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A SURVEY ON TENT SPACES AND THEIR APPLICATЮN 

TO WEIGHTED INEQUALITIES 

Raymond Johnson 
College Park, Maryland, USA 

1. P r e h i s t o r y o f t h e t e n t s p a c e s 

Tent spaces arise because of questions concerning Carleson meas

ures. Carleson measures were introduced in connection with the corona 

problem and originally involved holomorphic functions in the unit disc. 

I shall give equivalent versions in the upper half-plane. 

Consider a harmonic function in R = {(x,y) | x g R , y > 0} 

with trace on y = o given by an L
p
 function f(x) . Then 

(1) u(x,y) = I P(x - z, y) f(z) dz , 

where P is the Poisson kernel 

C y 
( 2 ) P ( x

>
y ) = 2 % (n+1)/2 > 

(|x|
2
 +

 y

2
) (

n + 1
) /

2 

and Carleson [4] asked which measures u >> 0 satisfy 

V p r ,
n
 1/P 

(3) [Jj|u(x,y)|
p
 dц(x,y)) < A(J|f(x)|

p
 dx) , 1 < p 

He showed that it was necessary and sufficient that there exists a 

constant A such that for any cube Q with sides of length <5 (al

ways parallel to the coordinate axes), 

(4) u(Q
 x
 [o,<5]) < A|Q| . 

Shortly there after Duren [10] considered a generalization of (3). 

He wanted to classify the measures U for which 

V q ,r
 l П

 i/p 
(J||u(x,y)|

q
 du(x,y)) < A(j|f(x)|

P
 dx) 1 < p < q 

where q > p , and showed that the answer was an appropriate generali

zation of (4), namely that there exists a constant A such that 

(5) U(Q x [0,6]) < A|Q|
q / p
 , 

for all cubes Q as above. 

It was also known that the substitute for the integral inequality 

when p = 1 was 
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(6) f|u(x,y)| dy(x,y) < A| |f| | , 
J
 H' (IR

П
) 

where H (IR ) is the Hardy space with equivalent definitions, but 

most simply
1
 thought of as the subspace of L (lR

n
) formed of those f 

for which 

(7) u (x) = sup |u(x,y)| 
y>0 

is in L
1
(R

n
) . C. Fefferman [11J characterized the dual of H

1
(fc

n
) 

as BMO where f e BMO(lRn
) provided 

|f||* < + - , (8) sup - 1 - f|f(X) 

Q l Q l 6 
- fQ|đx 

with 

(9) f 0 = — í f (x) 
Q lûl J 

dx . 

We can apply this result to (6) above noting that 

If u(x,y) dy(x,y)I < I|u(x,y)| dy(x,y) < C||f|| 1 
IJ ' J H 

= ||f(x) P*u(x) dxl , 

where 

(10) P*У(x) = fí P(x - z, y) dy(z,y) 

(at least formally - there are convergence questions but see |J3J) and 

conclude that if y is a Carleson measure, P*y which is called its 

balayage, belongs to BM0(IRn) . 

In 1979, E. Amar and A. Bonami [2] sought to generalize this last 

result. This is equivalent to asking which measures y have the pro

perty that 

(11) (||u(x,y)|q dy(x,y)) < A(j|f(x)|p dx) 

for q < p . They did this and let me begin with the organization of 

Carleson measures that they used. Denote the Carleson measures by V 

(12) V1 = {y | |y| (Q x [o,6j) < C|Q|} , 

and the measures considered by Duren as V 

Va = {u | |y|(Q x [CMJ) < C|Q|a for all cubes Q} , a > 1 

normed with 



|y|(Q X [0,5]) 
(13) inf — j - - M w l l o . . « > 1 . 

Q |Q|a V01 

They generalized this to a < 1 by introducing the tent over ft : 

for an open set ft 

(14) T(ft) - {(x,y) | B(x,y) C ft} , 

and B(x,y) denotes the ball of radius y about x . 

Note that when ft is a cube Q , a tent is geometrically the same 

as a cylinder because 

(15) \ Q x LP,6/2] Q T(Q) C Q x [ 0 , 6 ] . 

;ya,ton+1» DEFINITION. y e V^dR^ ) , 0 < a < 1 i f f or any open s e t ft , 

(16) |y|(T(ft)) < C|ft|a 

I 

that 

V° = {finite measures on Rn+1} . 

Amar and Bonami proved a number of interesting results about such 

spaces. In particular they finished the result on balayages by showing 

that 

P*y : Va(Rn+1) - LP»a>(Rn) , 1 - 1 - a , 0 < a < 1 

and Lp,c° is the Uavcinkiewicz space of functions of weak type p , 

i.e., f € Lp,°°(Rn) if 

|{x | |f(x)| > y}| < A/yP , 

which supplements the fact that P* : V1 + BMO and P* : Va •* Bn(a""1)» 

the homogeneous Besov space of order -n(a - 1) » for a > 1 . They 

further showed that this map is onto in each case, precisely, if f 

E Lp' °° has compact support ( f e BMO has compact support), then there 

is a measure y e Va , a = 1 - 1/p (or y £ V ) such that P*y *- f • 

They showed that Va is an intermediate space between V and V 

in the sense of interpolation. This was done by showing that for the 

complex method of interpolation [" , ] or the real method ( , ) Q * 

one has 

(17) Lv°,v1]a - (v°,v
1) a^--v

a . 

They also identified a subspace Wa of Va such that P* : Wa 

-*• Lp(Rn) , 1/p •» 1 - a (the map is onto again, without assuming f 
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has compact support)» and finally then showed that W** is an inter
mediate space for the real method 

(18) <v°.v1>a,p
 = ^ • 1/P - 1 - a • 

The last part of the prehistory is a paper of mine that eventually 
appeared in the Cortona proceedings [13], I observed there that because 
of Whitney's lemma for <* £ 1 , u(T(8)) £ c|8|a for every open set 
Q if and only if u(Q x [o,6j) £ C|Q|a for every cube Q , gave a 
counterexample of a family of measures that satisfied u(Q x Q),6]) 
< C|Q|a for all cubes, with a < 1 , but which were not generalized 
Carleson measures and gave a number of examples of generalized Carleson 
measures. I noted that the analogue of the Carleson inequality for 
a < 1 was 

r Vp 
I'lutx.yHP01 du(x,y)) < c| |£11 ( p > p o ) Ф 

where this last norm is the Lorentz space norm of a function f de

fined in terms of its decreasing rearrangement f* by 

1/q 
( 1 9 )

 H-ll
( p
,

q )
 - (([fltlt

1
/!

1
]«!-) 

Of course the L
p , q

 form an increasing family of spaces as q varies, 

the smallest space- is L
p
' and the largest is the space of weak type 

p functions which is L
p
* . Finally, I noted that there was an atomic 

space whose dual was V but I could not characterize it concretely. 

T e n t s p a c e 

The preprint of my paper appeared at about the time that Coif man, 

Meyer and M
c
lntosh proved £6J the boundedness of the Cauchy integral 

(in L ) on Lipschitz curves with arbitrary Lipschltz constant. Coif* 
man, Meyer and Stein introduced tent spaces as a means to provide 
another proof of the boundedness [7] and later [8] discussed their 
general theory. 

Por 1 < q < « , set for F(x,t) defined on IRJ+1 

(1) AqP(x) « ( [[ |P(y,t)|^ dy -^-) ** . 
T(x) t 

where r(x) • {(y,t) | |y - x| < t} is an equiangular cone with vertex 
at x . Por q » • , set 
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(2) AooF(x) = ess sup |F(y,t)| . 
T(x) 

Define, for 1 <, p < °° (for the moment) , 

(3) T
p = {F | AgF 6 L

p((Rn)} , 

normed with | |F| | = | | A F | | . For q = °° , we will need to con-
r-iP q T P 

<-

sider C Q rather than L in order to get a duality result and we 

define 

(4) T £ = {F | A^F € L p and | |F - F| | -> 0 as e + 0} , 

oo 

where F (x,t) = F(x, t + e) . 

They proved a number of results about these spaces but two were 

basic. 

1 1 
THEOREM (Coifman, Meyer, Stein). (T^)* = V , precisely3 the pairing 

(F,du) •*• F (x,t)du (x,t) with F £ T^ continuous on HR,1 and u e V 
1 

realizes the duality of T̂  with the Carleson measures. 

For the next result say that a is an atom if supp a C.T(B) for 
_ - i 

a ball B , and I |a| 1^ <, |B| . It is easy to see that an atom belongs 
1 1 

to TTO and there is also an atomic decomposition for T^ . 

THEOREM (Coifman, Meyer, Stein). For any F e T^ , F = EA.a. , with 

a. atoms and E|A"-| < + °° . In fact, 

(5) |ғ|| . u m f {EІX^I | ғ = EX.а.} 

In fact there are some technicalities to take care of because 
i 

elements of T
T O
 are continuous while the atoms need not be, but the 

result as quoted gives the essence of the t h e o r e m . 

A number of other results were given - atomic decompositions for 

T , 1 < q < «> , duality results which say 

(6) (T
p
) ' = T

P
^ , 

and ferially, in connection with this last result, the definition of 

T
p
 for p = oo which requires the introduction of the C-functional 

" n+1 

For a function F on R
+
 , let 

(7) C F(x) = sup (--- if |F(y,t)|
r
 dy f~) , 1 < r < °o 

xeB |B|
 T
{ ^ 
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(8) C .v(x) = sup V ( T ( B ) ) , r = 1 , 
x e B |B| 

where v is any measure on R n . The dual of T is characterized 

by the C functional and it is shown that each of the T p spaces could 

also be characterized in terms of C, -

(9) ||F|| p » ||C 2(F)|| p , 
T 2 

which then naturally leads them to define T~ = { F | C Q F e L°°} . There 

are many other interesting results in [8] (while [7] contained also 

the proof of the boundedness of the Cauchy integral along Lipschitz 

curves); I will only mention two further results. They considered both 

real and complex interpolation and showed that 

PG p0 p 1 x
 pG •»» ҝ°. £]. - . ? . (T , T ' ) n = т 

q ' q ' ,q q 

1 1 - 0 0 
where — = + — . They also exploited a relation with the Hardy 

p
0

 p
o

 p
1 

spaces H
p
 . Fix a function (j> which satisfies 

(i) <j> has compact support (say in the unit ball) ; 

(ii) |<j>(x) | < M , |<(>(x + h) - <j)(x) | < M(|h|/|x|)
e
 , for some e > 0; 

(iii) U(x) dx = 0 ; 

(iii)
N
 ]x

Y
 <j)(x) dx = 0 for all |y| <, N . 

Write, as usual, cj>.(x) = t
 n
 <f> (x/t) , for t > 0 . Consider the opera-

00 

tor n F(x) = ](F(.,t) * (f>
t
)f-̂  * They proved also: 

0 

THEOREM. The operator n , defined on a dense subspaoe3 extends to 

a bounded linear operator 

(a) from T
p to L

P
 , 1 < p < » , 

(b) from T
1 to H

1
 , 

under the conditions (i), (ii) and (iii) on <J> . If (iii) is satisfied 
1 with N > n(— - 1)„ then W extends 

= p (j> • 

(c) from T
p to H

P
 , p < 1 , 

(d) from T
2
 to BMO , 

where the obvious extension of the definition of T
p has been made for 

p < 1 . 
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Note that a map in the opposite direction may be set up in each 
case by using, e.g., the Lusin area function. There are also results 
given on sufficient conditions for a function m(x,t) to multiply 
T p + T p , but we will say more about such results when we state an 
extension in the next section. 

3. T e n t s p a c e s a n d t h e g e n e r a l i z e d 
C a r l e s o n m e a s u r e s o f A m a r - B o n a m i 

I will now describe some joint work with A. Bonami which will 
appear in the volume of Math. Nachrichten dedicated to Prof. Triebel. 
Our object was to understand the precise sense in which the tent spaces 
are related to the V a spaces of Amar-Bonami. We have done this but 
unfortunately it is necessary to complicate everything in order to 
understand it. We first generalize the V a spaces by considering for 
1 < q < « , 

(1) Vp»* « {w - v(x,t) dx ft | 3C , ( JJ |v(x,t) |q dx p f 
T(fl) 

I - 1 
< C|fl|q p for all open sets 8} , 

and for q * 1 we give the same condition but do not require that w 

be absolutely continuous* 

(2) V
p'1 - ( w | 3C , |w||T(ft)| < c|a|1~1/p} . 

Thus, V p > 1 is the space we met before as V " ' p in Amar-Bonami. 
We say that a is a (p,q) atomB 1 < p < q < » , if there is an 
open set ft such that supp a C T(Q) and 

(3) lla|| - ( JJ |a<y,t)|Sdyf-V/9< l«l5 " 5 

T(fl) 

for q < + °° and 

(4) I Ia| L - ess sup |a(y,t) | < | n f 1 / p 

when q » °° . We are also forced to consider tent spaces based on the 
Lorentz spaces introduced earlier (1.19), 

(5) T P» r=- {F | A qF € L
P » r } . 

Por such spaces we prove three main results: 
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(i) If q > p , then Tp' * has an atomic decomposition 

(6) TJ?'1 - {P | P =- E Xkak , ak a (p,q) atom, £|Xk| < + »} ; 

(Ü) 

(iii) 

q 

(TP-1}* _ vP'.q' . i n particular, (Tp>1)* - V 1 / p ; 
q «> 

-P.- = vP.q..f q < p . 

Theorem (i) extends the range of the atomic decomposition of Coif-

man, Meyer and Stein at the price of allowing atoms to live on open 

sets. For the case considered there, the open set can be broken up 

into Whitney cubes and the resulting sum controlled, it could not be 

controlled here and the open set must be left as is. Property (ii) 

shows that the result of [8] does not extend to p > 1 . The Lorentz 

spaces must be introduced to give a space whose dual is V / p , and 

the last result shows that the spaces considered by Amar-Bonami are 

exactly Tp,co and roughly play the role of L in tent space theory. 

In particular, the interpolation results can be reduced to the previous 

interpolation results (1.17), (1.18) and we obtain 

(7) ( / o r o P1*1. _ т p , r 
*Tq » T q ' r T q * 

where 

1 _ 1 - . 1 _ 1 • - , 

P P 0 *1 ' r r o Г 1 

We also generalize the good-X inequality connecting the Afunctio

nal and the C-functional by showing that with 

(8) A
l V
(x) -* ff t~

n
 d

V
(y,t) , C

lV
(x) * sup

 V
{

T ( B )
) , 

r U )
 B

** l
fi
l 

then there exists a C , C (independent of 6 and v ) such that 

|{x | A
l V
(x) > CX ; C

lV
(x) < 5X}| < C6|{x | A

l V
(x) > X}| . This is 

slightly sharper than the result in [8], where for the term on the 

right hand side, an A-functional on a slightly narrower cone was needed. 

This result immediately implies that ||A
lV
|| -- 1|C..v||

 r
 , 

1 < p < - and then, trivially, that 

W H
C
q
F|l
P,r « NV'^.r • 

which shows that the spaces could also be defined by the C-functional• 

Moreover by a technique due to Coifman and Fefferman [5J such a good-X 

inequality implies a weighted inequality for weight a> € Aw « U A , 
p<« P 
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where, A is the Muckenhoupt condition: 

(10) a) € A if and only if 
P 

.VP, 1 f - -rт J/P' 
sup 
Q 

(_L f
 и
 đx) (-!_ f <o" P"1 dx) 

tøl Â ІQІ Д 
Q 

if a) e A^ , 

(11) | | A F(x) |
P
 u)(x) dx < C

P
 | C F(x)

P
 o)(x) dx , 

while if p > q and w e A , , 

(12) J C F(x)
P
 OD(X) dx < C

P
 J A F(x)

p
 w (x) dx . 

Finally, this good-A inequality contains several other good-A 

inequalities as special cases. Lars Hedberg discussed the good-A in

equality of Muckenhoupt and Wheeden [15]. If we take dv(y,t) 

.a _ , . , dt 
= t f (y) dy --- , 

(13) A. (dv) (x) = R
a
 f (x) = C f ^~r-r dz , 

1 a 'J |x - z|n
~

a 

and 

(14) C..dv(x) * M
rt
f(x) = sup j—7- f f(y) dy , 

1 a
 Q3X |Q|

1
-

a / n
 J 

we see that the good-A inequality of Muckenhoupt and Wheeden follows 
2 

from ours. For another example, take dv(y,t) = t|Vu(y,t)| dy dt , 

where u is the Poisson integral of a function of bounded mean oscil-
2 

lation. One checks that A.(dv) = (Sf) is the square of the Lusin 

area integral, while 

(15) C,(dv) - sup --- f|f(y) - f j
2
 dy , 

1
 Bn |B| I 3 

2 

is the square of the L sharp function of f and we obtain the 

good-A inequality 

(16) |{x | 6f(x) > A , ̂ (x) < 6A}| < C6|{x | 6f(x) > X}| 

proved originally by Wilson [19]. In general, if one takes a Carleson 

measure v , an interesting good-A inequality should result. We have 

considered one other example which I will give in the next section, 

but other cases should be investigated. 

The final thing we consider is the application of tent spaces to 

weighted inequalities. Weighted inequalities correspond to multipli-
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cation theorems for tent spaces, which were already proved in [8 J for 

T p ->• T p . The connection arises in the following way. For f € Lp(Rn) , 

form the ball mean (which is a balayage with a suitable kernel (see 

Section 1)) 

(17) F(y,t) = - ^ J f (z) dz , 
• V 1 |y-z|<t 

which is also one of the competitors in the definition of the Hardy 

-Littlewood maximal function, Mf(x) . Now 

(18) A F(x) = sup —! f f ( z ) d z 

( ^ t ) € r x b n t n |y-z|<t 

< 2 n sup - ~- f f (z) dz = 2nMf (x) . 
t > 0 b n ( 2 t ) |x-z|<2t 

Thus, if f € L p , then Mf e Lp which implies that F e T £ . If we 

multiply the ball mean by u(y,t) = w(y)ta , where we think of w as 

a weight, and use the lower bound on A^ obtained by taking the sup 

over the ray {(x,t) | t > o) in r , we find 

(19) AOT(w(y)t
a F(y,t)j > cMaf (x)w(x) . 

A characterization of the pointwise multipliers of T £ •*• Tq leads to 

a weighted inequality for M from Lp ->• Lq . When we do this for 

^ Z, P » w e obtain a result of Sawyer Q16j which says that 

(20) MVII q £ A N f l l p , P < q 
du 

i f and only i f 
£ _ £L 

3 A such that for every ball B , y(B) < A|B| P n . 

(VThen y is the Lebesgue measure, this is the classical result of 

Sobolev.) However, because we have also considered a < 1 , we can 

characterize the inequality for q < p as well. 

THEOREM. The following conditions are equivalent: 

(i) (Jl^ftx)^ dy(x)) q < A||f||p)1 . 

(ii) 3B such that for every open set3 
1 /rr 

(21) (j d(x, C ^ ) a q dy(x)) <A|fi| 1 / p. 
Q 

I should point out that (ii) is easy to apply since if you write 
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ft « UQ, for the Whitney decomposition of ft , 

(22) d(x, cft)a -- £ (diam Q k )
a ̂  . 

A simple application of this is to trace theorems. Let du(x) 

« dx1 ... dxk be Lebesgue measure on the set {(x..,x2,.. .,xk,0,0, 

...,0)l C R n . vie immediately obtain 

COROŁLARУ • If 
k _ n 

q " p 
- o , then 

(23) 1 |Ra f(x)| dx. ... đX| 

Such results are well-known if a > 5 ~ ~ and you can even put 
D P <3 r 

the L^-norm of f on the right hand side. Such results also follow 

from interpolation of this result. If q • p and k • n - 1 , we 

have 

(24) R 1 / p : L p > 1 - LP(dx1 ... dx^.,) . 

The best other result I know of is due to Gol'dman (see [18]) and 

says that 

(25) R 1 / p - Bp 1 - L
p(dx1 ... «lxn->1) , 

but Lp* neither contains nor is contained in the homogeneous Besov 

space B ^ . 

The p r o o f of the theorem is so simple that I can give it 

here. That (i) implies (ii) follows by choosing f «- if»fl . The problem 

is to show that (ii) implies (i). Assume than that (21) holds, and we 

want to prove that 

(26) Ra . . p - 1 * a » 
which is equivalent, by duality, to 

(27) g h-> R°(g đp) s ^ - P ' ' " • 

tøe have 

n<*/~ . 1 . . \ ... i nЛ Г.va ..«/«,% A,. /«.l *dt (28) 

By the results of Amar-Bonami, it is enough to show that t
a
 g du -g-

e V '
p
 which requires 

lfg(y) d(y, °i))
a
 du(y)| < C|0|

1 / p
 , Vg « I;f' , 
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and hence, by H61der, this requires d(y, CQ) € L^ and 

ll«Cy. °">ot11 0 < c|n|1/p . 

4. O t h e r r e s u l t s a n d i d e a s 

This idea of writing an integral operator as a balayage of a suit

able measure is useful also in a context considered by Kerman and 

Sawyer [14J. They consider the operator 

T$f(x) - • * f t 

where $ is a radial decreasing function. Let me first state their 

result. 

THEOREM. Let * be a nonnegative locally integrable function suoh 

that $(y)P dy < + °° , whioh is radially decreasing. For 1 < p 

|yl>r 
£ q < «> and u a positive locally finite Borel measure, the following 

statements are equivalent: 

(i) 3c > 0 suoh that for f _j_ 0 # • measurable, 

([ iyf(x)<JcMx)) q < c | | f | | p 

Rn 

(ii) 3 C > 0 suoh that (j T$(XQP)
P'dx) * < C'y (Q) 1 / q' < + » 

Rn 

(iii) let M.f (x) - sup (-L f $(y) dy) f f(y) dy 

be the maximal function associated with $ . (When $ is suoh that 

T. -= Ra , M. » M is the fractional maximal function,) Then 3 C " > 0 

suoh that 

1 H**tf 
1 / t_' 

(í M (Xodu)
P'dx) <C"u(Q) 1 / q' < + oo . (Js 

The result has various applications to e.g. estimating eigenvalues 

of the Laplacian. A. Bonami and I proceed as follows. Let 0 be the 

distributional derivative of <t> , i.e., a Stieltjes measure such that 

5 Krbec, Analysis 65 



*(y) = f de(t) . 

|y | 

Consider the measure t ndO(t)dv(x) . Then A..dv(x) *- 9 * f (x) while 

C.dv(x) * M$(dv) 

sup - І - f |~Ф(y) - Ф ( | Q | 1 / n ) ] d y f dv , 
Q з x |Q| > 1 / n

L J i 
l v l < Ю I 1 / П Q 
|y|<lQl 

and thus the good-A inequality holds for T. , M, and M
$
 is smaller 

than the M. considered by Kerman and Sawyer. Since the. good-X inequa

lity is the key step in their proof, it can now be carried over to 

M
$
 . However, we can also prove their theorem by resorting to the 

atomic decomposition of T^ if we know that u is doubling which is 

a defect of our method. We also get results for L
p -*- L? with q < p. 

I should also note that if 

a 

м Y(t)tn
~

1
 dt < CY(a) , 

then M, and M
$
 are of the same order, and that this happens when 

• (t) = t
a
~

n
 . 

Our results for q < p always require L
p
» on the right hand 

side because we are using balayage and the spaces V
 / p

 . We can say 

something about operators mapping L
p
 -*• LS but it requires that we 

,Vp 'đp 
use balayage with measures in W / y and the conditions found by Amar 

-Bonami for W ' p are not as explicit as for V ' p . The known neces

sary and sufficient conditions in order that 

Ra : L p - L q 

dy 
involve capacities, (see |J12j ) 

u(E) p / q < CBa (E) VE compact 

which are difficult to verify or conditions on cubes [17j that are 

also difficult to verify. By using a duality result that I will de

scribe later, we can give an alternate formulation of the capacity * 

of a set. 

THEOREM. Let £(E) -= inf {||F| | P
p | F > 0 , jғ(x,t)t

a
 f^ > Ф

E
(x)} , 

then £(E) * Ba>p(E), 

A possible interest of this is that the differential conditions 

*E Raf > ty appears implicitly in the definition of £ and might make 
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it easier to compute £ . 

Let me finish by mentioning two other papers touching on tent 
spaces. J. Alonso and M. Milman [1] have also considered duality re
sults simultaneously with Bonami and I and also proved that (T£» )* 
* V 'p , but̂  showed as well that (T£)* • W ' p , which is used by us 
to derive the above capacitary result. They also calculate the K-func-
tional between T £ and L°° , use it to give other interpolation re
sults and begin the study of tent spaces on product domains. 

Another result that should have been mentioned in Section 1 is 
due to Deng [9] who proved that 

I if F(x,t)v(x,t) dx dtl < C) A F(x)C ,v(x) dx , 
\ 11 I J P P 
R f 1 Rn 

where 1 / p + 1 / p ' s s 1 > 1 _S P .1 °° • H© also showed that for any 
r > 1 , Crv belongs to the class A., of Muckenhoupt formed of 
functions u> for which there is a positive constant C such that 

Mo>(x) < 0>(x) for all x € Rn , 
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