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W E I G H T E D E S T I M A T E S F O R C L A S S I C A L I N T E G R A L O P E R A T O R S 

Vakhtang Kokilashvili, Tbilisi 

This paper deals with the problem of a full characterization of couples of weighted function 

spaces for which a given integral operator is bounded from one of these spaces into the other . 

According to coincidence and non-coincidence of the weights involved these prob lems are called 

one weight and two weight problems, resp. • 

Today the weighted inequalities and their applications to various mathemat ical problems are 

very rapidly developing par t of the harmonic analysis. In last years, solutions to many serious 

problems in the theory of functions turned out to be closely linked with the weight theory. 

Particular ly, extensive and intensive study of integral operators in weighted function spaces 

began in the early 70's after the paper [1] by B. Muckenhoupt who showed tha t the weighted 

inequalities for the classical maximal operators are true iff the weight function satisfies the so 

called Ap condition. Later, solutions were given to one weight problems for Hilbert transform, 

fractional maximal functions, fractional integrals, and other classical integral operators [2], [3]. 

The two weight problem in Lebesgue spaces for the classical maximal functions was solved 

by E. Sawyer [4]. The same author solved in [5] the problem of a full charecterization of pairs 

of weight functions in the two weight weak type inequality, and another equivalent condition, 

perhaps more easily verifiable, was given by M. Gabidzashvili [6]. Quite recently, E. Sawyer [7] 

has found a characterization of pairs of weights, guaranteeing validity of the two weight strong 

type inequality for fractional integrals. It turned out tha t , using the results of [6] and [7], the 

solution t o the last problem can be given in a more visible form. 

In this lecture we present solutions of some weight (and unweight) problems for classical 

integral operators, in particular, for maximal functions, potentials, Riesz transforms, and for 

their generalizations in the spaces of the homogeneous type. These results have been obtained 

. recently by part icipants of the seminar on weighted function spaces and integral operators in 

the Tbilisi Inst i tute of Mathematics of the Georgian Academy of Sciences and some of them also 

in collaboration with our Czech colleagues from the Mathematical Inst i tute of the Czechoslovak 

Academy of Sciences in Prague. 



1. Fractional integrals in Rn 

First of all we will discuss some unweighted problems for the potential type integral operator 

WM-J \/-tf--T °<7<«<». 

where p is a Borel measure. 

The question is as follows: What is the full description of such measures p for which 
ap 

the operator I7 acts continuously from Lp(Rn,dpi) into Lq(Rn,dfj.) when 1 < q < — —, 
a — p7 

K p < 2 ? 
7 

For the measure \i we introduce the following function 

fj,B(x,r) 
il(x) = sup , 

r>o r 

PROPOSITION l .L Let us suppose that the function Q(x) is finite almost everywhere 

on a u-measurable set E. Then for arbitrary f from Lp(Rn,dix) with 1 < p < —, the function 
7 

Ij(fdfj,) is finite almost everywhere (in p sense) on E. 

THEOREM 1.1 [91. Suppose that 0 < 7 < a < n, 1 <p< - , - = - . Then there exists 
7 q p a 

a positive constant c\ such that for every F from Lp(Rn,dfj.) we have 

(I7(/dp))« (n(*» W - 1 * dfi) < cA ( \f(x)\p d» 

This theorem and some other consideration yield the following 

1 1 7 
THEOREM 1.2 [91. If - — , then the following conditions are equivalent: 

q p a 
a 

i) I^(fdy) acts continuously from Lp(Rn,dfj.) into Lq(Rn,dfi) when I < p < — . 
7 

a 
ii) I7 is of the weak type (1, ) (with respect to the measure \x) 

a — 7 
Hi) There is a positive constant c2 such that 

(*B(x,r) < c2r
a 

for every x 6 R, r > 0. 

Here B(x, r) denotes a ball in Rn centered at x and with the radius r. 

In general we have the following 
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THEOREM 1.3 [9]. Suppose that 1 < q < — , 1 < p < - . Then the operator I7 acts 
** ~~ Pi I 

continuously from Lp(Rn

1 dp,) into Lq(Rn, dp) if and only if there exists a positive constant cz 

such that 

pB(x,r) < Czr
a°l~"f)p9)/(p9~9+p). 

Theorem 1.3 contains the well-known Sobolev embedding theorem [11]. Let E be a Borel 

subset of Rn with the condition that its Hausdorff a-measure HQE is positive. 

We have the following 

THEOREM 1.4 [9]. Suppose that 1 < p < a^1, l<q< a p . Then the inequality 
a ~ 7 P 

-/« / \ I/P 

( / ( / Ѓ ^ H '-(/'«*« 
holds for every f € LP(E, Ha) with a constant c > 0 independent of / if and only if 

HQ(EnB(x,r)) < c1r^a-'f)p9)^P9+p-9) , 

where c does not depend on x and r. 

Now suppose that T is a rectifiable curve in the complex plane (with finite or infinite length). 

We shall consider the potential type operators 

«-/(*) = / - - ^ i - - « f r , 0 < 7 < 1 -
r 

THEOREM 1.5 [8]. If 1 < p < 7"1, 1 < q < —~—* tiien tixe following two statements are 

equivalent: 

i) K7 acts continuously from LP(T) into L9(T). 

ii) The curve T satisfies the condition 

\Tn B(z,r)\ < c r ^ 1 " ^ - ^ - * ^ , 

where c does not depend on z £T and r > 0. 

Note that a generalization of these results for another variant of the fractional order integral 

in spaces of the homogeneous type was proposed in [12]. 

Now we consider weight problems for integral operators with positive kernels in weighted 

Lorentz space. This is a set of measurable functions / : Rn —> R1 for which the following 

quasinorrn 

I (p J(w{y € Rn : \f(x)\ > \})3fp \a~l d\\ for 1 < p < 00, 1 < s < 00, 

sup \(w{x E Rn : |/(a:)| > A})1/* for 1 < p <.00, 5 = 00, 
A 
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is finite. 

Further, we shall say that a function w : R -H• R is weight function, if w is local integrable 

and positive almost everywhere. For the weight function w and a Borel set E we denote 

wE = / w(x) dx. 
E 

Let us consider the integral operator 

£/(*) = JK(x,y)f(y)dy, 
Rn 

where K : Rn x Rn -> R1 is positive and / > 0. 

THEOREM 1.6 [14]. Let 1 < s < p < q < oo, w : Rn —> R1 be a weight function, let 

\f>: Rn —> R1 be a nonnegative locally integrable function, and v a Borel measure. If 

(1.1) sup (vB(x, 2r))1'* \\xR»\B{s,r)W-VK(*, Oil,FV < <*>, 
x£Rn ^w 
r>0 

then there exists a positive constant c4 such that for any A > 0 and an arbitrary nonnegative 

f from Lw* weizave 

v{x6Rn:K(fij>)(x)>\} < c4 A"« \\f\\*p. . 
•^w 

In [17] a condition for pairs of weight functions can be found which is necessary and suffi

cient for the operator K to be the weak type mapping from one weighted Lorentz space into 

another one in the case that the kernel K is an anisotropic radial decreasing function and 

I <p<q <oo. 

Let us consider the generalized potential operator 

M ) - / (\*-v\+ *)*"* 
Rn 

dy, 0 < 7 < n , t > 0. 

We suppose that j3 is a measure on Rn+1 = Rn X [0, +oo), B(x, r) = B(x, r) x [0,2r). 

THEOREM 1.7 [15]. Let l<s<p<q<oo. Then the following statements are equivalent: 

i) There is a positive constant c$ such that the inequality 

0{(x,t) € Rn
+

+1 : T^(m(x,t) > A} < cA-'||/||« . , 

holds for every A > 0 and an arbitrary function f from Lw
s 

ii) sup ( t f B ^ r ) ) 1 ^ 
x€H n w 

r>0,<>0 

Prom the above results and solution of the two weight problem for the Riesz potential which 

was recently given by E. Sawyer [7] we are able to give a necessary and sufficient condition for 

validity of the two weight strong type inequality which is more convenient from the point of 

view of the verification. 
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THEOREM 1.8. Let 1 < p < q < oo. Then the inequality 

. i l ? / r \ i/g 

Ц(I-r(f)(x)Уv(x)dx) < cЏlf(x)\>w(x)dx) 

Rn Rn 

with a constant c > 0 independent of f € L£,(Bn) noids if and only if 

sup (v.B(aJ,r))
1/*||xR»\B(«fr)ti'-

1|í5 - • r" n | | r p ' < 
r c P " •*-'u> 
r>0 

and 

sup ( t - , - ' ' ( B ( - , г ) ) ł ! ' ' | | X j l . x в ( , , ř ) | - - . | т - | | i f < 00. 
x€Rn 

r>0 

2. Maximal functions and Riesz transforms 

We start this section with an unweighted problem for the Hardy-Littlewood maximal function 

and the Riesz transforms. For a locally integrable function / : Bn —> B1, the Hardy-Littlewood 

maximal function is defined by 

Mf(x) = sup -±- J \f(y)\dy, 
B 

where sup is taken over all balls B containing the point x. 

For a measurable function / : Rn —> B1 satisfying the condition 

/ \f(x)\dx 

J (1 + 1*1)-
< oo, 

the Riesz transforms Rjf (j = 1,2,... , n) are defined as follows: 

Bi/(.r) = limon J ^Tf(x-y)dy, 
\9\>* 

where y = ( y i , . . . ,yn) and cn = 7r-(n+1)/2r((n + l)/2). 

We shall say that a function <j>: R1 —+ B1 belongs to the class $, if <f> is an even, nonnegative, 

nondecreasing function on (0, oo) such that 0(0+) = 0, lim (f>(t) = oo. By <j>(L) we denote the 
t—*oo 

set of all measurable functions / for which 

/ (4>°f)(x)dx < oo . 

Rn 

Definition. A nonnegative function <f> : R1 —»• R1 is called quasiconvex if there exists a 

convex function ip and a constant c > 1 such that 

ip(t) < (f>(t) < cip(ci) for all t € R1. 
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PROPOSITION 2.1. If <j> € $, then the inequality 

n 

<t>(X)m{x£ Rn
 : Mf(x) > X] < c i (<j>o(cf))(x) dx 

R 

holds for every X > 0 and / € </>(L) with a constant c independent of X and f if and only if the 

function <f> is quasiconvex. 

PROPOSITION 2.2. Let <f> e $• Then the following two conditions are equivalent; 

i) There is a positive constant c such that 

n 

<j>(X)m{x£ Rn : Rjf(x) > X] < c f (<f>o(cf))(x) dx . 

R 

ii) <f> is quasiconvex and satisfies the A2 condition. 

THEOREM 2.1 [18]. The following statements are equivalent: 

i) There exists a positive constant c\ such that 

n 

f(<f>oMf)(x)dx < Cl ](<f>o(Clf))(x)dx 
J R 

R 

for every f such that c\f € <f>(L). 

ii) <f>a is quasiconvex for some a G <f>(L). 

iii) There exists a positive constant c2 such that 

- ds < c2 t ! ^ l ? 0 < cг < oo. JM, 
0 

If (j> is a Young function, then it can be shown that all the above statements are equivalent 

to the A 2 condition for the function complementary to function <f>. 

For the Riesz transforms the following theorem is true. 

THEOREM 2.2. For the validity of the inequalities 

l(<f>oRjf)(x)dx < c)(<j>o(cf))(x)dx (j = 1,2,... ,n) 

i 
it is necessary and sufficient that <j> € A2 and (f>a be quasiconvex for some a, 0 < a < 1. 

For the Hilbert transform and the conjugate function the analogous problem was solved in 

[21], [22], [23] in a different way. Further we discuss the following question: What is the relation 

between the classes of functions <f> for which either the inequality for the scalar maximal function 

(the Riesz transform) holds and the classes of those functions (f> for which the corresponding 

inequality for the vector-valued maximal function (the Riesz transform) is true? 
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THEOREM 2.3 [19]. Suppose that 1 < 0 < oo. Then the following conditions are equivalent: 

i) The inequality 

<f>(\)m{xe Rn :. (jfciMfjix))*) > A} < c- J(4>of)(x)dx 

'" Rn 

is valid for some positive c\ independent of f = (/i , • • • , /» , • • • ) and A > 0. 

ii) The ineguaiity 

4>(\)m{* 6 i t" : (tlRkfiMl') > A} < c2 | *o( f j | | / i % >) | | - ) dx 
Rn 

is valid for some positive c<i independent of f = ( / i , . . . , fn,...) and A > 0 . 

Hi) <f> is quasiconvex and <j> € A2. 

THEOREM 2.4 [19]. Let us suppose that <f> e $ and 1 < $ < 00. Then the following statements 

are equivalent: 

i) There is a positive constant c\ such that for each f = (f\,..., / „ , . . . ) the inequality 

(
\ l / « / v 1/9 

E(M/i)#J (*)«fc < * /*>( El/il'J (*)<** 
holds. 

ii) There is a positive constant C2 such that 

(
v 1/9 , v 1/0 

E I**/;.*) W<fa < c2 /^o( E l / / J (*)<**. 
iii) ^ € A2 and t̂ ° is quasi-convex for some a 6 (0,1). 

In the sequel, we present some general inequalities with Carleson measures for the maximal 

operator 

Mf(x,t) = sup Wr1 J\f(y)\dy 
Q 

where the supremum is taken over all cubes Q C Rn containing .r and whose sides are of length 

at least 2~lt. 

Let Q be a positive measure on B""*"1 = Rn x [0,oo). L. Carleson [24] proved that M is 

bounded from Lp(Rn) into LP(RU^1,Q) and from Lx(Rn) into Ll(Rn+1,Q) if and only iff there 

exists a constant c > 0 such that 

(C) QB(x,r) < crn, 

where B(x, r) — B(x, r) x [0,2r). A measure Q on Bn+1 satisfying (C) will be called the Carleson 

measure. 

We generalize this result for the functions from the Orlicz-Morrey spaces. 
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THEOREM 2.5 [25]. If^ € <t> and <f>a is quasi-convex for some a 6 (0,1), 0 < A < n, then the 

inequality 

sup r~A / (<t>oMf)(y,r)dQ < cx sup r"x J (<f>oCif)(y)dy 
x6B n , r>0 J xeRn,r>0 B(x,r) 

B(x,r) 

holds if and only if Q is a Carleson measure. 

The case A = 0 will be reformulated in the next theorem together with a weak type inequality. 

We shall consider Orlicz spaces in their standard form. 

THEOREM 2.6 [25]. Let Q be a positive measure on R"+1, </> € $ and suppose that <j>a is convex 

for some a E (0,1). Then the following statements are equivalent: 

i) <i>(X)Q{{x,t)eR^1: Mf(x,t)>\\ < c, f{<j>of)(x)dx. 
~ Rn 

ii) f (<j>oMf)(x, t) dQ < c2 f (<f>of)(x) dx. 
Rn Rn 

Hi) Q is a Carleson measure, 

iv) There exists c > 0 such that 

*(^)e(§) < c*(e)\E\ 

for every ball B and measurable E C B, and every positive £. 

If, moreover, <f> is a Young function, then any of the above conditions implies 

v) \\Mf\\L+,t < cH/IU, 
Additionally, if $ is a Young function satisfying the A2 condition, then (v) implies (i)-(iv). 

For the Riesz transforms we have 

THEOREM 2.7 [25], [26]. Let <f> and tj> be a couple of complementary Young functions, both 

satisfying the A2 condition. Suppose w is a weight function. Then the statements below are 

equivalent: 

i) f (<t>oRj f)(x)w(x) dx < ci f (<f>of)(x)w(x)dx 
Rn Rn 

") «*i/ll^(e») -? tlfhw £ > ° 
Hi) <(>(\) f w(x)dx < c3 f (<f>of)(x)w(x)dx , j = 1,2,... ,n . 

{x:\Rj f(x)\>\) B» 
iv) w € Ai(^) (the Muckenhoupt class) where i(<j>) is the lower index of <j>. 

The proof of theorem 2.7 rests on the pioneering paper of R.Kerman and A. Torchinsky [27]. 

The generalization of results from [27] for anisotropic fractional maximal functions and Riesz 

potentials can be found in [28], [29]. 
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Now we discuss the weight problem for the fractional maximal function. 

Myf(x) = sup I Q I 1 " ^ / | /(y)| dy, 0 < 7 < n . 
QBx J 

Q 

THEOREM 2.8 [31]. Let 1 < s <fp <q<oo. Then the inequality 

l l M ^ l l ^ o o < Cl\\f\\LPS 

is valid for some positive c independent of f if and only if 

(VB^WXB^W-'W v < c2 \Bf-«~ 
-L'u> 

for C2 independent of B. * , • 

THEOREM 2.9 [311. Let 1 < p < - , - = - - - , 1 < s < co. Then the following estimates are 
7 q p 7 

equivalent: 

i) There is a constant c > 0 such that for each / 6 XJf, 

l l^(/^ / n) l l lJf < cill/lli^ • 

ii) There exists a constant C2 > 0 such that 

l|r-(/«-7/")llif. < -211/11^.. 

iii) w £ A , where s = 1 + — . 
F 

The case of the Hardy-Littlewood maximal function was discussed earlier by 

H. M. Chung, R. Hunt, D. Kurtz [32]. 

Now we return to the Riesz transforms and present a complete description of the class of 

functions w for which the Riesz transforms map Llog+L(w) into L^ or weak L1. These problems 

for maximal functions were solved earlier by A. (jarbery, S.-Y. A. Chang, J. Garnett [33]. For 

the Riesz transforms we have 

THEOREM 2.10 [34]. The following statements are equivalent: 

i) There exists a constant c\ > 0 such that for any measurable function f supported in 

a cube Q we have the inequality 

[ \Rjf(x)\w(x)dx < cA I w(x)dx + J \f(x)\\og+\f(x)\w(x)dx 

Q \Q Q 

where c\ is independent of Q and / . 
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ii) There exist constants e > 0 and C2 > 0 such that for any cube Q and measurable subset 

THEOREM 2.11 [34], Let 0 < a < oo. Then the following conditions are equivalent: 

i) There exists a constant c$ > 0 such that for any A > 0 and any mezsizable function f we 

have the estimate 

w{xeRn: \Rjf(x)\>\} < c 3 J l - ^ ( l + \og+1-^^ w(x)dx (j = 1,2,... , n ) . 

Rn 

ii) There exists a constant c4 > 0 such that for any A > 0 and any measurable function f we 

have 

w{x € Rn : Mf(x) > A} < c4 / - ^ - -1 ( l + log+ \J^A\ w(x) dx . 

Rn 

Hi) There exists a constant e > 0 such that 

Q \ Q 

sapW\Jexp[£m^)Jw(y)dy] dx<°°-

1/а 

where the supremum is taken over all cubes Q. 

Now we consider the strong maximal function 

Msf(x) = sup — / |/(y)|dy, 
x£J |J | J 

where the supremum is taken over all rectangles with faces which are parallel to coordinate 

axes and contain the point x. 

A collection of rectangles {Rj} is said to satisfy the weak overlapping condition, if 

i - i 
RÍ\\JRÍ > \m 

for each j = 1,2,... . 

The following theorem provides a full description of the class of weight functions w for which 

the weak type weighted inequality for the strong maximal function is true. 
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THEOREM 2.12 [35]. The weighted inequality 

w{x € Rn : MJ(x) >\}<c j i - M Aog+ i - ^ ) * «,(*) dx 

holds if and only if there exists a positive constants £ and c\ such that for every collection {Rj} 

of rectangles satisfying the weak overlapping condition the inequality 

J eAe^W&XRiix)} "'w(x)dx - cw(u*-) 
i 

is fulfilled. 

In the paper [16] it was shown that if w € Ai defined by rectangles, then the above weak 

type inequality holds, but there are examples of weight functions w which satisfy the above 

condition, but do not belong to A\. 

3. Maximal functions and potential type integrals in spaces of the homogeneous 

type 

Let (X, p, p) be the space of the homogeneous type, i.e. the space with a measure p. and 

equipped with a quasimetric p; the latter being a mapping p : X x X —* R+ such that 

1) p(x, y) = p(y, x) for every x, y € X; 

2) p(x, y) = 0 if and only if x = y; 

3) p(x,y) < rj(p(x,z) + p(z,y)) for every x,y,z£X 

where the constant r\ > 0 is independent of x, y, and z. 

We shall assume that all balls B(x, r) = { y 6 X : p(x, y) < r } are p-measurable and that 

there is a constant c > 0 such that for every x € X and r > 0, 

0 < p.B(x,2r) < cp,B(x,r) < oo. 

For a locally integrable function / on X we define the following maximal function 

Myf(x, t) = sup(pB)7-1 / \f(y)\ dp, 0 < 7 < 1, t> 0, 

B 

where the supremum is taken over all balls B containing the point x and with radius greater 

than t/2. 

In what follows we also consider integrals of the potential type 

адм) и ^ І ł Г ' 0 < 7 < 1 , t > 0 . 
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The functions M7 and T7 generalize the Hardy-Littlewood maximal function and the Riesz 

potential. 

Let B denote the cylinder B x [0,2r), and let w be a weight function on X, i.e. w is locally 

integrable on X and positive almost everywhere in the /i-measure sense. Further, /3 will be a 

measure defined on the product of <7-algebras generated by balls from X and intervals from 

[0,oo). 

We shall discuss the problem of a full description of pairs (w,fi) for which weighted Lorentz-

norm weak type inequalities and Lebesgue^norm strong type inequalities hold for operators 

M7 and T7. Results about these operators in the Morrey spaces will be given, too. Below, 

we denote by Lp[X,wdp.) the Lebesgue space and by Lpa(X,dp) the weighted Lorentz space 

defined for /^-measurable functions acting from X into R1. 

THEOREM 3.1 [41). L e t l < . s < p < $ < o o , 0 < 7 < 1, Then the following statements are 

equivalent: 

i) There is a constant c\ > 0 such that for any function f from Lpa(X, wdp,) and r > 0, 

,9 {(«,«) 6 JTx [0,oo): Myf(x,t)>r) < c n - l / I I J ^ j f ^ ) 

ii) There is a constant ci > 0 such that for any ball B from X, 

{m^\\xB^\\LPW{Xdti) < C2(MB)>->. 

Note that Theorem 3.1 was established in [38] for the case p — 1. 

Now we consider the two-weight weak type problem for the operator T7. 

THEOREM 3.2 [41]. Let l < _ . s < p < # < o o . Then the following two conditions are equivalent: 

i) There is a positive constant c such that for any f € Lpa(X, wdp,) the inequality 

0{(x,t)eXx[O,oo): | r , / ( x , . ) | > r } < c r " < l l / l l ^ . ^ ^ 

holds. 

ii) sup p (§(a, N(2r + *))) ' ' \\xR^\B(a,r)W~H^(a, &(a,.) ^ l))9-1^^^^^^ < Cl , 

with a positive constant C\ is independent ofa&X,r>0 and t > 0, N = 77 + 4rf. 

This theorem was proved earlier in [43] in the case when dp = ivdfj, ® d0 where 6Q is Dirac 

measure supported at the origin and p -= *. In the paper [42] there was obtained the solution 

to the one weight problem for the operator T7/(:c,0) =- T7/(.c). 
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THEOREM 3.3 [43]. Let 1 < p < -, - = 7. Then the necessary and sufficient condition 
7 q p 

for the validity of the inequality 

V/a ft xl/p 

J ]T^(fw'')(x)\
qw(x)d^ < cU ]f(x)\»w(x)d» 

with some positive constant c independent of f is 

s-l 

< 00 , snp(±jw{x)dĄ(±Jw-m.-lчx)dĄ 
q 

where $ — 1 -J—- and the supremum is taken over all balls in X. 
p' 

The next theorem gives us the necessary and sufficient condition for the validity of two weight 

strong inequality for the operator My. 

THEOREM 3.4 [44]. Let l<p<q< 00, 0<^f<l and let the measure j3 - w~xf^p~^dp, 

satisfy the doubling condition, i.e. 

J W-1^P~l)(x)dfX < C I W~lf^-l\x)dlJL 

B(a,2r) B(a^) 

for every ball B(a, r). Then the following conditions are equivalent: 

i) The inequality 

ll* i v l/p 

\f(x)\pw(x)d^\ J (Myf(x,tj)
q dA < cif/l 

\Xx[0,oo) / \X 

holds for every function f ~ Lp(X,dfi) with a constant ci independent of f. 

ii) There exists a constant C2 such that 

I J (M1(XBW-1/(p-1))(x,t))''dp\ < ci(jw-1'^-1\x)dA . 

Considering the case w ~\ 1 in Theorem 3.4 we have 

THEOREM 3.5 [42]. I f l < p < < j < c o and 0 < 7 < 1, then the following statements are 

equivalent: 

i) The inequality 

J (M7/(Z, *))'<./? < cAj\f(x)\»dA 
\Xx[0,oo) ) \x / 



holds for every function f G LP(X, dp). 

ii) The inequality 

J |T7/(x,ť)|«rf/J < cJj\f(x)\"dA 
fO.oo) I XX / 

I/P 

\Xx[0,oo) 

holds for any function f £ Lp(X,dfi). 

Hi) It is 

f3B < c3 (pB) ? ( 1 / p-7 ) 

for every ball B from X. 

The constants c\, c2, c3 are independent off and B. 

The equivalence of ii) and iii) in the case d/3 = wdfi <g> So has been proved earlier in [45]. 

Let us mention several other results. In [46] the necessary and sufficient condition on the 

weight function was found which ensures continuity of the fractional maximal function with 

respect to the basis of the convex comparable sets in the weighted Lebesgue spaces. Under an 

additional condition on this basis a complete description of pairs of weight functions is given 

such that the fractional maximal function is continuous from one weighted Lebesgue space to 

the other. 

FurtMr, in [43] the Koosis problems were solved for the fractional maximal functions and 

fractional integrals defined on the homogeneous type spaces. In [47] there was obtained 

a complete description of pairs (v, w) of weights for which the potential operator in the space of 

the homogeneous type for a critical index acts continuously from the weighted Lebesgue space 

Lp
w into the space BMOv — the weighted space of functions with bounded mean oscillation. 

In this case the Koosis type problem have been also solved. 
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