) - 0 , i - 1,.^,N , 

assuming controllable growth conditions! and ellipticity, i.e. 

K < p > l z C I P I . IA<X i(P>!l 4 ^ , 
ipg ! 

Aa ..(P)?*' I > X|C|2 , V5| (X > 0) . 
ioJ p 
ip3 

Then, differencing system (4.7), i.e. ufcing the quotient method. As 

in Section 3, one easily gets that 

a weak solution u € H1>2(^,R ) to system (4.7) has 

square integrable second derivatives, satisfying 

(4.8) JAa j(Du)Dg(Dsu
j)Da«j>

idx = i) , tf (J, 6 H*(ft,RN) . 

ft 1P3 ! 

The identity (4.8) can be rewritten as £ quasilinear system for the 

vector valued function ! 

U -= (U*) - < D
s
u J) 

as 

( 4-8 '} \6isAa j ^ V s V i ^ " ° i^* ^HO (^ , I R N ) • 
ft ip3 

An analogous result can be obtained for jgeneral elliptic systems like 

(4.6) under controllable growth conditions (i.e. differentiation with 

respect to u decreases the order of growth in p by one), see [95J , 

On the other hand, it is not true in general that a weak solution 

of the simple quasilinear system 

JAa^(x,u)DaU
iDg<j,

jdx =-0 y.* £.H*(ft,fcN) 

ft 

with smooth coefficients satisfying 

A « ^ > | 5 |
2 V« | 

has square integrable second derivative^. 
i 

Under uncontrollable growth conditions we are able to prove that 

a weak solution u to system (4.6) has[square integrable second deri

vatives verifying the system in variation only provided u is assumed 
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to be continuous. We refer to £95], [36] for further information and 

proofs. 

Anyway, let us remark that the results of this section together 

with the ones in Section 3 completely prove the result of step a) in 
i 

Section 2 : any C -extremal of a regular multiple integral in the 

Calculus of Variations is as regular as the data permit '. 

But in general we are only able to find extremals or weak solu-
1 2 in H * , therefore, as we have already stated, there is a ga 

step b) in Sec. 2, to be filled. The rest of these lectures will be 

ec 
1 

1 2 tions in H * , therefore, as we have already stated, there is a gap, 

LI 

dedicated to some contributions in that direction, i.e. from H to 

C 

5. Regularity for equations and counterexamples for systems 

1 2 
Let u 6 H * (ft) , N = 1 , be an extremal of the functional 

(5.1) JF(Du)dx 
ft 

where F is a smooth convex function, 

Fpp iDuHah Z |C|2 • | FPP (DU)I ̂ L • 
i 

As we have seen Du € H and any derivative D u satisfies the equa
tion 

(5.2) |pp p (Du)D3(Dsu)Da$dx -. 0 V * e HJ . 

Equation (5.2) can be seen as a linear elliptic equation with coeffi

cients Aa*(x) = F (Du) in L°>(ft) . The gap between H and C 
a * th is filled, and hence the 19 Hilbert's problem completely solved 

(in this case), by the following famous result by E. De Giorgi. 

THEOREM 5.2. Let v 6 H (Q) be a weak solution to 

jaaf5(x)DavD04> = 0 V<J> € HQ(S-) , 

a 

where a°e £ Lw>(i.) and aa3Ca^$ > v | C1
2 VC (v > 0) . Then u 6 

' The same result could be obtained using Schauder type estimates 

for the Euler equation in the strong formulation (4.6), i.e. the H61-

der regularity theory for non-variational systems with smooth coeffi

cients. But in the sequel it is more convenient to work with systems 

in divergence form, and therefore with the system in variation. 
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€ C *^(Q) for some positive y . j 

! 
Unfortunately Theorem 5.1 is not t|rue in the vector valued case 

and n £ 3 , see E. De Giorgi [18]; weapc solutions to quasilinear 

systems of the type of systems in variajtion like (4.8) are singular 

for n £ 3 [55]; finally, extremals (and therefore minimum points) 

of functionals of the type (5.1) for nj £ 5 , N > 1 , need not be 

C [106], [107J ' . As we have stated, other counterexamples to the 

regularity are available, but these already say that in the vector 

valued case we should look for partial regularity results and for 

conditions under which everywhere regularity holds. 

The situation gets worse when passing on to consider general 

functionals 

(5.3) |F(x,u,Du)dx 

8 I 
and quasilinear or nonlinear systems under uncontrollable growth con

ditions, and that even in the scalar case. 

First of all, as we have seen, we ban consider only bounded extre

mals. Actually, "extremals" even in the| scalar case can be unbounded. 

Moreover, still in the scalar case, typical phenomena of elliptic 

equations (as uniqueness in the small) Ifail for unbounded solutions. 

Therefore (in the case of uncontrollable growth conditions) we 

are led to consider definitely H O L | as the natural class where 

to start with weak solutions; and the irjost convincing argument is the 

following result by 0. A. Ladyzhenskayaj and N. N. Ural'tseva [73]. 

THEOREM 5,2, Weak solutions (i.e. bounded) of nonlinear equations, 

N = 1 , under uncontrollable growth conditions are smooth. 

Actually in [73] it is proved (compare the next chapter for a 

stronger result) that minimum points of functional (5.1), N =- i , 

bounded at the boundary of Q are bounded. Therefore Theorem 5.2 

applies also to minimum points (not to extremals in general!)• 

Of course, for systems we cannot expect regularity in the gene

ral situation, but the situation is extremaly unpleasant. For example: 

a) [73], [62]: u(x) =- x|x| is a weak solution to 

*) 3 ^2 3 

An example of a minimum point u : £. C K —*• R , ft for an 

elliptic functional of the type (5.1) is missing: it would be very 

interesting to produce such an example. 
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- Au = u|Du|'2 

and an extremal u £ H O L* for the functional 

fa(|u|)|Du|2dx 

provided a(t) is a smooth function with a'(l) = - 2a(l) . 

b) [25]: for n = N = 2 the function u(x) = (sin log log|x| , 

cos log log|x| ) is a discontinuous weak solution of the system 

- 4U- = 2 ^
 + " \ |DU|2 , 
i + lur 

_ &u2 = 2 u
2 - u1 | D U |2 _ 
1 + lu|2 

Note that systems in a) and b) are even diagonal. 

c) [28]: in dimension n = 2 , N > 1 , functionals (5.3) may have 
bounded.and discontinuous extremals. 

The above examples show that (at the first rude approach) re

gularity depends not only on the boundedness of u (as in the sca

lar case) but also on a smallness condition on the bound for |u| . 

We refer to [58], [59], [60] , [36j for more information. 

II. D i r e c t m e t h o d s f o r t h e r e g u l a r i t y 

De Giorgi's result of regularity, as well as its generalizations, 

have as their starting point the Euler equation of the functional 

in question. Therefore it requires at least: 

a) some smoothness of the function F(x,u,p) , moreover suitable 
growth conditions, not only on F , but also for its partial deriva
tives F (x,u,p) and F (x,u,p) , and also 

b) under natural conditions we need to start with bounded' minimum 

points, 

c) it does not distinguish between true minima and simple extremals, 

d) it needs the ellipticity condition. 

Of course the smoothness of F and the convexity (or ellipti
city) condition on F are necessary if one wants to prove the dif
ferentiability of the minima (this is already the case in dimension 
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n =- 1 ). But if we look only for the continuity (in the sense of Hai

der) of the minima, those assumptions seem (and are) superfluous. 

In this chapter we want to describe some works of M. Giaquintat 

and E. Giusti which show that the "fir^t" stage of regularity can be 

obtained by working directly with the functional F instead of wor

king with its Euler equation [39], and that even for weak solutions 

the first stage of regularity (H61der Regularity) depends on a "mini

mality property" of weak solutions to 4l----Ptic systems. 

In this direction we should mention one classical result in di

mension n = 2 , due to C. B. Morrey [$5] in 1938. 

THEOREM. Suppose that 

|p|2 < F(x,u,p) < M|]||2 

1 '• 2 and that n = 2 , N :> 1 . Let u 6 H * be a minimum point for the 
functional \ 

F(x,u,Du)dX . 

a 
Then u is locally Holder-continuous. ! 

We note explicitly that F is not assumed smooth, nor convex 

with respect to p . 

1. The scalar case 

Let us consider the multiple intégral 

p \ji;ÇÏ] = |F(x,u,Du)4x 

with N = 1 , where 

(i) F(x,u,p) : a x R x Rn —• R is ajCaratheodory function, i.e. 

measurable in x and continuous in (U,p) . Thus F(x,u,p) is measu

rable for measurable u(x) and p(x) .! 

(ii) There exist positive constants a| an<-l b and a real number 

m > l such that j 

(1.1) |p|m - b(|u|a + 1) 4 F(x,ij,p) < a|p|m + b(|u|a + 1) 

mn *) I where m < a < m 
m 

Let u be a minimum point for 9^\ ; we recall that this means, 

in our terminology, that for every <j> <£ H ,m(ft) with supp <j> C C ^ 
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we have 

(1.2) £Qi; supp 4>] <, ?[u + $; supp <f| . 

Then we have* see [39] , 

THEOREM 1,1, u is locally bounded in Q , 

Because of Theorem 1.1 we are now justified in assuming, instead 

of (1.1) the weaker condition 

(1.3) |p|m - b(M) < F(x,u,p) < a(M)|p|m + b(M) 

for x 6 Q , |u| 4 M and p e IRn . 

Thus we have, see [39] , 

THEOREM 1,2, Let (1.3) hold and let u € H*Q
m O L ~ O C be a minimum 

point for 5̂ [u;jf] . Then u is Holder-continuous in Q , 

We refer to [39] for the proof of Theorem 1.1 and we restrict 

ourselves to prove Theorem 1.2. The proof uses the following charac

terization of Hdlder-continuous functions due to E. De Giorgi [17] 

for m = 2 , compare [73] for m > 1 . 

1 1 
De Giorgi*s classes ^(ft-M.Yufi,-) . The symbol <8m(fl.,M,Y, 6,-) 

denotes the class of functions u(x) in H ' m with max |u| <, M 
Q 

such that for u and -u the following inequalities are valid in 

an arbitrary ball B C ft for arbitrary a 6 (0,1) : 

1 m 

| l"*!"** - yi , ma-n/q) « - !«<-> - k l m + -H*k.pl " 9 

k,p-ap 

for k >, max u - 6 , where 
B 
P 

A, - (x 6 B : u(x) > k} , 1 < m <. n , q > n £ 2 . 
K, p p 

We have, see [17], [73], 

*) Here we shall restrict ourselves to the case 1 < m < n . In fact, 

when m > n , every function in H ,m is trivially H61der-continu

ous; and we shall consider the case m = n in Sec. 2 of this Chap

ter. 
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THEOREM 
1 1.3. Let u € €L(-.,M,Y,6,-r) •! Then u is locally Holder-oon-

tinuous and for B C B we have 
P P 0 

osc u < c[2—-1 
srs V л _ / 

в 
p 

for some positive a 

P r o o f of Theorem 1.2. Let 1 6 0 and B_ *» B (x n ) C G * 0 e 0 and BR - BR(xQ) C S 

3<в s) , 0 < t l < l , n н i Let w = max(u-k,0) and l e t n(x) e C^J(Be) , 0 <_ n <, 1 » n = 1 on 
B t , |DIJ| <, 2(s - t ) " 1 , t < s < R 

Using the minimality of u , conditionj(1.2), we have 

£r*[uVsupp nw] <_ SP Qi - rr"j» supp nw] 

and using (1 .3 ) , 

[|Du.|mdx < yx\ ( (i-,)"|D«,-».jx +• plDnTdx + l i ^ ^ n , 

\ , S \ , B * k , s 

hence 

[|Du|mdx<Y2{ [ |Du|mdxj+ (s - t)~m [ (u - k)mdx + 

V t *k,sS*k,t h.,R 

Now we fill the hole (compare [128]) i;e. we add to both sides Y 2 

times the left-hand side, obtaining j 

(1.4) J|Du|mdx < T - I ^ r J lDu|mdx + 
Ak,t ^ , 8 

+ Y3{(s - t ) ~ m J (u4k)mdx + |A,_>R|} . 

Now we have 

LEMMA 1.4. Let f(t) be a non-negative bounded function defined for 
0 £ T0 —

 t 4 Ti • Suppose that for TQ j <_ t < s <_ T± we have 
I 

f(t) < A(S - t)~ a + B + 9f(s) 

where A , B , a , 6 are non-negative {constants, and 6 < 1 . Then 

there exists a constant c , c = c(a,0 , such that for every p , 
R » T Q ~ p < R « Ti we have 

(1.5) f(p) < c[A(R - p)""a + Bj ,. 
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Let us postpone the proof. 

Applying Lemma 1.4 we deduce from (1.4) 

J|DufdX < Yj4{(R - p)-
m J (u-k)mdx + |j^R|} . 

^ . p \,R 

The same inequality holds for - u , since it minimizes the functional 

$F[v;fl] = |F(x,v,Dv)dx 

Q 

with F(x,v,p) « F(x,-v,-p) satisfying the same growth condition 

(4.3). The result then follows from Theorem 1.3. 

Q.E.D. 

P r o o f of Lemma 1.4: Define 

tQ = p , ti+1 - t± = (1 - T ) T 1 ( R - p) , 0 < T < 1 . 

By iteration 

f (tn) < e
kf (t, ) + f — h -<R - p)-« + B"| E e V

1 * . 
0 K L(l - T) a Ji=-o 

We now choose T such that T 6 < 1 and let k -—•- « . Then we get 

Q.E.D. 

(1.5) with c- - (1 - T)a(l - ST""0*)""1 

REMARK 1.5. We mention that a result of the type of Theorem 1.2 

appears in [26] under strong assumptions on F . In the case that F 

does not depend on u and is convex in p , the proof of [26] relies 

on the following observation. We have 

[ F(x,Du)dx 4 J F[x, Du - D(nm(u - k))jdx . 

Ak,R Ak,R 

Writting 

Du - D(n
m(u - k)) = (1 - nm)Du + n

m [ - m Dn(u - k)] , 

using the convexity and (1.3) we then deduce 

[ (1 - nm)F(x,Du)dx < f ^ ( x , m Dn(u - k))dx < 

Ak,R Ak,R 

< | [a(M)|Dnm|mm|u - k|m + b(M)]dx , 

which implies the Holder-continuity. 
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The vector valued case. Estimates fjor the gradient 

<--

As we have seen, in the vector valued case N > 1 , we have no 

hope (except in small dimensions) of prdving H61der regularity. But 

a basic regularity result still holds for the minima: it is an L* 

-estimate, q > m , for the gradient. 

Results of this kind were proved ffirst by B. V. Boyarskil [11] 

and N. G. Meyers [79] for solutions of linear elliptic equations; and 

by N. G. Meyers, A. Elcrat [82], M. Giafouinta, G. Modica [43] for clas

ses of nonlinear elliptic systems; we rfefer to [36] for a discussion. 

Besides their intrinsic interest, fehey are an essential tool in 

the study of regularity of solutions of nonlinear elliptic systems, 

following the method introduced in [38] (see also [35], [39], [43], 

[4€. r js])-
In this section we state an Lg-esfeimate for the minima, due to 

M. Giaquinta and E. Giusti [39], again Without assuming regularity on 

F nor convexity in p , and in the next section we shall present 

further results. 

Let us consider the variational infeegral 

^[u;fi] = F(x,u,Du)dx j 

Q 

with N ^ l , and assume 

(i) F(x,u,p) : Q x R N x R n N is a Car^theodory function 

and for the sake of simplicity, 

(ii) |p|m < F(x,u,p) < a|p|m . 

Then we have 

THEOREM 2.1. Let u e H^m(fi,JRN) be a\ minimum point for <P\yL;Q] . 

! I cr N 
Then there exists an exponent q > m siioh that u 6 HiAc^»^ ^ * 
Moreover* for every R < dist(x0,dfi) we have 

(2.1) [ | |Du|qdx) % < ; ( ! { |Du|mdx] 
BR/2 (V Bk(X0> 

c being a constant depending only on k , N , n , m . 
! 

P r o o f . Let x Q e a , 0 < t ^ s < R < d i s t ( x Q , 8 Q ) . With 
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the usual choice of r\ , we have from the minimality of u 

E*[u; supp n(u - u
R
)] < 

< tf[u - n(u - u
R
) ; supp n(u - u

R
)] ; 

hence using *(ii), 

f|Du|
m
dx< yt{ J |Du|

m
dx + (s - t)~m

 (|u - u
R
|

m
dx} . 

B
s
 B

s
S B
t

 B
s 

Now arguing as in the proof of Theorem 1.2, i.e. filling the hole and 

applying Lemma 1.4, we deduce 

( |Du|
m
dx < Y

2
R~

m
 [|u - u

R
|

m
dx . 

B
R/2

 B
R 

Using the Sobolev-Poincare inequality 

<im/r 
| |u - u

R
|

m
dx < o(n,m.N)[f |Du|

r
dx) . r = JJЭ^S 

*R
 B

R 

and dividing by R
n
 we finally get 

(2.2) ( ! |Du|
m
dxj

1/lU
 < y

3
(! |Du|

r
dx)

1 / r
 . 

B
R/2

 B
R 

The result then follows at once from (2.2) by applying the following 

PROPOSITION 2.2. Let Q be a domain in R
n
 , g e

 L
i

o c
<Q> »

 f € 

t . Suppose that 

! g^x < b( ! gdxj + ! ffcdx 

W B2R(V B2R 

for each xQ € Q and each R < min( j dist(xfl,dQ),Rfi) , where Rn , 

_• are constants 
e (jt,t+e) and 

€ LS(Q) , s > t . Suppose that 

0 - w ,*,.__ -,*.*,._ *> . _„_,_n 2 v__._,wv__0,wW/,.,o; , «,,.->-~ _.Q 

•Q > Q , b > 1 . Then g 6 L|oc< 
b are constants Rft > Q , b > 1 . Then g 6 L? (Q) for q c 

( | g H 1 / q ^ < ( l g t H 1 / t + l l f H 1 / q » 
BR B2R B2R 

for B„R C Q , R < Rfl , where c and e are positive constants de

pending only on b , t , n , s . 

Proposition 2.2 is due to M. Giaquinta, G. Modica [43], and re

presents the local version of a result by F. W. Gehring [3fi] . We omit 

the not simple proof and we refer to [43] or to [34], [36] , [124] 
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for some extensions. In [36] the reader ŵ ill find a discussion of 

this and some related results. 

In the special case F = F(x,p) conkrex in p , the result of 

Theorem 2.1 can be obtained by using the |trick described in Remark 

1.5 and Proposition 2.2, compare with [3];. 

It is worth remarking that Theorem 21.1 does not hold for extre

mals of the functionals ^[u;^] , even when assuming that F(x,u,p) 

is convex in p and N = 1 , as the example in [26] shows, see also 

[28] . When N > 1 , the result is in genejral false for elliptic sys

tems, even if we assume that u is bound|ed, see example b) in Sec. 

5, Chap. I (and example c) in Sec. 5, Châ >. I) and it is necessary to 

suppose that u is "small" ([38], [43]).; 

The p r o o f of Proposition 2.2 shows that the exponent 

q > m can be taken in an interval (m,m+a) , with cr independent of 

m for m close to n . Therefore we have 

COROLLARY 2.3. There exists a a > 0 depending only on a in (ii), 

n and N such that if m > n - a and jF satisfies (ii), then 

every minimum point for tf [U
»R] ^S Holder-continuous in Q . 

In particular Corollary 2.3 extends Morrey's result stated at 

the beginning of this chapter. For elliptic systems, results of this 

type appear in [128], [118], [120], [126] I, [43]. 

3. Quasi-minima 

Consider the multiple integral 

(З.D ^ [ U Î Я ] = ІF(x,u,Du)dx 

ft 

where F(x,u,p) : ft x IR x lR
n
 •—• R is a: Caratheodory function satis

fying 

(3.2) |p|
m
 - b|u|

Y
 - g

x
(x) < F(x,u|,p) < a|p|

m
 + b|u|

Y
 + g

2
 (x) 

w i t h 

l < m < n , Y < m - m n 

n - m ; 

Until now we have dealt with minimum points of F ; we introduce now 

the following 

DEFINITION. u € H^J(fl,RN) is a quasirminimum for p in Q with 

a constant A if 
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tf [u; supp •} < A<pQi + + ; supp <f[ 

/ o r aZZ (j> w££h supp <J> C -- • 

The constant A may of course depend on u . 

Then the results of Section 1 and 2 hold also for quasi-minima, 

as a simple inspection of the proofs shows; more precisely, we have 

THEOREM 3.1. Let u be a quasi-minimum for & in Q and assume 

( 3 . 2 ) holds. Then we have 

( i ) if N = 1 and g±t g2 € Ls(£2) for some s > jj , t h e n u is 

locally Holder-continuous; in particular, it is locally bounded; 

( i i ) £/* N :> 1 and g1, g2 e LS(ft) for some s > 1 , then there 

exists an exponent r > m such that u e HJ'r(£2,(RN) . 

Quite a lot of results for solutions of elliptic (linear and 

n o n l i n e a r ) systems can be re-read in terms of quasi-minima. 

1. Of course, any minimum point for tf is a quasi-minimum. It is 

not difficult to verify that moreover, any minimum point for & is 

a quasi-minimum for 

j{|Du|m + b|u|Y + (g± + g2 + b))dx . 

a 

In particular, for m = 2 , b = 0 , g±, g2 = 0 we obtain that any 

minimum point for 

JF (x,u ,Du )dx , |p|2 < F ( x , u , p ) < a|p|2 , 

a 
is a quasi-minimum for the Dirichlet integral. 

Any weak solution to the linear elliptic system with L coef

ficients 

- Dg(A«B(x)DaU
i) = 0 , j - 1 N , Af.^l > U| 2 V 5 

is a quasi-minimum for the Dirichlet integral. To see that, it is 

sufficient to test with u - v with supp(u - v) C a . In particular, 

for N = l we obtain De Giorgi*s result ' we have stated in Sec. 2, 

Chap. I. 

More generally, the Holder regularity of weak solution to non

linear elliptic equations (see [73]) and the Lp-estimates for the 

gradient of general nonlinear elliptic systems (compare [38], [43] , 

*) 
Remark that this is only a re-reading in terms of quasi-minima 

of De Giorgi's result, the proof being essentially the same. 
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[82]) can be obtained as consequences of Theorem 3.1 .We have in 

fact the following result. ! 

2. Let u be a weak solution to 

(3.3) I fA(?(x,u,Du)D A 1 + B. (x,u,Du)<fc1)dx = 0 6 e C*(n,RN) ; 
J v l a i u 
Q 

(A) assume that the controllable growth conditions and ellipticity 

in the following weak form hold: 

A<?(x,u,p)p* > I P I ™ - L | u | Y - f^x) , Y < m* , 

| A ( x , u , p ) | < L l p l 1 1 1 " 1 + L | u | a + | g ( x ) , a = Y ^ , 

| B ( x , u , p ) | < L | p | Ł + L | u | ° + ł i (x) , 

Then, inserting <f> = u - v , we get th41i u is a quasi-minimum for 

m 
m - 1 | [ | D u | m + | u | ү + (f + g111"1 + h*" 1 + l)]dx 

ӣ I 

т = ---^m , 6 
Y 

ү - 1 . 

(B) Assume that the uncontrollable grqwth conditions hold: 

L. A ^ C x . u . p ^ > | p | Ш 

\fW . 

m-1 

( 3 . 4 ) 

|A(x,u,p)| < L 2 |Pr 1 1 " + L3 + l|1+g(x) , 

| B ( x , u , p ) | < a | p | m + L 5 h ( x ) + ; L 6 , 

L± = L±(M) , a = a(M) , | u | _i M . 

(B1) Suppose moreover t h a t N = „1 . Trjen we g e t t h a t u i s a q u a s i -

-minimum f o r 

( 3 . 5 ) f[ÞuГ + (f + g" 1 " 1 + h) +| l l d x . 

This can be shown by inserting (u - w)| e and (w - u) e 

as test functions <j> w i t h w = v for j |v| <, M , w = - M for v < 

< -M , w -=- M for v > M , for any v j with supp(u - v) C C 8 • 

(B
9
) The L

F
-estimate, as we have already remarked, would not be 

*) in this way we are not able to This is not completely true, since 

handle the limit case corresponding to |the value Y (below) Y - m* 

The Holder regularity ( N = 1 ) and the L
p
-estimates ( N > 1 ) never

theless hold even for y = m* , compare| [73] , [43] and [36] . 
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true in the vector valued case under ( 3 . 4 ) even if assuming |u| 

bounded; more precisely, it is in general not true if a(M)M > 1 , 

compare [62]. But if we assume that 2a(M)M < 1 then any weak solu

tion u , |u| <. M , to ( 3 . 3 ) is a quasi-minimum for the functional 
( 3 . 5 ) . Therefore the Lp-estimate holds . 

Finally, we want to mention two further examples of quasi-minima. 

3. Weak solutions of the obstacle problem, i.e. for example 

u £ # in Q : DuD(u - v)dx < 0 V"v , v :> ty , 
Q 

supp(u - v) C C 8 

are quasi-minima for 

j(|Du|2 + |D*[2)dx . 
Q 

4. Quasiconformal (or quasi-regular) mappings are quasi-minima for 

Q 

and therefore in H ,n e(Q,|Rn) , in particular HSlder-continuous. 

The definition of quasi-minima appears in [39] and the results 

of this section have been developed by M. Giaquinta - E. Giusti and 

have not been published. 

We conclude this section with an example which shows that no 

Holder regularity theory (even p a r t i a l ) can be developed for quasi-

-minima, in the vector valued case. 

Let us start with the following remarks. Set 

r.krlh 

akhCx^ - * * k h + l j 

• « « - « « ' +
u s d s 

xl Ji 

where 

dk - b k - uk , b € L 2 ( ß ) , Jbk<J,k dx - 0 V <{> e c£(Q,IRn) . 

Then 

(3.6) f a k h ( x ) u k <j>h dx - 0 v* G C~(ß,lRn) . 
Q x J 

0У 

*5 
It is an open question whether we can get the same result under the 

weaker assumption a(M)M < 1 . 
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.kh The ellipticity and boundedness of the jcoefficients a. . corresponds 

respectively to* 

u -d 
X 

> 0 > 

b-d 
u x . d ~ м • 

It is on the basis of this simple remark that the examples of E. De 

Giorgi [18] and Giusti - Miranda [55] (tan be regarded. Actually the 

following choice for n >. 3 : 

u(x) 

b i -

| x | _ 1 x 

•(-«il 
n! ¥ i 

i k n 1 |x |2 ; 

permits to construct a discontinuous weak solution to the elliptic 

system (3.6). Let y be a sequence of points in ft and let us set 

Uk(x) E »-(* - ya)4a 

в
k
(x) = Ľ ь

k
( x - y

a
) j

a 

and 

where 

Since 

cokh 
= 6 ІJ 

6 k h

 + 

D k D Һ | 

°ifi[ 

r-.k „k r-k 
Ľ І - tíi " Ч 
f

B
i

( x )
4.

d X =
 ° V*J€ C^(Q,IRn) , 

Q 1 ; 

it is a simple matter of calculation to| show that after a suitable 
choice of the e the vector U belongs to HJi^Ca.lR ) and is a 

a •LOC 

solution of the elliptic system 

- Djíílţj D.Uk) » 0 h = i,...,n . 

Remark that U may be singular in a dense subset. 

The above construction was shown to the author by J. Soucek in 

April 1980. 

From the point of view of quasi-minima, the example described 

shows that there exists a vector-valueq quasi-minimum for 

| |Du|2dx , B^O)) C fc 

B l ( 0 ) 

singular at all points x e B>,/9(0) wijth rational coordinates. 
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The Holder regularity results of this section do not permit to 

gill the gap b) in Sec. 2 Chap. I; the step C 0 , Y —• C 1 , Y is missing. 

This step needs some work, we refer to [73] and to [36] for a diffe

rent approach. 

4. Quasi-minima and quasi-convexity 

In this section we want to show how the notion of quasi-minimum 

can be used together with the semicontinuity Theorem 1.3 in Chap. I 

and a variational principle in order to prove the existence of mini

mum points for a class of quasi-convex functionals (in the sense of 

Morrey). 

Consider the multiple integral 

(4.1) f[u;ft] = |F(x,u,Du)dx 

ft 
where , f o r t h e s a k e of s i m p l i c i t y , 

| p | m 4 F ( x , u , p ) 4 a | p | m 

and assume t h a t F i s q u a s i - c o n v e x , i . e . f o r a . e . x n € Q , f o r 

e v e r y uQ £ IRN , SQ € RnN and f o r a l l <j> e C0(ft,SRN) 

W [FK'V?0 + D*<x>)dx ^ F < x
0 ' u 0 ^ 0 ) • 

a 
We shall prove 

THEOREM 4,1, Let u € H ,m(ft,|R ) . Then there exists a minimum point 

u of & on u +H0'
m(ft,tRN) . Moreover, u 6 H^(ft,RN) for some 

q > m . 

We need the following variational principle in I. Ekeland [22]: 

THEOREM 4,2, Let (V,d) be a complete metric space, F : V ->• [0,+»J 

a lower semi continuous functional, not identically + «> . Let x\ > 0 

and w € V verify 
F(w) ̂  inf F + n . 

V 

Then there exists v e V such that F(v) 4 F(w) , d(v,w) 4 1 and 
v is the (only) minimum point of the functional 

F(u) + nd(u,v) . 

The functional in (4.1) is lower semicontinuous in the complete 
r 1 1 N ^ l 

metric space (u e H ' (S.,R ) : u = u on dQ\ . Hence we can apply 
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Theorem 4.2, and the function v we obtain is obviously a quasi-mi

nimum for a functional of the same type, which is independent of n 

for TI small. In particular, there exists a minimizing sequence of 

quasi-minima with a uniform constant A . 

Theorem 3.1 (ii) implies then that there exists a minimizing 

ì^ro p*Ҷ that for n C C 8 sequence {u,} in u + H ' (fl,R ) such 

||u
v
||

 1 M
 < const. independent of k 

K
 H

1,q
(fl,R

w
) 

where q is larger than m (and independent of Q ). 

We can then conclude the proof of Theorem 4.1, simply by means 

of (semicontinuity) Theorem 1.3 ' in Chip. I, as for all ft C C 8 

we have 

*F [u;fl] 4 lim inf ?[u, ;J f ] £ min f . 

^°° | &+Hj'm<AfR
N) 

The p r o o f above i s a re - read ing of the proof in [76] . 

III. P a r t i a l r e g u l a r i t y ! 

As we have had occasion to mention,; the study of the "partial 

regularity" of extremals or, more generally, of weak solutions of 

elliptic nonlinear systems starts with the work of C. B. Morrey [96] 

and E. Giusti, M. Miranda [56] in 1968. (Nowadays we have two different 

methods for getting such type of results!: 

a) The one in [96], [56]. It is an indirect argument, i.e. a reduc

tion to absurd argument; and it works veiry well for studying weak so

lutions of systems (of the type of systejms) in variation for general 

multiple integrals, essentially when no jexplicit dependence on u 

appears. 

b) The methods introduced in M. Giaquinjta - E. Giusti [38] and deve

loped and improved in [43] , [44] , [45] , [39] . It is of direct type 

and relies on a perturbation argument ' which uses as an essential 

tool the L^-estimate for the gradient, jit allows to handle some clas

ses of quasilinear and nonlinear systems! (as well as of multiple inte

grals with explicit dependence on u ), too. 

*) 
Here we use the quasi-convexity 

**) of the type of the one which appeals in [89] , [13] : Korn device 
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Anyway, the two methods seem not to be completely interchange

able; we refer to [36] for a discussion. In these lectures we shall 

not talk about the first one and we simply refer to [96], [56], [52] , 

[112J and to [36]. Moreover, we shall confine ourselves to describing 

the main ideas of proving a few results obtained. Therefore this 

chapter, which should be the central one, has to be understood as an 

introduction. For more information we refer to the papers quoted and 

to £36] . In particular, much space should have been dedicated to dia

gonal systems, the methods developed for proving everywhere regula

rity, and its connections with harmonic mappings; instead, even re

luctantly, we simply refer to [59], [60], [61], [42] . 

1. Quasilinear elliptic systems 

In Chapter I we have seen that any extremal of functionals of 

the type 

(1.1) JF(Du)dx 

ӣ 
with 

ÉІ2
 <F І 4(P)фJ < Чïl 2 Vï 

p-p2 a 

1 2 N 
or, more generally, any weak solution u 6 H.»C(^,IR ) to systems of 

the type 

- DaA^(Du) - o , І -= 1,...,N , 

with 

K(P)I i o|p| , | A° .(
P
)| < L , 

ip
e 

A* itmhi > xUI2 vc (x > o) 
i p s 

has first derivatives in H^»
2
 *) satisfying the quasilinear elliptic 

system 

where 

(б£sA« (U)D
3
uЪ

a
ф^ 

ß ip$ 

U = (Us) ш (D
s
u

3
) 

dx - 0 Vф € Hjjcß,!*11*1) 

Therefore the question of ^'"-regularity for extremals of the 

functionals in (1.1) can be reduced to the question of the H61der re

gularity of weak solutions to quasilinear elliptic systems of the type 

' We assume A*(p) of class C . 
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(1.2) JA^(u)DauiD3<j>
jdx - 0 \t\$ <- Hj(G,RN) , 

Q 

where A.I:(u) are continuous functions in u , satisfying the ellip-

ticity condition \ 

(1.3) AIj4 53 * X^]2 VC (A I* 0) 
and 

V»-4) | A ± j l 

We have (compare with [96], [56] ,| [38], [43]) 

THEOREM 1.1. Suppose that the coefficients A^?(u) are continuous 

and verify (1.3), (1.4). Let u be a )oeak solution to system (1.2). 

Then there exists an open set Q C Q i such that u is locally Hol
der-continuous with any exponent less than 1 in Q . Moreover^ 
n—s k 

& (Q\Qn) - 0 for some s > 2 ; here 3C denotes the k-dimensional 
Hausdorff measure. 

We now want to sketch the proof ojf this theorem following the 

method of [38] and assuming, moreover, 

are bounded and uniformly continuous. tThis implies in particular that 

there exists a continuous, bounded, increasing, concave function 

w : R —>• R satisfying 

(1.5) |Aj§(u) - A^(v)| < „(|u f- v|2) . 

P r o o f of Theorem 1 . 1 . Let icQ € Q and R < 

< min{dist(x_,8Q),l} . Let A??n = A ? ? ^ _) and let v be the 
solution to the Dirichlet problem 

- Dp(Aj!j D^
1) = 0 , jj=- 1,...,N , in BR/2(xQ) , 

V ~ U € H0^ BR/2 ( X0 )' R N)|-

Then we have, see Sec. 3, Chap. I, for jail p < R/2 

o. 6 

that the coefficients A.;: 

J |Dv|2đX « C(|) П
 [| |Dv|2đX . 

V V V2ÍV 
hence 

(1.6) f |Du|2dx <c(|) f j |Du|2dx + c f |D(u-v)|2dx 
Bp(X0> B R < V BR/2 

If we set w =- u - v , we have w =- 0 ion dB R / 2

 an<* 
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I AIjODawVJdx = 1 -*íjO " ^ ( U ^ V V ^ 
BR/2(V BR/2(V 

• VФ Є HІ(B
R / 2

,R
N
) 

In particular, we may take <j> =- w , so that using the ellipticity in 

(1.3), H61der regularity and (1.5) we get 

(1.7) | |D(u - v)|
2
dx < c | u)

2
(|u - u

x jR
|

2
)|Du|

2
dx. 

B
R/2

( X
0

) B
R/2

( X
0

} 

On the other hand, using the L^-estimate for the gradient, compare 

Sec. 3 Chap. II, and the boundedness of ai , we have (for some 

a > 2 ) 

(1.8) J u>
2
|Du|

2
dx < [ f |Du|

a
dx) [ | a>

a
""

2
 dx]

 a
 < 

B
R

(
V
 B

R/2
 B

R/2 

c| ІDu|
2
dx[| ш(|u - u

x R
|

2
)dx 

B
R
 R

R °' 

a-2 
a 

and, as w is a concave function, 

(1.9) | <udx < OJ(| |u - u
x R

|
2
dx) . 

B
R
 B

R °' 

Putting together (1.6), (1.7), (1.8), (1.9), with a simple use of 

Poincare inequality, we get 

(1.10) | |Du|
2
dx < c[(|) + X(x

0
,R)lj |Du|

2
dx 

B 
P 

where 

x<v
R
> 

B R 

C 

* П ~ 2 í 
B R 

|DU| 

c - 2 
i2ax) ö 

T3 

for all p < R/2 . Since (1.10) is obvious for r < p < R , we get 
(1.Ю) for all p < R . Set 

- 1 i Ф(x
Q
,R) = R

2
"

n
 f |Du|

2
dx . 

B
R

(
V 

From (1.10) we deduce for 0 < T < 1 

(1.11) *(X
Q
,TR) < K[l +

 X
(VR)T~

n
jT

2
*(x

0
,R) • 

Let now 0 < y < -l aI
-d choose

 T
 in such a way that 2K

T

 Y
 = 1 . 
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Let x e $i and let R be such that 

(1.12) X(x
Q
,R) < x

n
 . 

Then we have from (1.11) 

and hence 

Ф(x
Q
,тR) < т

2ү
Ф(x

0
,R) 

x(x
n
,тR) < x(x

n
,R) < т

П
 . 

" 0 " ' -
 A V

 0 

By induction we get for every k : 

$(x
n
,T

k
R) < T

2 y k
$(x

0
,R) 

and hence for every p < R 

(1.13) #<x
0
,p) <

 T
-

n + 2 + 2 Y
(|)

2 Y
$(

X
^,R) . 

Now, since x is a continuous function |of x , if (1.12) holds for 

a point x e Q , then there exists a bill B(x ,r) such that for 

every x € B(x ,r) we have 

x(x,R) < T
n . | 

We conclude then that (1.13) holds uniformly for all x e B(x ,r) . 

It follows, compare Sec. 3, Chap. I, thai: u is H61der-continuous 

in B(x ,r) with the exponent y . In Conclusion, there exists an 

open set n C Q such that the solution1 u is locally H51der-conti-

nuous, with the exponent y , in ft . dince we have 

fì = {x : lim inf R2~n f í[Du|2đy = o} 

BR{x)| 

{x : lim inf R"n f |!u - u v J
 2dy = 0} , 

R-*П _ J . I
 X

»
K 

we see that __ is nonvoid, meas(Q\8 )j = 0 , and independent of Y 

On the other hand, .. depends on u ^nd not only on the data of 

the system. 

The second part of the theorem has to do 

pointwise definition of H~-**J functions 

with the problem of the 

, It is a consequence of the 

following result in [51]: 

5 L
l o c

C n ) a i 

{x € fl : limsup. p~n f |v (^) |dy > 0} . 
p - > 0 + - _ _ _ . „ _ 

1 I 

for v e LíocCfl) a n d ° — a < n * ' s e t 

B (x) 
p 

*) Because of the Caccioppoli inequali%. 
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Then we have 

»~<E > - 0 

simply noting that Du € L^ for some q > 2 and 

(R2~n f|Du|2dx)1/2 < (R^ n f|Du|<J)1/<I 

BR BR 

Q.E.D. 

REMARK. The proof of Theorem 1.1 shows that there exists an en de

pending on the data of the system such that xn is a regular point, 

i.e. x. £ fl , if and only if 

R2~n f |Du|2dx < £() 
BR(V 

for some R , or equivalently ( maybe for a different en ) 

|2-

• I 
V 

vale 

R" đ X * E0 
BR<V 

for some R . 

The case of (non-uniformly) continuous coefficients needs some 

technical adjustments. We shall not discuss the details, see [56], 

[52] , [43] and we limit ourselves to remark that now ft - ftQ would be 

fi - Q. - (x 6 Q : liminf p

2 ~ n f |Du|2dy > e } \J 
° P* 0 + BJ(x) 

P 
\j {x €• ft : limsup |u | -= + »} . 

p->0+ X , p 

The technique described above permits to study general quasili-

near elliptic systems of the type 

(1.14) JAjP(xfu)Deu
jDa*

idx - |a^(x,u)Da^
idx + Jb^x.u.Du^dx 

ft ft ft 
V + 6 C~(ft,RN) 

(and even higher order systems) and obtain "optimal" partial (or every

where) regularity results for weak solutions according to the growth 

conditions verified by the functions a?(x,u) and b.(x,u,p) on the 

right hand side and the assumptions we make on the leading part A?? . 

It would be very lengthy and technically complicated to describe these 

results, therefore we simply refer for example to [43], [44], [45], 

and [36]. 
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Here we confine ourselves to discuss rapidly a "limit case" of 

(1.14) and more precisely the regularity of weak solutions u , i.e. 
u £ H O L*(Q,IR ) , to systems with quadratic right-hand side, 

(1.15) jAa^(x,u)DBu
jDa<J)

idx = Jbi(jc,u,Du)<j,
idx , 

Q Q \ 

where we assume that (1.3), (1.4) stilljhold and 

(1.16) |b(x,u,p)| < a|p|2 . j 

Following the lines of the proof o£ Theorem 1.1 one can prove, 
see [38], the following: suppose A?? \o be continuous and let u , 

|u| <, M , be a solution to (1.5). Assumfy moreover that the ellipticity 
constant X and the constant a in (1|16) satisfy the relation 

(1.17) 2Ma < X . 

Then u is Holder-continuous with any Exponent y < 1 in Q , except 
possibly for a closed singular set £ ,!whose Hausdorff dimension does 

*i 
not exceed n - q , for some q > 2 . 

We have therefore the same result ^s in Theorem 1.1, but with the 
additional condition (1.17). However, SL$ we have already stated, (1.17) 
is a natural condition, apart possibly ^or the factor 2. In fact the 
conclusion above does not hold without the assumption Ma 4 X even 
if n = 2 and the system is diagonal, i.e. A?? = <$..Aa° . 

Diagonal systems have been studiediextensively, compare for exam
ple the survey papers [58], £60], because of their importance in dif
ferential geometry. The Euler system of jthe energy of harmonic map
pings between Riemannian manifolds or tr̂ e system satisfied by surface 
with prescribed mean curvature in isoteifmal parameters have exactly 
this structure. 

We have, see £63], [130] and for a |simpler proof [41]: 

THEOREM 1.2. Suppose A a! -= 6i.A
ot3(x) \with A a g 6 L°° ; let (1.3), 

(1.4), (1.16) hold and let u , |u| ̂  M |, be a weak solution to (1.15) 

and Ma < x • Then u is locally Holder]-continuous. 

The literature on harmonic mappings; is so large that we have not 

any possibility even to hint at it. We dimply refer to the report [21] 

by J. Eells and L. Lemaire, and, for resjuits in dimension n ̂  3 , to 

*) \ 
' We remark that the only point where j(1.17) is used is in order to 

obtain the Lp-estimate for the gradient.! 
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[61], [60], [59] and [42]. 

In the case of Theorem 1.1 when the coefficients are more than 

merely continuous, the solution u (x ) will show higher regularity in 

ft0 . This is a simple consequence of the linear theory. However, in 

the more general case ( 1 . 1 4 ) , as the right-hand side shows dependence 

on Du , in order to use the linear theory one first has to prove that 

u is in C I 0 C ^ O »
R N ) • I n f a c t t n i s c a n b e d o n e» s t i 1 1 i n t ne spirit 

of the proof of Theorem 1.1, and we refer for a very simple proof to 

[38], [42] f see also [3€Tf. 

We conclude this section with a discussion of a few problems 

that appear naturally. 

There is a general problem of studying the singular set. In par

ticular: is the singular set analytic or semianalytic? Are there dif

ferent characterizations of the singular set? (See for example [57].) 

Are the singularities isolated in dimension 3 or more generally in 

the first dimension they appear? (In the next section we shall see 

one case with a positive answer.) 

Connected with these problems is the problem of giving reason

able condition for the solutions to be everywhere regular. We mention 

some results in [46], [47] and the very interesting result in [127], 

see also [23] , [64] , that says that extremals of elliptic integrals 

of the type 

[F(|Du[2)dx 

'8 

are everywhere regular. Other structural conditions in the* case of 

diagonal systems with quadratic right-hand sides can be found in 

[63j , [39] . But the problem is still open. 

There are, finally, topological problems like: Is the regularity 

a generic property? Which are the topological properties of the class 

of systems with smooth solutions or with non-smooth solutions? In 

particular, there is a problem of the stability (or non-stability) of 

the singularities. 

Finally, one could look for analogous results for parabolic sys

tems and to the (specific) problem of the evolution of singularities 

(we refer for some basic results to [37], [48], [49], [15]). 

2. Minima of quadratic multiple integrals 

The results in Section 1 do not cover the case of minima of 
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regular multiple integrals of the Calculus of Variations. And almost 

no results on the partial regularity 4f the minima of integrals like 

(2.1) |F(x,u,Du)dx ! 

8 ! 

under "natural conditions" are known. JLet us try again to point out 

some difficulties. Assume F smooth and 

(2.2) |p|
2
 - k < F(x,u,p) < a|й|

2
 + k . 

We are not allowed to think of u as ja solution of the Euler equa

tion; and if we want to use the Euler !equation with natural conditions 

we need 

for example (i) growth assumptions on F and jF 

|F
p
(x,u,p)| < L|p| ,[ 

|F
u
(x,u,p)| < L|p|

2
 j; 

(ii) to assume that u is bounded. j 

Of course we can assume (i), (ii), but we do not know when (ii) holds. 

Under the assumptions (i) and (ii), i} is a solution of a system of 

the type 

(2.3) f [A
a
(x,u,Du)D

a
<j,

i
 + B

i
(x,u|,Du)<j>

i
]dx = 0 f^ 6 HJ O L " 

8 ! 

and it does not seem easy to get some jpartial regularity result in 

that case simply requiring the natural] growth, i.e. 

(2.4) 

|A
a
(x,u,p)| < L|p| ,| 

|A
a
 .(x,u,p)| 4

 L
 *

 ! 

І P
3 ! 

|A
a
 (x,u,p)| < L|p|| 

ІU^ ; 

(2.5) |B(x,u,p)| < a|pp -łt b , 

and the strong ellipticity 

(2.6) A* 
i p 

j ^ c j i x l e l 2 V! Ç (X > 0 ) . 

We note that in general (2.3), ..., (2.6) are not sufficient for 
the system in variation, i.e. 2 2 proving that u 6 H ' and satisfies 

are not enough for linearizing the system even in the case B = 0 
We should need to know that u is not] only bounded but also conti
nuous . 
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Anyway, for systems of the type (2.3) we have the following re

sult, [44] : 

1 2 N 
THEOREM 2.1. a) Let u € H ' (n-IR ) be a weak solution to system 

- DaA^(x,u,Du) = 0 i = 1,...,N . 

Suppose (2.4), (2.60 hold. Then the first derivatives of u are Hol-> 

der-continuous in an open set Q0 and meas(fi\jQn) = 0 . 

1 2 «> N 
b) Let u 6 H * L (Q,R ) 2>e a weak solution to (2.3). Suppose 

that (2.4), (2.5), (2.6) are satisfied and thai 2aM < X where 

|u| 4 M . Then the first derivatives of u are Holder-continuous 

in an open set QQ and meas(S2\Q_) -= 0 . 

We refer to [44] for the proof in principle uses the technique 

of [38], [43] plus some sharper Lp-estimates for the gradient, and 

to [44], [36] for a discussion of this result. 

Theorem 2.1, however, leaves the problem of the regularity of 

the minima of the functional (2.1) under "natural" conditions open, 

except in dimension 2, compare also C. B. Morrey [95]. In fact, if 

n -= 2 , under the assumption of Theorem 2.1, we have u 6 H-*^ for 

some p > 2 ; then by the Sobolev imbedding theorem, u is H61der-
2 2 continuous. Therefore u e H * and, moreover, one can show, see 

[44], [J4], that u e H *^ . Hence we can conclude: 

a) Under the assumptions of Theorem 2.1, if n =- 2 , then the deri

vatives of weak solutions are Holder-continuous everywhere. 

1 2 N Moreover, since the minimum points u € H ' (Q,R ) of the functional 

(2.1) are Holder-continuous in dimension 2, compare Sec. 3, Chap. II, 

we get: 

b) The minimum points u of the functional (2.1) are3 if n =• 2 , 

1 *) 
C -Holder-continuous . Therefore they are as regular as F permits. 

In the rest of this section we. want to describe two contributions 

to the problem of the partial regularity of minima in dimension n ̂  

>, 3 , due to M. Giaquinta, E. Giusti [39] , [40] and refering to the 

special case of quadratic functionals, i.e. multiple integrals of the 

type 

(2.7) FQujO] - JA^(x,u)DaU
iD3u

jdx , 

*) Of course, provided that the analogues of (2.4), (2.5), (2.6) hold. 

80 



where A ? \ ( x , u ) are continuous (for th^ sake of simplicity we shall 
assume uniformly c o n t i n u o u s ), bounded: j 

1 A?!I < L ! 
lj' (2.8) 

and satisfy the ellipticity condition 

(2.9) A i j c « 5 8 i Mel2 v? (x > | o . 

We have, see [39] , 

1 ? N 

THEOREM 2.2. Let u € H ' (Q,tR ) be a minimum point for the functi
onal 3- in (2 .7 ) ; let h.. be (uniformly ) continuous and let 
( 2 . 8 ) , (2.9) hold. Then there exists an open set Q C & such that 
u e C 0 , Y ( f t n ,R N ) Y~Y < 1 • Moreover 3entq(& \ QQ) = 0 for some q > 

> 2 . 

P r o o f . Let us sketch the procif. Let xft ̂  Q t R < 
1 • 

< -j dist(xn,8ft) and let v be the solution of the variational prob
lem 

8 
ij(X0'Ux0,R>"a 

D v^D v^dx -4 min , 

L v - u 6 Hj(BR(x0),R
N) . 

Then we have, compare Sec. 3, Chap. I, 

(2.10) 

and moreover 

(2 . 11 ) 

Dv dx <. c 

BP <X0> 

П ţ 

.(D í |Dv| dx Vp < R 

BR<Xd> 

j | D v | p d x < c 2 f |Dv,| pdx (2 < p < ст) . 

BR<X0> B R ( x Q ) 

Let w = u - v ; we have w € H (BR,& ) and 

| | D w | 2 d x < | A?5|(x f t fuv t 5 )D ň i w
i D Q w j dx . 

BR<X0> VV 
ijj 0' x_,R' a 

On the other hand, 

and therefore 

í A i j < X 0 ' U x 0 , R > D a v Í V J d x =| ° 
BR 

l A i j< X 0 ' U x n ,R> D a w Í D B w J d X = f A I j < V U R > D a U S w J d X = 
TS U i - , 
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J [A^(xQ,uR) - A^(x,u)]Da(u
i + vi)D3w

jdx + 

| [AJ*<X,V) - A ^ x . u ^ D ^ D ^ d x + 

BR 

| A^(x,u)DaU
ÍDeU

jdx - | A^(x,v)DaV
ÍDev

jdx 

BR 

+ 
в 
R 

+ 

B
R

 B
R 

Since u minimizes ^ and u = v on 3B_ , the sum of the last 

two terms is nonpositive. Therefore 

J |Dw|
2
dx < e j (|Du|

2
 + |Dv|

2
)0

2
(R

2
 + |u - u

R
|

2
) + 

R R o o o 

+ o)
2
(R

2
 + |u - v|

2
)Jdx 

where u is a continuous, bounded, increasing, concave function with 

o>(0) = 0 and 

|A«|(x,u) - A«?(y,v)| <
 w
(|x - y|

2
 + |u - v|

2
) . 

Now using the L
q
-estimate for Du , (2.4), the boundedness of u> , 

the Poincare inequality (in the same way as we did in Section 1) and 

combining (2.10) and (2.12), it is not difficult to deduce the follo

wing inequality: 

f (l + |Du|
2
)dx < 

vv 
( | ) + U(R2 + cR 2" n j |Du|2dx) " qJ f (1 + |Du| 2)dx 

B R ( V B 2 R ( V 
i 

for every p < R < •- dist(x
0
,dft) and for some q > 2 . The result 

then follows as in the proof of Theorem 1.1. Sec. 1. 

Q.E.D. 

Under the assumption that the coefficients split as 

(2.13) A^(x,u) = g. .(x,u)G
ae
(x) 

-* J •*-J 

we have now, see [40j , more information on the singular set, and, 

more precisely, 

THEOREM 2,3, The singular set of a bounded minimum u has Hausdorff 
dimension not greater than n -- 3 . In dimension n - 3 it consists 
at most of isolated points. 
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We note that, although of particular type, functionals in (2.7) 

with coefficients given by (2.13) are o$ interest in the theory of 

harmonic mappings of Riemannian manifolds. In fact if u is a mapping 

from a Riemannian manifold M into a Riemannian manifold N (with 

metric tensors G 0(x) , g..(x) , respectively) the energy is given 
a p j-j I 

in local coordinates by 

J g i j ( u ) G a 3 ( x ) D ^ u i D Q u j >/G(xl dx 

where < G а ß > = ( G „ $ > " a 
a 

аnd G det(G a) 
a Є У 

The method of proof follows closely the one developed in the 

theory of minimal surfaces and uses the jfollowing two lemmas: 

LEMMA 2.4. Let A
(v)
(x,z) = A

a
{p

v)
(x,z^ be a sequence of continuous 

functions in B x IR ( B is the unit fyall in 

A(x,z) and satisfying the inequalities ] 

|A
( v )

(x,z)| < M , 

IR ) converging to 

(2.14) Ä ( v )Ç-5 > |?| 2 

|A(v>(x,z) 

V? , 
,(v) A ^ V ^ ( X ' , Z ' ) | 4 »( |x - x ' r + Ł) 

where w(t) is a bounded continuous con\aave function with w(0) 
For each v - 1,2,... let u 

onal 

(v) Ъe a rńinimum on B for the funati-

Ғ ( v ) ( u v ) - Í A ( v ) ( x , u ( v ) ) D i | ( v ) D u ( v ) d x 

and suppose that u(v) —>• v weakly in L (B,R ) 

Then v is a minimum in B for the functional 

A(x,u)DuDudx . ! 

Moreover* if x is a singular point fdr u (v) and then 

xn is a singular point for v 

[result (very similar to the The second lemma is a monotonicity 

one which appears in the theory of minimal surfaces) . And it is for 

this lemma that the special form (2.13) jof the coefficients is needed 
*\ i 

'. We may assume j 

(2.15) 

moreover, we assume that 

Gaß(0) ..a.3 

*) Any extension of this lemma to a more general class of coeffici 

ents would imply an immediate extension lof Theorem 2.3. 
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1 2 

(2.16) f Sii^l dt < + * . 

0 
Then the monotonicity result is 

LEMMA 2,5, Let u be a looal minimum in B for & in (2.7) with 

coefficients A given by (2.13) and satisfying (2.14), (2.15), 

(2.16). Then for every p , R , 0 < p < R < l we have 

(2.17) | |u(Rx) - u(px)|2d H11"1 < Y i log S [$ ( R ) - $(p)] 

as 
where 

t 2 

.(2.18) $(t) = t2~n exp(y2[
 w (° } ds) f A(x,u)DuDudx . 

0 Bt 

We confine ourselves here to proving the second part of Theorem 

2.3 and we refer to [40j for the first part and for the proof of 

Lemmas 2.4, 2.5. 

P r o o f . We first observe that the function $(t) in (2.18) 

is increasing, and therefore tends to a finite limit when t —+• 0 

(since it is also bounded). Suppose now that u has a sequence of 

singular points xn , converging to xn = 0 and let R = 2|x | < 
U f % U V V 

< 1 . The function u * (x) = u(R x) is a local minimum in B for 

the functional 

.T(v)[uv;B] = (A(v)(x,u(v))Du(v)Du(v)dx , A(v)(x,z) = A(Rvx,z) , 

B 

Moreover, each u has a singular point y with |yQ| = •=• . 

Since the u are uniformly bounded, we can suppose (passing pos

sibly to a subsequence) that u converge weakly in L (B) to 

some function v and that y —• y0 . The coefficients A w (x,u) 

are bounded and uniformly continuous in B x B ' ( L being a bound 

for |u| ) and hence we may apply Lemma 2.4 and conclude that v is 

a minimum for 

F0[v;B] = |A(0,v)DvDvdx . 

B 

Also from Lemma 2.4 it follows that v has a singular point at yQ . 

Let now 0 < X < p < 1 , and let us apply inequality (2.17) to p = 

= XR and R = yR .We have 

34 



J |uv(Ax) - u(v)(yx)|2d*n-1 < y± |og £ |>(PRv) - #<AR,)] . 

dB | 

If we let v —• » , the right-hand side j converges to zero and hence 

for almost every value of X and y we have 

[ |v(Xx) - v(yx)|2d^n~1 =|0 

dB | 

so that v is homogeneous of degree zeifo. 

We may therefore conclude that the whole| segment joining 0 with 

y0 is formed by singular points for vj. This contradicts Theorem 2.2 

and in particular the conclusion that trie set of singular points has 

dimension strictly less than 3 - 2 = 1 s. 

Q.E.D. 
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