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The weak Dirichlet and Neumann proЫem for the Lap lac i an in L<* 

for bounded and exterior domains. Applications. 

Christian G. Simader 

The purpose of these lectures is to present a rather elementary and selfcon-

tained approach to the weak first and second boundary value problem for the 

Laplacian in L<i where 1 < q < «. These proЫems are basic for a lot of 

applications in mathematical physics, like as e.g. Stokes' proЫem. From the 

viewpoiht of applications it is necessary to consider as well bounded as 

exterior domains. Our approach rests on two variational inequalities in L<* and 

a type of regularity argument. The results presented here are part of a joint 

work with H. Sohr (Paderborn/FRG) [ 9 ]. 

1#
 Notations. Throughout this paper G c. R

n
 (n >. 2) denotes a domain, i.e. G is 

open and connected. G is called an exterior domain if G is a domain and if 

there exists a bounded open set 0 t K c R
n
 such that G = R

n
\K. Without loss of 

generality we may assume 0 e K. If 6 c R
n
 is a domain we write «9G e C1

 if the 

boundary is of class C
1
. If A,B are subsets of R

n
 we write A cc B if A and B 

are open, A is compact and A c B. For x e Rn
 and r > 0 by B

r
(x) we denote the 

open ball with radius r centered a x . If x » 0 we use the abbreviation 

B
r
 :• B

r
(0). If M c R

n
 is a Lebesgue measurable subset of R

n
 by |M| we denote 

its Lebesgue measure. Let 1 < q < » and let q' be defined by - + -,-. l, that 
q q 

is q' « -*-. Observe (q')' - q. For a domain G c R
n
 by L<*(G) we denote the 

usual (real) Lebesgue space equipped with norm ||u|| q
(G)
 :- |u|| :• 

(J|u(x)|<'dx)-
/
<i. For f e L<*(G) and g e L<»'(G) we write 

6
 r 

<f,g> :- Jf(x)g(x)dx. If f € (L<i(G))n, g e(L<*'(G))n are vector fields we use 
6 

n 

the same notation <f,g> := 2<f1,gi>. Beside the usual space 

Lqoc(G) :- {f : 6 -> R : f measurable in G and f |K € L<*(K) for each K cc G) 

we use the convenient abbreviation 

Lqoc(6) := (f: G -> R : f measurable in G and f| € L^GnBj,) for each R > 0). 

We write in the sequel GR:= G n B - . Observe that for G bounded lq (£)= L<*(G). 
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So the notation Lq (G) is interesting only in connection with unbounded 
** no oo 

domains. In the same sense we use the notation C (6) :- {<0|? : 0 € C (iRn)}. 
oo to d 

Observe again for G bounded that C Q ( 6 ) - C (fi). For i » l,..,n by dx :* -̂ -

we denote the partial derivates, V :- Vn :« (di,..,dn) denotes the gradient 

and A :» An :« d\ + .. + d* the Laplacian. If X is a Banach space by X* we 
denote the dual space equipped with norm 

i x * i i x * : * $up ^f^- for x*€ x*# 

0*x€X "Xix 

*• Sobolev spaces. For 1 <, q < • and a domain G c Rn by H1»<-(G) :* (p e L«(G): 

dtp e L«(G), i - l , . . ,n} we denote the usual Sobolev space equipped with norm 

.ML* :- (IIPIS + \W\Z)1/q where ||Vp||q :- ( S |*tp|3)"<i. Observe that this 
1x1 

norm is equivalent to the norm (J IVpfx^dx)1** where |Vp| -- ( I ^ p ) 2 ) 1 7 2 . 
G 

Here dxp denotes the weak (*- distributional) derivative of p. For the well 
known properties of these spaces we refer e.g. to Ne as [ 6 ] or Kufner, John, 

Fu ik [ 5 ] . As usual H1,q(G) :« C*(G)"' * ' \ Considering for G bounded the 
space H1,q(G), because of the elementary Poincar6-inequality 

(2.1) ||p|q <C(G) ||Vp||q for peC*(G) 

a norm being equivalent to ||p||ltq is defined by ||Vp||q. I f G is a bounded 

domain say with boundary BQ e C1 (or i f G is convex, see e.g. [ 4 ] ) then the 
general Poincar6-inequality 

(2.2) ||p||q < C(G)||Vp||q for p 6 H1,q(G) with Jpdy » 0 
6 

holds true. Considering the quotient space H1,q(G)/iR (identifying elements 

whose difference is constant) then again by ||Vp|q an equivalent norm on 

H1,q(G)/lR is defined. This procedure is no longer possible for G unbounded. 

But from the viewpoint of applications we have to use Sobolev spaces equipped 

with the (order homogeneous) norm ||Vp|q. For this purpose we define for a 

domain G c LRn with boundary «9G e C1 and for 1 ̂  q < » 

(2.3) E«(G) :* (Vp : p € Lq
Qc(6), Vp e L<(G)*}. 

This space is equipped with norm ||Vp||q. Observe that for G bounded we have 
Eq(G) * (Vp : p € H1,q(G)}. For technical reasons we need the following lemma 
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(compare [ 8 ], Lemma 2.2) admitting an elementary proof using solely the 

Poincar^-inequality (2.2) for balls: 

Lemma 2 . 1 . Let n ^ 2 and let G c Rn be a domain. Let 1 < q < «> and let a 
sequence (pj c H1,q(G) be given such that (VpJ is a Cauchy sequence in 

Lq (G)n. Then there exists a sequence (ct) c R and some p € H
1,q(G) such that 

(pj-Ci) converges in H1,q(G) to p. The sequence (q) may be chosen 

independently of q. 

Using this lemma and the fact that for dG e C1 we may conclude from 
p € L! Q C(G) with Vp € L«(G) that p e Lqoc(G) (see e.g. Necas [ 6 ], p. 114), 
it is not too hard to see that E<*(G) is complete. Since E^G) for 1 < q < » 
may be regarded as a closed subspace of the reflexive space L<*(G)n it is 
reflexive too. So we end with 

Theorem 2.2. Let G c Rn be a domain with boundary dG e C1 and let 1 < q < «. 
Then E*-(G) is a reflexive Banach space. For q « 2 E2(G) is a Hilbert space 

with inner product <Vp,V0> for Vp,V0 e E2(G). 

Next we study approximation properties. If G is bounded with *9G e C1 from the 

fact E<*(G) = {Vp : p e H1,q(G)} and the classical density result for Sobolev 

spaces H1,q(G) = ^(6) ' (compare e.g. Ne as [ 6 ], p. 67) we immediately 

derive 

Theorem 2.3. Let G c Rn be a bounded domain with boundary dG € C1 and let 
1 < q < «. Then 

rs^т M« (2.4) E»(6) = {Vp : p є C
Ю
(S)} " * 

For exterioг domains we get 

Theorem 2.4. Let G c R
n
 be an exterior domain with boundary dG e C

1
 and let 

1 < q < oo. Then 

(2.5) E<(G) - {Vp : p e C ^ ) ) " '
1
' 

P^oof- i) For k € LN let Rk := {x € Rn : k < |x| < 2k}. Then there is k,, € N 
such that Rk cc G for k > k0. For k = 1, Rt is a C1-domain and the Poincare-
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inequality (2.2) holds for q with 1 < q < « and for Rt with a certain constant 

Ct - Ct(q) > 0. If k € IN and u e H1,q(Rk) with Judy - 0 then with 
R-

p(x) :-- u(kx) for x € Rv we have p € H
 q(R r). Further 

J p(x)dx - k- J u(y)dy - 0, ||p|| * \c*"*\u\ , 
Rx Rk

 H' J ' k 

|Vp|| R - k1~n/'<-||Vu|| . From (2 .2) va l id for p and Rx we derive 

(2 .6) |u|L R < k-Cj ||Vu|| for u € Hl'q(Rk) with J u dy - 0 . 

i i ) Choose p e C^R11), 0 <. p * 1 with p(x) « 1 for Ixl <. 1 and p(x) - 0 for 
| x | ;> 2 . For k e IN put pk(x) :- p(k-*x). Then supp Vpk c Rk and |Vp k (x) | <. 
Mk"1 where M - max |Vp(z ) | . Take now some p : G -> (R such that Vp e E<*(G). For 

zdRn 

k ^ ko put hk(x) := p k (x ) (p(x) -c k ) where ck :- IRnl"1 J pdy. By the properties 
R k 

of p and pk we see hk | € H q(G2R) where G2R :-- G n B2R. 
Further Vhk -- pkVp + Vpk(p-ck) . Clearly ||Vp-pkVp||q -> 0. Since supp Vpk c Rk we 

derive from (2 .6) 

»Vpk(p-ck)||q 6 < M-k^||p-ck||qRk < M.CJN^ Rk -> 0 

for k -» ®. Therefore |Vp-Vhk||q>G -> 0. Since 

PL € H1,q(G2k) - Cw(^2k) ' 1,q there exists 0k e C * ^ ) such that 

IVP-V^II , ,^ * ||p - i A ^ < i n . 

Put pk :- M ^ - d * ) where dk :- |Rk|-i / ^dy-
Rk 

Then pk e C*{&) is vanishing outside G2k and again by (2.6) 

||Vhk-Vpk||, < |W(Vp-V^)||q6ak + M.k-i||(p-ck)-(^-dk)||q Rj[ 

- l̂ -̂ t̂  + M C ' l V P- V ^lq.R k - < 1 + M C l ) ^ 

Altogether we get ||Vp-Vpk||qiG -> 0. • 

As an interes t ing corol lary we derive 

Corollary 2 . 5 . Let G c Rn be an exter ior domain with boundary dG e C1 and l e t 
1 < q < » . 
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Then II I. 
(2.7) E«(G) - (Vp : p € H M(G)} 

Proof. Clearly {Vp : p € C"(6)} c (Vp : p € H1,q(G)} c E^(G) and (2.7) follows 

from (2.5). • 

As we will see later for exterior domains we have {Vp : p e H1,q(G)} £ E<*(G). 

In connection with the Dirichlet problem with homogeneous boundary data we 

consider for 1 < q < » and G c Rn an open set the spaces 

(2.8) Eq(G) :» W : 0 € C*(G)} ' ' 

Clearly Eq(G) c Ei(G). If G is bounded we immediately see by means of (2.1) 

that Eq(G) * {Vp : p € H1,q(G)}. This representation no longer holds for 

exterior domains. A useful partial substitute for (2.1) is given by 

Theorem 2.6. Let G c R n be an exterior domain, G * Rn\K where # t K cc Rn. 
Suppose 0 € K. Let 1 < q < <©. Then there is a constant C « C(q,G,n) > 0 such 
that for each R > 0 with K cc BR 

(2.9) |p| . <; Z W 1/q'|Vp|q,c 

holds for p € C*(G), where q' - -2-. 
r ox ' q-l 

Proof. Since 0 e K and K is open there is 6 > 0 such that Br cc K. Let 
p € C ^ G ) . Then p vanishes in a neighborhood of B^. Let 

S :- {f € Rn : |f| - 1} denote the unit sphere. For 0 t x € Rn write 
X 

FT 
P(x) - P(rf) - p(rf)-p(0) - ) 2 {fljPMtOfidt 

o 1-1 

and by Holder's inequality 

|p(rf)|« < nr* ) |Vp(tf)|«dt 
o 

Since p vanishes in B* we get after integrating with respect to f e S for 
0 < 6 < r < R 
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J|p(rrt|«d»f < R^
1 } ? £ J|Vp(tf)|«ktofdt < P-R^ 1 |Vp|J^ 

Multiplying by rn_1 and integrating with respect to r e [0,R] yields (2.9). • 

As an immediate consequence we get 

Theorem 2.7. Let G c Rn be an exterior domain and let 1 < q < «. Then 

(2.10) Eq(G).- {Vp € E«(G): there exists a sequence (pj c C*(G) 

such that [Vp-Vpjq -> 0 and | p - p j -> 0 for each R > 0} 

Proof, i ) If Vp € Eq(G) then by (2.8) there i s a sequence ( p j c C*(G) such 
that IVPi-Vpjflq -> 0. By (2.9) (p4) i s a Cauchy sequence in Gk for each f ixed 
k € IN. Denote the L<*(Gk)-limit of ( p j by p ( k ) . Then after eventually changing 
p<k+i) on a subset Nk c Gk of measure zero we may assume P ( k + 1 )L * P<k)* So 
we | e t a measurable p : G -> iR such that p| € Lq(GR) for R > 0 and for 
0 € C (G) we conclude 

<p,dj0> * lim<Pi,3j0> * - lim<3jpl,0> 
i->« i-X» 

telling us that the distributional gradient of p is given by the L^-limit of 

the sequence (Vp^. That is Vp € E<*(G) and the above approximation property 

holds. 

ii) If conversely Vp belongs to the set at the right hand side of (2.10), by 

(2.8) we see Vp € Eq(G). • 

By the Sobolev embedding theorem ([ 6 ], p.69, [ 5 ], p.282) we see that for 

any domain G c Rn (bounded or unbounded) and 1 < q < n holds 

(2.H) Vp € Eq(G) -> p € L<**(G) where q* » --- . 
o n-q 

To $tudy conversely the case q > n we first consider the Morrey-estimate 
(compare e.g. [ 1 ], p.242): Let G c LRn be an open set and 0 < a < 1 and let 
p € C*(G) with the property that there is a constant M > 0 such that 

(2.12) J |Vp|dx < Mrn"1+a 

snBr(x0) 

holds for all x0 € G and r > 0. Then there is a constant C * C(n,<*) > 0 
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independent of p such that for x.,x2 6 G 

(2.13) |p(x1)-p(x2)| * C M |xrx2|
a. 

For last estimate compare in addition e.g. [6], p. 73 or [5], p. 289. 
If now Vp € Eq(G) with q > n then 

I |Vp|dx < ||Vp|| , | B r ( x 0 ) r * ' < CjVpflq rn'«' 
GOBr(x0)

 q'* 1*' 

where Cx = C-(n,q) > 0. Since -, - n -- - n-1 + (1--) 
- - * ^' q q q 

(2.12) holds with 0 < a := 1 - - < 1. By definition there is a sequence 

(Pi) c C*(G) such that ||Vp-VpJq -> 0. By (2.9) ||p-pj -» 0 for each k e IN. 

So we may select a subsequence again denoted by (pj such that Pj -> p a.e. in 

G. With M := C-. sup flVpJq < » ( 2 A 3 ) holds for the Pj and at the end for p 

and almost all x^x^ e G. After changing p on a set of measure zero (2.13) 
holds for all x € G. So p is Holder-continuous with Holder exponent a = 1 --. 

Suppose now that G c (Rn is an exterior domain, G = Rn\K where 0 e K cc Rn. 

Given Vp € Eq(G) we may extend p by zero to the whole Rn leading to 

Vp e E*-(Rn). (2.13) holds for this extension too and because of p(0) = 0 

we get 

(2.14) |p(x)| < CM Ixl1-"^. 

By no means p need to vanish near x = «, neither pointwise nor in any Ls-mean. 

Conversely let <p € C°°(iRn), 0 ̂  <p < 1, (p(x) = 0 for |x| < (R and ip(x) = 1 for 
|x| > 2R where R > 0 is such that K c BR. Let q > n and 0 < A < 1 -- and put 

p(x) := ̂ >(x)|x| . Then p vanishes in a neighborhood of 3G. Let p e C°°(iRn), 
0 < p < 1, p(x) = 1 for |x| < 1, p(x) = 0 for |x| > 2 and for k e IN let 
pk(x) := ̂ (k^x) and put pk := pk p . Then pk e C*(Rn). 

Since |Vp(x)| < c|x|A_1 for |x| > 2R we see |Vp| € L^(G) for q > n and 

l|Vp(l-Pk)||q -> 0(k -> ca). Since |V/)k(x)J < -A- for k < |x| < 2k we 
see ||p-Vpk||q -» 0 and therefore ||Vp-Vpk||q -> 0, that is p e E

q(G). 

3. Some auxiliary tools. First we need some facts on harmonic functions. If 

G c Rn is an open set and u e C ^ G ) , Au = 0, then we have the two mean value 

properties: If x e G, R > 0 such that BR(x) cc G, then 
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(3.1) u(x) - -j- Ju(x+rf)dwf for 0 < r < LR where S = {f e Rn : |f| - 1) and 

(3.2) u(x) ,- | M x ) | " 1 J u(y)dy for 0 < r < R 
Br(x) 

We consider Friedrichs' mollifier with a r a d i a l depending kernel: 

i € C > n ) , j(z) - j(|z|), 0 < j(z), j(z) - 0 for |z| ;> 1 and J! j(z)dz - 1 

(with suitable c ;> 0 choose e.g. j(z) :• c exp[(l-|z|2)""1L- for |z| < 1 and 

j(z) -» 0 for |z| ;> 1). For e > 0 put j£(z) :=- £-
nj(|) and for f € L^G) put 

(3.3) f£(x) := J* j£(x-y) f(y)dy - (j£* f)(x). 

As is well known (see e.g. [ 6 ], p.58 or [ 5 ],p.72) 

f£ € c"(R») and ||f-f€||Li(G) -> 0 

Suppose now that u is harmonic in G and let x € G,c0 > 0 such that B (x) cc G. 

Then introducing polar coordinates y • x+rf, f € S, we get for 0 < e <. e0 

u€(x) = J j£(x-y)u(y)dy - Jr1*-1 j£(r) Ju(x+rr)dw dr 
o S 

By (3.1) Ju(x+rf)d<»c - wnu(x) and 

J ^"'^^(rjdrwn - J* j (z)dz - 1. Therefore 

(3.4) u (x) - u(x) for harmonic u, B (x) cc G. 

Last observation admits a rather simple proof of 

Theorem 3.1 (WeyVs lemma). Let G c LRn be open and u e L 1
1 O C(

G) sucn tn*t 

(3.5) J u(x)A0(x)dx = 0 for 0 € C<0(G) 
6 ° 

Then u coincides a. e. in G with a harmonic C^-function. 

Proof. Because there exists a sequence (Gk) with Gk cc G, Gk cc Gk+1, 

G - U Gk it suffices to proof the theorem for any G'cc G. Choose a set G" 
k-l 

such that G'cc G" cc G. Let e0 := J min(dist(G',3G"), dist(G",c9G)) > 0. Then 
for y € G" and 0 < e < e0 with 0(x) := j (y-x) we see 0 e C^G) and therefore 
by (3.5) 
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0 * Ju(x)AxJ€(x-y)dx - Ju(x)AyJ€(x-y)dx - Au£(y). 

Therefore u is harmonic in 6". Let 0 < 6 £ eQ and x € G'. Then by (3.4) 

u c W = U€<5 W " u66 ( x ) " u 6 ( x ) 

since the convolutions commute. But then for x € G' u (x) does not depend on 
€. Since u e LX(G') and |u-u J i . /. -> 0 we conclude u - u€ a.e. in G', 

proving the theorem since u € C^G') and Au - 0. • 

An easy consequence is now 

Theorem 3.2. Let 1 < q < «. Then 

II -II, (3.6) L<*(Rn) -« (A0 : 0 e C"(Rn)} " * 

Proof. Denote by Mq the right hand side of (3.6) and suppose Mq c Lq(Rn). By 

the Hahn-Banach theorem there exists F* € Lq(Rn)* with ||F*||* > 0 and 

F*| - 0. Since Lq(Rn)* « Lq'(Rn) isometrically isomorphic (q'-- i ) 

there is f € Lq'(Rn), ||f|q, » |F|* > 0 such that F(g) -- <f,g> for g^s L
q(Rn). 

Since Fl - 0 we conclude <f,A0> - 0 for 0 € C*(Rn). By Theorem 3.1 f is 
'Mq 0 

harmonic (eventually after change on a set of measure zero) and for x € Rn and 

arbitrary r > 0 by (3.2) 

|f(x)| < |Bp(x)|-* J |f(y)|dy< | B r ( x ) V ^ | f | L R n - > 0 
Br(x)

 q 'n 

for r -> ». Therefore f s 0 contradicting |f|| , > 0. • 

With the fundamental solution 

S(z) := wm; izi2"n for n ž 3 

-H ln|z|. for n - 2 

we have for u e C (Rn) the representation 

(3.7) u(x) - - J S(x-y)Au(y)dy 

"This formula is basic to derive L**-estimates for second derivatives of u via 

188 



Theorem 3.3 (Calderon-Zygmund estimate). Let n ;> 2, 
Sn :* (z € R

n : |z| - 1} and let K : Sn -> R be a continuous function with the 

property J K(z)dwz - 0. Let 1 < q < », f e Lq(Rn) and define for € > 0 

(T f)(x) :« [ W\ f(y)dy 

{y € LRn : |y-X| .> £} 

Then Tf := Tim T f exists in Lq(LRn) and there is a constant C - C(n,q,K) > 0 
£->0 

such that 

(3.8) ||Tf||q < C|f|q. 

For a proof see e.g. [ 1 ], p.277, [ 10 ], p.39 

Theorem 3.4. Let 1 < q < «. Then there exists a constant C • C(n,q) > 0 such 
that for u e C*(tRn) 

(3.9) ( 2 | ^ k u | | q ) 1 / q < C||Au||q 
j , k - l q 

Proof. By partial integration we derive from (3.7) 

dju(x) «- - J S(x-y) A3jU(y)dy and therefore 

M j u ( x ) - - J tf S(x-y) 3jAu(y)dy --
xk 

lim J d S(x-y) 3jAu(y)dy 

To {y:|y-t>0 
£->0 
£>0 

Let £ > 0 be fixed. Integrating by parts leads to 

*€<*> :ss "J axk
S<x -*) V u ( y , d | y ' jr ax S(x"y) f j-£f A u M d w

y 
{y: |y-x|>£} {y : |y -x | -€} 

+ J ^Xk^yJ$(x-y) Au(y)dy --: D£(x) + T£(x) 

{ y = | y - x | > € } 

i yk"xk 
For n ;> 2 and x * y we have d $U-y) * ~ i—r-» 

xk « " « n | y - x | n 

and therefore writing y - x + ef, f € Sn, 
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M x > * 5" / Wj(Au)(x+£r)dwr 

Since u € C°°(iRn), D has compact support too and is bounded. Since 

lim D£(x) * =--— 5jk we conclude by Lebesgue's theorem 

(3.10) ||Au.-^- D£||q->0. 

Further 3 ^ 3 y j S(x-y) - _ [------ n |y,x|,v, J 

Writing K(z) :=- ~ (6J k - nZjZk) for z e Sn we get 

Te(x) - / - p j s Au(y)dy 

{ydRn:|y-x|>6} 

I f k -- j , then can / K(z)dw2 - /dw2 - n / Zj2dw2 -- 0 
Sn Sn Sn 

I f k f j , then &>n / K(z)dw2 = -n / ZjZkdw2 = 0 
Sn Sn 

By Theorem 3.3 we then derive the existence of the L<*-limit T of T and 

by (3.8) ||T||q < C||Au||q. Combining this with (3.10) we are finished. • 

4. Main Theorems. A consequence of the following theorems is the weak 

solvability of the Dirichlet and of the Neumann problem in L* for the 
Laplacian under the assumptions given there. 

Theorem 4.1 ("Neumann problem") . Let n > 2 and let G c Rn be either a bounded 
or an exterior domain with boundary dG e C1 and let 1 < q < «, q': = J L Then: 

q - l 

a) There ex ists a constant C - C(G,q) > 0 such that 

(4.1) ||Vp||q < C sup 1<VP ,V^>{ for a l l Vp € E<*(G) 

0#VtfeE«'(G) " V ^ l q ' 

b) For F* € (E«'(G))», M ^ , , . :« sup 1 I ~ j i 

O#V0€E«'(G) « V ™ ' 

there exists a unique Vp e E<*(G) such that 
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(4.2) F*(V0) = <Vp,Vtf> for all V0 e E«'(G) 

and 

(4.3) |Vp|q < C |F* | ( E q , , . < C ||Vp||q 

with the same constant C > 0 as in (4.1). 

Theorem 4.2 ("Dirichlet problem"). Let n > 2 and G c Rn be either bounded or 
an exterior domain and assume dG e C1. 

a) If G is bounded, let 1 < q < ». 
If G is an exterior domain and if n >. 3 let 1 < q < n and if n = 2 let 
1 < q < 2 . Then there exists a constant C = C(G,q) > 0 such liiat 

(4.4) HVPIU < C sup l<fJfeL 
O*V0€E<^(G) " V 0 » q ' 

holds for all Vp e Eq(G). 

b) I f G is bounded, let 1 < q < «. 

I f G is an exterior domain and i f n > 3, let - ~ < q < n and i f n = 2 let 

2. Then for F* € (Eq(G))*, q'= £ , [ r ^ . := sup J ^ 1 -
O^V0€Eq(G) llV0ilq' 

q -r "' "(E«'r 

there exists a unique Vp 6 Eq(G) such that 

(4.5) F*(V0) = <Vp,V0> for all V0 6 Eq(G) 

and 

(4.6) ||Vp||q < C\\?*\\{Eqff * C|Vp|q 
o 

with the constant C > 0 from (4.4). 

In case n = q = 2 for the exterior domain too a) and b) are trivially 
satisfied by the Frechet-Riesz theorem. If e.g. n > 3 and q > n in case of 
an exterior domain there is a one-dimensional exceptional space such that 
(4.4) don't hold. This case has to be treated separately and demands a more 
detailed analysis. 
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5. A priori estimates. Roughly spoken the proof of (4.1) resp. (4.4) is based 
on local estimates of the same type and at the end is performed by a 
partition of unity. The local estimates are derived from estimates in the 
whole space (interior estimates) and in the half-space (estimates up to the 
boundary). The case of the half-space is reduced in both cases to that of the 
whole space by means of reflection arguments. It turns out that the uniqueness 
results of Theorem 5.18 are decisive. These in turn are based on certain 
"regularity" properties, that is, e.g. under the assumptions of Theorem 4.1 we 
may conclude if Vp € Eq(G) for a q with 1 < q < «> and <Vp,V0> = 0 for all 
V0 € E<i'(G), then Vp e L2(G), analogously for the Dirichlet problem. For 
this reason we proof in Lemma 5.2 the estimates as well as the regularity 
property. The idea how part b) in Theorems 4.1 and 4.2 is derived from part a) 
by purely functional analytic considerations may be read off from Lemma 5.L 

In the following let G c Rn be a domain and 1 < s < ». For i = 0 we write 
ES(G) (compare 2.8) and for i = 1 let ES(G) := ES(G). 

We say that G has property P^s) for i - 0 or 1 

if there exists a constant Cs « C(s,G) > 0 such that 

(5.1.S.1) ||Vp||s<C sup < M > \ 
s s OWEE«'(G) ||V0||S, 

holds for all Vp e ES(G), w here s' = ~ j . 

We say that G has the property P.*(s) for i • 0 or 1 if 

the map a* : ES(G) -> (ES'(G))* defined by as : Vp -> <Vp,.> (that is 

(as(Vp))(V0) -- <Vp,V0> for Vp 6 E
S(G) and V0 e ES'(G)) is a bijection 

and there is a constant Z = C(S,G) > 0 such that for Vp € ES(G) 

(5.2.s.i) Cs ||Vp||s< K(Vp)| ( Es, ( 6 ) ) . < ||Vp||s 

Lemma 5.1 Let G c Rn be a domain, 1 < q < » and q':= -§j . For i = 0 or 1 

holds: G has the property P^s) for s = q and s - qr if and only if G has 
the property P^(s) for s = q and s = q'. 
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Proof. We abbreviate Es := ES(G). Observe (s')'= s. 

i) Suppose G has the property P^s) for s = q and s = q'. 

By (5.2.s.i) we conclude for Vp e Es 

(5.3.SA) C1 |NIS < sup . , ^ - M - ilo>)ll (ESM- * I N I S 

s s O*V0eEs ||V0||s, s it J s 

Therefore o*(£8) is a closed linear subspace of (Es )*. Suppose 

a^E8) £ (Es')*. By the Hahn-Banach theorem there exists F** e (Es')** such 
S 1 1 . 

that F** t 0 but F**| . = 0 . Since Es may be regarded as a closed 
•aT(Es) 

S X 1 

subspace of the reflexive space Ls (G)n, it is reflexive too and we may 

identify (Es )** with Es . Then there exists a unique V# € Es such that 
F** (F*) = F*(Vtf) for all F* e (Es')* and |ty| , - ||F**|| ', > 0. 

1 s (Es )** 

But for each Vp e Es we then have 0 = (a^(Vp))(V0) = <Vp,V0> and 

therefore by (5.1.s'.i) we conclude |V0|| , = 0 what is a contradiction. 
ii) Suppose conversely that P,!(s) holds for s = q and s = q'. Then because 

of a1 (Es') = (Es)* and (5.2.s'.i) 

IVp|| - sup E i M <_ sup |g:'W))(VP)l . r>, sup < M > 
s 0*F«e(E*)« IF-Ifr.,* 0*V*=E»' Ct,|V#| , * 0*V*e&; |v#| , 

i * , 

Therefore ( 5 . 1 . S A ) holds with C = C"). a 
* • s s 

In the terminology used above e.g. Theorem 4 A tells that if G is bounded or 

an exterior domain with dG € C1 then G has property P2(q) and P2(q) for all 

1 < q < ». Analogously we may understand Theorem 4.2. The proof of Theorems 

4.1 and 4.2 is given via a number of steps. In fact we will prove more than 

section 4 says. First we show that the whole space and the half-space have 

property P^q) for 1 < q < » and i = 0 and i = 1 (and by Lemma 5.1 they have 

property P^(q) too). Then we will prove by a perturbation argument that a 
sufficiently small "bended" half-space (the "smalness" depends on q) has still 
property P1(q) for i = 0 , 1. The following lemma constitutes the basis for 
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all subsequent estimates. Solely in the proof of Lemma 5.2 we need estimate 

(3.9), a consequence of the Calderon-Zygmund-Theorem. Conversely, Remark 5.3 

tells us that (3.9) is equivalent to the assertion of Lemma 5.2. According to 

(2.3) we have for 1 < s < » that Es(Rn) - {Vp : p € L*0C(lR
n)> Vp € Ls(Rn)}. 

Lemma 5.2. Let 1 < q < », 1 < r < « and suppose Vp € Er(Rn) and 

(5.4) sup I<VP>VV>1 < • . 
0*veC> n) ||Vvlq, 

Then Vp € Eq(Rn) and there is a constant C2 « Cx(n,q) > 0 such that 

(5.5) flVpl, S C sup MEf>i. 
0*V€C (Rn) Vv , 

o q 

Proof. For i - l , . . . , n we conclude with Cx :-- C(n,q' ) - * and C(n,q ' ) v ia 

Theorem 3.4 by means of (3.9) 

(5.6) » > sup l<VP'Vv>l >. sup l<VP>V3iu>l -
0*V€C>n) ||Vv||q, 0*U€C>n) ||VdlU||q, 

. sup !<aiP>Au>l * C sup 1 < 3 I P > A U > I . 

o*u€C°V) ||va1 u|| ,
 l o*u€C*(Rn) " " 

From this we conclude that the linear functional F*(f) :- <^p,f> for 

f € M :- Au : u e C*{ton) c Lq (Rn) is well defined and continuous. By 

Theorem 3.2 M is dense in L«»'(Rn) with respect to L^'-norm. Therefore this 

functional may be uniquely and norm-preserving extended to a continuous 

linear functional on the whole space Lq (Rn). Therefore there is a unique 

g € Lq(Rn) such that <3.p,Au> « <g,Au> for all u € C*(Rn). From Weyl's lemma 

(Theorem 3.1) follows that W :« dp - g is harmonic on Rn. For fixed x e Rn 

and R > 0 by (3.2) 

W(x) » |BR(x)|-
1( Jap(y)dy - J g(y)dy) 
BR(X) 1 B R(X) 

and by Holder's inequality 

A _i 
|W(x) | < | B R ( x ) f r ||d lP||r+ |B R (x ) | q ||g||q -> 0 (R -> «o). 

Therefore d p - g e Lq(Rn) and again by Theorem 3.4 
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(5.7) sup t<aiP>Au>l - sup , -< a iP» f > l -= l a p l L . 
1 j 0*ueC>n) |Aufq, 0*feLq (Rn) ||f||q, " ,P I<-

Combining (5.6) and (5.7) yields (5.5). 

I t remains to show p e Lq
oc(R

n). Since p € L^fR*1) c L*oc(R
n) and given any 

ball BR c Rn we see for the mollified functions 
cc :m l^l"1 JV y ) d y - * c : * l^l"1 J P M * ' - Pu t P£ :=s VV By <2-2> 

BR BR 

with a constant 7 - Y(R,q) > 0 

liV-UU s T |v (p e , - i5 e . ) | q i l l i i i 7| |Vp,, -VpeJq - 0. 

Since (c ) converges in R we conclude that (p ,) forms a Cauchy-sequence in 

L<*(BR) and has the limit px e L*(BR) c L ^ B R ) and therefore ||Pi-p|. !„,..- 0. 
L (BR) 

So p - Pl € L^(BR). • 

Remark 5.3: Suppose 1 < q < « and (5.5) holds for all p e C w(R n). Then (3.9) 

holds for all p e Ca(Rn) too: Let 1 * i s n. Then by (5.5) 

0^veCo(R
n) ||Vv|| , 0#v€Co(R

n) |Vv|| , 

immediately leading to (3.9). • 

An immediate consequence is the following density property. 

Corollary 5.4. Let 1 < q < «. Then EC0(Rn) :« (Vv : v 6 Cfl0(Rn)} is dense in 
E«(Rn) with respect to ||v.|q-norm. 

Proof. Suppose E*(Fn') is not dense in E q(R n). Then there exists 

F* € (Eq(Rn))* with F*| « 0, ||F*|| * > 0. By Theorem 5.2 we conclude that 
• E (Eq) 

Rn has property P*(s) for s - q and q'. Therefore by Lemma 5.1 there exists a 

unique Vu € E<*'(Rn) with ||Vu| , > 0 such that F*(Vp) * <Vu,Vp> for all 
Vp e Eq(Rn). But since F*(Vv) « 0 for Vv € EC0(Rn) by Lemma 5.2 we wduld 
conclude Vu « 0 contradicting ||Vu||q/ > 0. • 

Next we consider the half-space 

(5.8) H :- {x « (x',xn) e R
n : x'€ R0'1, xn < 0}. 

For 1 < q < «o and for i -« 0 let Eq(H) be defined by (2,8) and let 
Eq(H) :- Eq(H). 

Further we put 
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(5.10) 
E"(H) := {Vp : p € Ç(H)} 

E*(H) : = <Vp : p є C°(H)} = {Vpl : p є C > n
) } . 

Given Vp € Eq(H) (i = 0 or 1) we put 

* p(x) for x e H 
(5.11) p»(x) :--

[ (-l)^p(x\-xn) for xn > 0 
and for <f> € Cc0(iRn) we put for x E H and i = 0 or 1 

(5.12) (Tt#)(x) :- 0(x) + (-1)**- W-'.-xJ. 

Lemma 5.5. Let 1 < q < «. 

i) If Vp € Eq(H) then Vp1 e E«(Rn) and 

0 or 1 

(5.13) 

ð.pҶx) = ( ð j P W for x є H 
I- (-l) l ł , ajp(x',-xj for x„ 

ðpҶx) = ( (ðпPHx) f o ^ 6 

l (-l)Ҷðnp)(x',-xn 

for i = 0 or 1 
ž 0 and j - l , . . ,n - l 

i = 0 or 1 
J for xn >. 0 

i i ) For 0 € Z*(W) we have 

a) V(To0) € E*(H), (To0)(x\O) - 0 and therefore V(1J) e Eq(H) 

b) V(T^) € E?(H) 

i i i ) Let Vp 6 Eq(H) (i = 0 or 1). Then for <f> e C*(iRn) 

(5.14) <yp»>,V#>rRn - <Vp,V(T.0)>H (i - 0 or 1) 

(5.15) ||Vp|q H < ||Vp<»||qRn < 2*'«|Vp|qiH for Vp 6 Eq(H) (1 - 1 or 2) 

(5.16) \ЧlҖiИ < ?| 
"q.R' „i-o.i, и w 

Proof i) (5.13) and the integrability properties follow by elementary 

calculations. For Vp e E
q
(H) observe definition (2.8). 

ii) Let 0 :* T
o
0 then clearly 0(x\O) - 0. Let p e C*(IR), p(t) = 0 for 

|t| < 1, p(t) - 1 for |t| >_ 2, 0 < p < 1. For k e IN put p
k
(t) := p(kt). 

Define 0
k
(x) :- p

k
(x

n
)0(x). Then 0

k
 e C*(H). 

If for some R > 0 supp 0
k
 c Z

R
:=* (x e R

n
:|x'| < R,-R < x

n
^ 0}, because of 

|VKx\x
n
) - *(x\0)| < C(V0)|x

n
| we see |0(x) dnpk(xn)\ < const(V0) and since 
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if Bnpk is vanishing outside ZR n {x - (x',xn) e R
n : - [ < xn < - h we get 

ll#3iA.lq -> ° (k -> * ) • Therefore we immediately see Iv^-V^jq -> 0, therefore 
V0 e Eq(H). The remaining statements follow immediately by elementary 
calculations. • 

We need a further lemma seeming not to be obvious. 

Lemma 5.6. Let 1 < q,r < « , let Vp € Er(H) and suppose Vp € L^(H). Then 

V p e E q ( H ) . 

Proof, i) Let p e C^fi), p(x',0) * 0 for x'€ IR1*-1 and let Vp € L«-(H). For 
R > 0 define ZR ":• (x - (x',xn) e LR

n : -R < x„ < 0). Then for x € ZR we get 

p(x',xn) - - J (dnp)(x',t)dt. Applying Holder's inequality and integrating 

with respect to x e ZR we get 

(5.17) IPIL ZD < R|kp|l Z . 
q./.R q.--R 

Since (5.17) holds especially for p € Cfl0(H) we derive from the definition of 

Eq(H) that (5.17) is true for Vp € Eq(H) too. 
O 0 

ii) Let now p e C ^ H ) , p(x',0) * 0. Consider pk like as in part ii) of the 
proof of Lemma 5.5 and put pk(x) « Pk(xn)p(x). Then pk e C ^ H ) , d^ - / ^ p 
for i -- l,...,n-l and dnpk * pkdnp + p-0n/>k- Clearly |^iP-^iP|q,H + °-
Since \dnpk\ <. c k and vanishes outside Z t we get from (5.17) 

IVk-Pl,.H " KVP-,.^-1 * C'k-2k"1ianP»q.Z2k-l * ° ̂
 t h " * f ™ 

l^nPk^nPlq.H "> 0. 

For 0 < € < k"1 we have p^c e C ^ H ) , |Vp, -Vp, J- -> 0. 
rk€ ox ' " rk k,£"q 

Therefore Vp € Eq(H). 
i i i ) Let now p e V t f l ) , p(x',0) « 0, Vp e L<*(H). 

Let r? € C*(LRn), 0 < r\ < 1, r?(x) - 1 for |x| < 1, rj(x) - 0 for |x | > 2 and put 

nk(x) :* r^k^x) for k e M. By i i ) V(VP) € Eq(H). Clearly ||j7kVp-Vp||q H -> 0. 

Again by (5.17) because of |Vi7k(x)| < Ck'1 

(5-w> |p-v«iklq.„ - |pvnj q f 2 b k < ck-.akHvpll^^ , c||vp||q H; 
Therefore ||V(>?kp)||q < C for all k. Clearly Vp € E

q(H) D Eq(H). We show now 

V(i7kp)-> Vp weakly in E
q(H). Since Eq(H) is weakly closed too this implies then 

Vp € Eq(H). Let F* e Eq(H)*. We may Consider Eq(H) as a closed subspace of 
L<*(H)n and we may F* extend normpreserving to an F* e (Lq(H)n)*. Then there 

1s f - (flf..,fn) € L<*'(H) such that F*(g) - <f,g>H - 2 J f ^ for g € L«(H)n. 
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Then F*(Vp-V(>y>)) » J 2 Ml-rfcJ^p - J 2 f ^ p 
H H 

Clearly the first integral tends to zero. By the properties of r?k the second 

integral reduces to an integral taken over Rk n H - (x e H : k < |x| < 2k) 
and therefore by (5.18) Z\J M i V P l * ? I M q ^ - C | V p j q i H * °' 

iv) Let now Vp € Er(H) with Vp e L<*(H). By Lemma 5.5 the extended function 

satisfies Vp° € Er(Rn). Consider the mollified (p°)€ with radial depending 

mollifier kernel j . Since V(p°) - (Vp°) we see moreover V(p°) e L*J(Rn) and 

|Vp-V(p°)£||p.H - l|Vp°|„-V(po)6|H||q,H < |Vpo-V(po)£||qRn -> 0. 
Observe by the properties of the mollifier and (5.H) for i = 0 that 

V(p°)€(x\0)•- 0 for x'e R
n. By iii) we conclude V(p°)c|H e E

q(H) and 

therefore Vp e Eq(H) too. • 

Remark 5.7 The linear space 

Eq(H) :== (Vp : p e CM*.), p(x',0) = 0 for x'e IR"-1 and Vp e L«(H)} 

satisfies E*(H) c Eq(H) c Eq(H) and is therefore dense in Eq(H). 
0 V 0 o 

Lemma 5.8 Let 1 < q < », 1 < r < «. 

i ) Let Vp € Er(H) and 

do : . ° SUp 1<VP>W>I < . 
o . v e c > ) ||w|q, H 

Then Vp € Eq(H) and 

(5.19) ||Vp||q,H * C2 sup J i | E f > L 
0#veCo(H) |Vv|q, H 

Here C2 - 2C. with Ct by Lemma 5.2. 

i i ) Let Vp 6 Er(H) and 

d. :- sup l<VP'Vv>l < • 

o^c-(fl) | N q , H 
Then Vp e E<*(H) and 

(5-20) | | V p | | , , H ^ sup i < g f > i . 
0*V€Co(H) |Vv||q,H 

Proof. In both cases we have with p(1) ( i - 0 or 1) by (5.H)and by Lemma 5.5 

that Vp(1) e Ec'(lRn). For <j> e C^R") we have by (5.14) for i = 0 or 1 

<Vp(1>,V0>Rn = <?p,V(T,«>H 
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For i - 0 by Lemma 5.5 part i i ) we get ( T » ( x ' , 0 ) - 0 . Then with v :- To0 we 
have v e Cl(fl), v (x ' ,0 ) » 0. Like as in part i i ) of the proof of Lemma 5.6 
consider vk(x) :- / . v t x j v t x ) . Then vk € C*(H) and c learly vk£ e CQ(H) for 

1 < € < k"1. Since ||Vvk-Vvk£||r, -> 0 and ||Vvk-Vvke|| , -> 0 we see 

< V p , V v k e > ' H V v k J " ' "* <Vp»Vv >||Vvk||') since Vp € L r(G). Analogously 

(compare part i i ) of proof of Lemma 5.6) we see ||Vv-Vvk||r/ -> 0, ||Vv-Vvk||q/ -> 0 
and therefore <Vp,Vvk>||Vvk||"5 -> <Vp,Vv>|Vv||"}. From assumption i ) we therefore 
conclude 

l<V«>,V*>Rn | < |<Vp,V(To0)>| < d0||VT0*||q/ H < 2do||V0||qRn. 

For i - 1 analogously we get 

t<Vp<»,V0>Rn| s 2d.||V*||q,Rn 

By Lemma 5.2 we conclude Vp1 e Lq(Rn). 

Since Vp(i)|H »- Vp we see for i « 0 by Lemma 5.6 that Vp e E
q(H). For i - 1, 

from Vp e Er(H) and Vp € Lq(H) we conclude like at the end of the proof of 
Lemma 5.2 that Vp € Eq(H). Estimates (5.19) and (5.20) then are trivial. 
Observe that in (5.19) the sup may be taken for 0 + Vv € Eq (H) and in (5.20) 
for 0 f Vv e Eq'(H). • 

In the next step we consider a "bended" half-space. Let oi € C1(Rn"1) and 

x'€ R1*"1. We suppose that there is some R « R(«) > 0 such that w(x') - 0 for 

|x'| >. R. Then we define 

(5.21) H 0 :-- (x * (x',xn) € R
n : x'e R1*"1, xn < w(x')} 

We want now to extend the results of Lemma 5.8 to H,,. This will be done by a 
perturbation argument. For technical reasons we need a density result similar 
to Corollary 5.4. 

Lemma 5.9. Let 1 < q < » and let Q denote either H/t or a bounded domain or an 
^ la 

exterior domain G with boundary 0G e C1. Then E*(Q) :- (Vv : v e C80^)} is 
dense in Eq(Q). 

Sketch of proof. By well known techniques (see [5], [6]) given Vv € E<*(0) 
there exists Vv € E<*(Rn) such that Vv|fl - Vv and ||Vv||q < ||Vv|q. Apply now 
Corollary 5.4. • 
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Lemma 5.10. Let 1 < q < », 1 < r < ». Then there exists a constant 

K - K(q,r,n) > 0 with the following property. If ||Vw||o 

then 
i) a) there are constants C(s) * C(s,K,n) such that 

(5.22) ||Vp||sH S C ( s ) su8 , ^ 4 ^ 

w 
holds for Vp € E*(H0) and s - q,q',r,r' (here s'= -p--). 

sup |V«(x')| < K 
X'ðtn-1-

b) If Vp є EГ
(H V and D := sup l

<ү
P«

Vv
>l 

"
l
"' 0*vєC>

w
) ||W«

q
, 

ч'Л, 

then Vp € E^(H0) and (5.22) holds for s = q. 

ii) The assertions of i) hold true if ES(H ) is replaced by ES(H ) and 
C*(H0) is replaced by c"(IQ (s - °r,q). 

Proof: i) We define y : Rn -> !Rn by 

" yi(x) :- xi for i - l,...,n-l 
(5.23) 

. yn(x) :- xn - w(x') 

then y maps Rn one-to-one on Rn, y € C1(Rn). 
Further yl : H^ -> H is onto, y(x',w(x')) = (x',0) that is y(dH(/}) =- 3H. 

I ̂  
Further J[y(x)] = 1. The inverse map is given by x^y) := y% (i =- l,..,n-l) 
and xn(y) :« yn + w(y'). For p e CMH^) we put p(y) := p(x(y)) for y e H. 

Then p 6 C ^ H ) , p(x) = p(y(x)) and 

•d-p(x) - OiP")(y(x)J - Onp*)(y(x))^«(x') for i = l,...,n-l 

'.Ap(x) = Onp)(y(x)) 

and conversely 

(3iP)(y) - OiP)(x(y)) + 0Bp)(x(y))^tt(y') for i = l,...,n-l 

Onp)(y) = Onp)(x(y)) 

With the aid of Lemma 5.9 we immediately conclude for s with 1 < s < »: 

Vp € ES(HW) if and only if Vp e ES(H) and Vp € E*(HW) if and only if 
Vp 6 ES(H). From (5.24) we derive with a constant d^s) = dj(s,n) > 0 for 

Vp e E?(Htf) 

(5.24) 
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(5.25) ||Vp|| Sd-.UKI + | N | J 

Let 0 e C*(flw) and define #(y) :• 0(x(y)) for y € H. Then ? e C*(flw): I f 

Vp € ES(HW) then define 

BJVp.VJU := - V J(aBp(y)a1jf(y) + a1p(y)aB?(y))al»(y)dy 
1 - 1 H 

+ / n2(a1«)»,(y)anp(y)aIljl(y)dy 
H 1 - 1 

and therefore with a constant d2(s) - d2(s,n) 

(5.26) |BJVp,V«| <d2(s)||VW||jl+||V(ay||Vp||s,H||V?||s,>H 

From (5.24) via the change of variables formula we immediately derive 

(5.27) <Vp,V0>H&) - <Vp,V?>H + B0[Vp,V0] 

and therefore by (5.25) for s' and (5.26) for V0 f 0 

(5-28) 1 ^ ^ i t d > ( s ' ) ( 1 + w » ) ] - 1 { 1 i f ^ -
INIs'.H Ws'.H 

- <J 2 WNL( I+NI )NLH>-

ii) Choose now K < 1 such that 0 < K <, min{(4C2(s)d2(s))-1 : s « q,q',r,r') 
with C2(s) > 0 by Lemma 5.8. 
I f Vp 6 E*(HU) we then get from (5.19) and (5.28) i f \lu\a S K < 1 

SSP ^ M * ' 1 M2d 1 (s ' ) ) - 1 { supD l ^ J H - 2da(s)K|Vp]|s H) >_ 
0^C*(Hu) | * | , OtfeC>) N | | s , 

(t) 

* (2d1(s')-1{C2(s)-1|Vp|s,H - 2d2(s).KlVp||s.H) 

* (4d1(s')C2(s))-H|Vp|LH > C(s)-HtVpL,H 

with C(s) := (8d I(s')d.(s)C8(s)). 

lii) If Vp e E^H) and K is chosen like as in ii) then the analogous 
calculation using now (5.20) leads to (5.22) in that case too. 

iv) In order to prove b) let Vp e Er(H ). We consider first the case r s q. 
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We use a cut-off procedure in order to reduce this case to the half-space. 

Let R « R(w) > 0 denotes the constant with w(x') - 0 for |x'| > R and choose 

k, > R such that max|a>(x')| < R,. Choose <p € C*°(iRn) such that <p(x) « 0 for 
|x'kR 

|x| < Rly <p(x) = 1 for |x| ;> 2RX and 0 * <p <, 1. 
Let L :-= (x € Rn : x e H, Rx < |x|< 2Rt} c H^. Given h e C*(fl) we choose 
c(h) € R such that with K :* h+c(h) we have J Kdx » 0. By the properties of <p 

we get 

(5.29) <V(<pp),Vh> « <V(<pp),VK> -

' • <Vp,V(<pK)> - <Vp,V<pK> + <pV<p,VK> 

By the Poincar^-inequality (2.2) we get with a constant q > 0 

(5.30) |K||q,,L < cJvK||q/,L < cjvh| | q , 

Since r >_ q we have ||Vp|q,L < CjJvpl^L and therefore 

(5.31) |<Vp,VcpK>| * cJVp| r > L J?h| q , 

Since p € Lr(L) and r ^ q we have p € L*(L), 

|<PVf,vR>| s cJplU-IHI,, 
(5.32) 

|V(»B)|,/ s I M L . L + lkh"L á c8|7h||q, 

By def in it ion h € Cfl0(fl) i f h i s the restr ict ion of a C*((Rn)-function to fl. 
Therefore h € C*(FQ. Clearly (l-<p) e C~(f̂  
and since <pK * <p0+c(h), V(<pK) - V<p0 and so 
Therefore h € C*(Fy. Clearly (l-<p) e C"(Py. Then <p0 :- <ph+c(h)(<p-l) € C"(TQ 

(5.33) |<Vp,V(<pK)>| < suPeo _ l < y > y > l |V(<pK)|q, < D.ce||Vh||q/ 

<*v«: 0 ( iy ||Vv|q, 

Therefore we derive from (5,.29) - (5.32) 

s u p C r Q l < V i g - V h > l < C3»Vp|r,L + c4 | |p | r ,L + csD < . 
0#heCQ(fl) ||Vh||q, 

Since V(<pp) € Er(H) by Lemma 5.8, i i ) we conclude V(<pp) e E<*(H) and therefore 

V(pp) € E<*(HW). Because of r > q clearly V[(l-<p)p] € E«(HW). 

v) In order to prove b) in the case Vp e Er(H ) for r > q we proceed similar 

as in iv) . We take any h e C°°(H) and put K s h in (5.29). By (5.17) we get 
0 

(5-34) ||h|| , S ||h|| , 5 2R.|Vh|,. 

If we replace (5.30) by (5.34) we get again (5.31), (5.32). Clearly 
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<ph e C*(HW) and therefore again |<Vp,V(<ph)>| < Dcs||Vh||q, 

and 

l<vw,vh>|
 s |?p

|
 +
 |

p
|
 D

.. 
Mi<(H) ||Vh|| , "q 

Г4ř By Lemma 5.8 i) we see V(<pp) € Eq(H). 

If (pk) c C
W(H) is a sequence such that ||Vpk-V(<pp)||q>H -> 0. Then clearly 

(observe (5.17)) ||V(<ppk)-V(<pp)||qfH -> 0. Since <ppk € C*(HW) we see 

V(<pp) € Eq(Hw). Clearly V((l~<p)p) € E
q(Hw) c E ^ ) . 

vi) By part ii) and iii) of proof H has property P^(s) for i -- 0 and 1 and 

for s - r,r',q,q'. Then by Lemma 5.1 H has property P^(s) too. Again we write 

E ^ H J O - 0 or 1) and E^(HW) :-{?# : * € C*(HJ>, E*(HW) :«{V0 : * 6 C*(iy>. 

We consider now the case r < q in b). This case can be reduced to the previous 

one. Let now Vp e Eq(H ) and r < q. According to the assumption in b) by 
F*(Vv) :- <Vp,Vv> for Vv e E*(HW) a linear functional continuous with respect 

to ||v.||q/-norm is defined on the dense subspace E * ^ ) of Eq (H w). By property 

P.*(q) the unique extension F* of F* to the whole space Eq (H,%) may be 
A n ' W A A 

represented with a uniquely determined Vfl <s Eq(H ) in the form F*(Vv) «<Vp,Vv> 

for Vv € E q ,(H w). For Vv € E*(HW) we have <Vp,Vv> « F*(Vv) = F*(Vv) - <Vp,Vv>. 

Since Vp 6 Er(Hw) we see 

sup JL<VpJv>i |v • 
0 * V v J X ) ||Vv||r, '

,,P,,r 

Since now r < q we may apply parts iv) and v) of proof (with interchanged 
A A 

meaning of r and q) and conclude Vp € EV(H,J. Then <Vp-Vp,Vv> - 0 for 
co 1 A 

Vv € E.(H„) and by part a) we conclude Vp - Vp. For i « 1 we see immediately 
1 W A 

because of Vp € E^H^) that Vp e E<»(H ). For i - 0 consider the function p 
transformed like as in part i). Then Vp G Er(H) and Vp 6 L<i(H). By Lemma 5.6 
we conclude Vp € Eq(H) and transforming back Vp € Eq(H ). • 

Lemma 5.H. Let 1 < q < « and let G c Rn be a domain with boundary *9G c C1. 
Then for every x0 e dG there exists R - R(x0,t9G,q,n) > 0 and a constant C -
C(q,n,R) > 0 with the following properties (write GR := G n BR ( X 0 ) ) : 
a) If Vp e E«(G) then 
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|<V(<pp),Vv> | 
(5.35) | V ( W ) | < C sup -—-— &L_ 

v € C > ( x J ) |Vv|q, GR 

O^Vv on GR 

holds for any <p e Ca>(BR/2(x0)) 

b) If Vp € Eq(G) then (5.35) holds if the sup is taken over all 0 + v e C"(GR) 

c) If Vp e E^(G) and <Vp,V0> = 0 for all 0 e E3'(G), then given 1 < s < «, 
there is 0 < R' < R, R' = R'(s), such that Vp e ES(GR/). 

d) If Vp 6 Eq(G) and <Vp,V0> = 0 for all 0 € Eq'(G), then given 1 < s < ®, 
o o 

there is 0 < R' < R, R' = R'(s), such that V(yp) e ES(GR/) for each 

Proof. i) After a translation we may assume x0 • 0. Since dG e C1 there 
exists a p > 0 and a function a e CMS ) with (Va)(0) * 0 such that 
G n B - (x € B - o(x) < 0} and 3G n B - {x € B : a(x) = 0}. A local 

parametrisation of <9G most adequate to the problem under consideration is 

found by projecting dG n B on the tangential hyperplane of *9G at x0 - 0. 

Essentially this is done in the following. Observe that |Va(0)j-1 Va(0) 

equals the exterior unit normal of 3G at x0 = 0. This procedure enables us to 

reduce the situation to that of Lemma 5.10. There exists an orthogonal matrix 

S such that S[Va(0)] = |Va(0)|en, where en = («5 l n , . . . , 6 m ) . Define y(x) := Sx 

and put a(y) := o[S~ly) for y e B . Let G := G n B , G = SG and G :- G n B . 

For Vv e ES(G ) we put v(y) := v(S_1y) for y e G (1 < s < «). Then 

Vv e ES(G ) and the norms ||Vv|| * and |Vv|| are equivalent. Clearly 
SA A ' P 

Vv e ES(G ) if and only if Vv e E0(G ). The most important property 

(reflecting the invariance of A under orthogonal transforms) is that if 

Vp € ES(G ), Vv e ES'(G ) then <Vp,Vv>£ = <Vp,Vv> . This is seen by a 
9 p P P 

trivial calulation. Because of these properties we may omit in the sequel the 
A A A 

distinction between v and v, G and G, a and a etc. and assume that the above 

rotation is performed. Since now Va(0) - |Va(0)|en •* 0 by the implicit 

function theorem we find 0 < p' < p, h > 0 and a function # e C1(HT ; ) , where 

B' , := (y'e Rn_1: |y'| < p ' ) with the following properties: 
If Z a Z , h:= (y e R

n: |y'| < p', |yn| < h} then Z c B . For y ' e B', we have 
(y\Hy')) € Z and a(y',1>(y')) - 0. Further 0(0) = 0, (V'0)(O) = 0 
(where V'= (ax,.. .,an.a)) and 5G n Z = (y e Z : yn = 0(y')}, G n Z = 
(y e Z : yn < tf(y')}. Let ?? e C

00^-1) such that 7?(y') = 1 for |y'| < 1 and 
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Jv(y') * 0 for |y'| > 2, 0 * rj <, 1 else. For 0 < X < p'/2 put r?x(y'):-- ^(X^y') 

and w^(y') :-= r?x(y')0(y') for |y'| < p and W\(y') - 0 otherwise. Since 0(0) * 
38 |V'0(O)| - Owe get sup{|V'w^(y')| : y'e LR11"1} —> 0 for X —> 0. Let now 

1 < q < » be given. Denote by 1̂  :• K(q,n) > 0 the constant according to Lemma 

5.10. We choose now 0 < X < p'/2 so small that IVwJI^ < K and define H^ 

according to (5.21). We choose any 0 < R < X such that BR CC: Z. 

ii) If Vp e E<*(G) then for <p € C*(BR/2) clearly V(<pp) e E<*(GR) where 

GR := G n BR. By the choice of X and R we have GR c Hy and we may extend <pp 

by zero to H,, . Denoting the extended function again by <pp we have 
WX 

V(w>) € E<*(H/t ). By Lemma 5.10 a) WX 

(5.36) |V(,p)| - | ? ( W ) | q . ^ * A C sup ' ^ y ^ ' 
X 0*VECO(H ) ||W«q/ 

A U>x 

Abbreviate the sup at the right hand side of 5.35) by d. Observe that 

the Poincare inequality applies to GR. Choose now 0 € C
w(Br), 0 .> \b < 1 

such that 0 - 1 on BR/2. Let v € C
W(H ) and let c :- |GR|-

1 J vdy. 

A GR 
Then because of the Poincarg-inequality there is C - C'(R,0) such that 

||V(0(v-c))| , < C'|Vv|| . By definition of Cw(fl ) there is v € l*(w) 
q ' V q ' V ° X ° 

with v|H = v. Then 0(v-c) e C ^ B R ) . Since 0 • 1 on supp(<pp) we get 

(5.37) |<V(<pp),Vv>| - |<V(<pp),V(v-c)>| - |<V(<pp),V(0(v-c))>| < 

<dlV(0(v-c))||q,jGR<d.C'|Vv|q, 

and (5.35) follows immediately from (5.36) and (5.37) with C - C 0 C \ 

iii) Let ZR :-= (y - (y\yn) € iR
n : -R < xn < w^(x')}. By means of the 

transform (5.23) we immediately see that (5.17) remains true for ZR and 

Vv € Eq (H ). The proof of part b) is analogous to part ii) with the 

following changes: We use now (5.22), Given v € C°°(H ), then by means of 

(5.17) we get ||V(0v)|| , <. C'||Vv| , , 0v € CW(GR) and instead of (5.37) "q\GR - " и
q'H 

X 
|<V(

W
),Vv>| - |<V(fp),V(#v)>| < dC'|]Vv||„. 
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iv) The proof of c) and d) respectively is performed by induction using the 

Sobolev embedding theorem. We may assume 1 < q < 2 < n and Vp e E^(GR). 

If q St 2 then clearly Vp € Er(GR) for 1 < r * q. Denote by k the biggest 

integer smaller than "-. Then k < "- <; k+1 and let qj :- -"-9-- for j - 0,1,..,k. 

Since k + 1 ;> £ we get qk >. n >. 2. Let Kfqj.^qj) > 0 for j -- l,..,k denote 

the constants according to Lemma 5.10 and 1^:- min(K(qJ_1,qj):j - l,..,k} > 0. 

Choose now A > 0 in addition so small that |VwJ| < K and consider again H . 

Let 0 < R < A (R as above). Let Rj := R2~<-+1> for j - 0,1,..,k+1. 
Choose Vj e C*(B ) such that 0 < cpj £ 1 and ^j =- 1 on B 

Let Gj : - G n BR for j - 0,l,..,k,k+l. Given v 6 C*(fiw ) let v3 :-* v-Cj(v) 

where Cj(v) :» |Gj|-1 / vdx. Then g>jVj e C"(HW ) and V(g>jVj) € E«'(G). 
Gj A 

Therefore 

0 - <Vp,V(tfjVj)> - <V(<pjp),Wj> - <pV^j,Vvj> + <Vp,VjV(pj> 

that is 

(5.38) <V(VjP),Vvj> = <pV ĵ,VVj> - <Vp,VjV ĵ> 

We prove now by induction that V(^jp) e Eqj(Hw ) for j - 0 ,1 , . . ,k . The case 

j - 0 is clear. Let now 0 < j < k and suppose V ^ ^ p ) e EqJ_1(H ) . Since 

Vj.i - 1 on Gj we conclude VpL € L^-^Gj) and by the Sobolev embedding 

theorem p € Lq-(Gj) and 

(5-39, ||plqj,Sj * d u f l p l l ^ . ^ . 

Therefore with Mj := IVvjfl^ 

(5.40) |<pV9j,Wj>| < Mj||p|qjf6j||Wj|qj/ Gj < d.jMjIlpf^ ^ ^ |Vvj | q j / f 6 j 

(5.41) |<Vp,VjVVj>| < Mj||Vp||qji Gj||vj||qj ̂  Gj 

Since ~ - n + l < l < j we conclude q / - „ "?^ < n q u ^J nq-n+jq 
f* 

and by the Sobolev theorem Vj e Lqj (Gj) where 

Qj" - w^r - q'j„i and 

<5'42> l|vj|iq, t G|< d2j |vj|| 

Since J Vjdx - 0 we get by the Poincare-inequality 
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(5.43) ||vj|| <d3j||Vvj|| , <d3j||Vv|| , H 
H-.q/cGj) q j *faJ q j '%x 

By means of (5.40), (5.41) and (5.43) we get from (5.38) for v € C"(HW ) 

|<V(VjP),Vv>| - |<V(Vjp),Wj>| < d4j|lp||H] qj i(Gj)||VvI|qj, Ĥ  . 

By Lemma 5.10 we conclude V(^jp) € Eqj(H ) and therefore Vp| € Lqj(6J+1). 

At the end follows Vp| e Lqk(6k+1) where qk £ n > 2. Let now an arbitrary 

s > n be given. Choose 0 < 6 < 1 such that s •» |. From the choice of k above 

we conclude ~q- <; q < £. Define q := ^~. Then ^ . $ q < | a n d k < " * k + l 

Since we originally assumed 1 < q < 2 we have k _ > ^ - l > 2 - 1 ^ 0 w e s e e 

q £ Txr !. n ̂  qk so that by the proof above we have Vp| e L q(G k + 1). 

We repeat now the induction proof starting with q,, * q and ending with 

qk » J[__L - H a s . But observe that the constant Ka » Kt(q) and therefore X 
n-kq 

and especially R have to be taken depending on s. 

v) Part d) is proven similiarily: Let v € CW(H ) be gi^en. We no longer need 

to apply (5.42), instead we apply (5.17) for Z» and Vv e Eq (H, ) (see the 
0 WA 

beginning of part iii) of proof). We put now Vj • v and derive again (5.38). 

Since V^j.jp) € E ^ " 1 ^ ) c E ^ H R * ) we immediately get from the Sobolev 

estimate with a constant d,j «- d1j(qJ,n) > 0 

(5.44) 'kTlp|qj < d j v ^ . p ) ! ^ 

replacing now (5.39). Analogously 

(5.46) ||v|| , *d2J||Vv|| , 
Mj-i M J 

(observe q' -» q'*) replacing (5.42). Then observing pV<pj • (Vj-iP)VVj we get 

forveCXA) 

(5.47) |<pVVj,W>| < HJd1J|V(»J_1p)|qj_i|Vv|qj, 

(5.48) |<Vp,WVj>| < Mjd2J HVCVĵ P)!)̂  J|Vv||qj, 
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and so for v e C (H,% ) 
0 WA 

|<V(<pjP),Vv>| ^ j l V t ^ r t l ^ J V v l ^ , . 

Again by Lemma 5.10 i) b) V(<pjP) c Eqj(H ) and since supp(<pjp) c GJ+1 we have 

V(<pjp) € Eqj(Gj+1). By induction we end with V(<pkp) e E
qk(Gk+1). Choose 

R' - K+i' If V € C°0(BR/) then because of <pk =- 1 on B ^ we have <p <pkp « <pp. 
The remaining considerations are like as in iv). • 
The most difficult hard work is now done. For an easier later application we 
consider two further lemmas. 

Lemma 5.12. Let 1 < q < « and let G c Rn be a domain. Let x0 e G and let R > 0 

be such that BR(X 0) C C G. 

a) Let Vp € e-CG). Then for <p € C^(BR/2(X0)),V(<PP) C E ^ O O ) <= Eq(G) and 
with a constant C «- C(R, Cj(q)) > 0, where Cx is by Lemma 5.2, we have 

(5.49) |Y(W)|,*C sup„ l<y<WMv>| 
0*V€C-(B„) |Vv||q, 

b) Let Vp e E«(G) and <Vp,V0> = 0 for all 0 6 C°(G). Given 1 < s < «> then 
0 

there is a 0 < R' * R with R' = R'(s) such that V(<pp) € E*(BR,(X 0)) for each 

< P € C * ( B R , ( X 0 ) ) . 

Proof. The proof is almost identical with that of Lemma 5.12. In the sequel we 

abbreviate Br := Br(x0) for r > 0. i) If x 6 BR/2 and 0 < £ < R/2 then for 

the mollified pr we have Vp (x) = (Vp)(x) and therefore |Vp-VpJ -> 0. 
e e e c q,BR/2 

For <p G C ^ B R / 2 ) we have <pp£ € C * ^ ) and clearly ||V(<pp)-V(<pp£)||q ^ -> 0 

proving <pp € Eq(BR/2) c E
q(LRn). Now we proceed like as in part ii) of the 

preceeding lemma applying Lemma 5.2 instead of Lemma 5.10: Choose again 

i> € C"(BR) with 0 < * < 1, i> - 1 on BR/2. If v € C*(R») pUt c :=- |BR|-* Jvdy 
to G R 

and use now the Poincare-inequality for BR. Consider again #(v-c) e C (BR) and 
proceed analogously. 
ii) The proof of b) is literally the same as part iv) of proof of Lemma 5.11, 
beginning with the 9th line before formula (5.38). Observe that G, = BD . • 
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Lemma 5.13. Let 1 < q < » and let G c Rn be an exterior domain, G * Rn\R with 

0 t K cc tRn. Let R > 0 be such that K cc BR, let <p e C"(Rn), <p(x) - 0 for 

|x| < 2R, <p(x) - 1 for |x| > 3R. 

a) If Vp € E«(G) then V(<pp) e E<*(G). 

b) There is a constant C « C(q,n,R) > 0 such that 

(5.50) | V ( W ) | , * C supa l<VW.W>| 

0*veCo(5) |Vv|q, 6 

c) If Vp e E«(G) has the property 

(5.51) <Vp,Vv> = 0 for all v e c"(G). 
0 

Then V(<pp) € ES(G) for any 1 < s < ». 

Proof, i) Because of the properties of <p clearly V(<pp) € E<-(6). 

ii) (<pp) may be extended by zero to the whole lRn. Then V(<pp) 6 E<*(Rn). 

Since ||Vv|| , Rn ;> ||Vv|| , 6 for v e C*(R
n) estimate (5.50) follows immediately 

from (5.5). 

iii) We will first show V(<pp) e ES(G) for 1 < s * q. This is a priori by no 
means trivial. By definition of E<*(G) we clearly have Vp € Ls(G3R),p € L

S(G3R) 
for 1 < s < q. If v 6 C°°(iRn) put v := v-c where c :« IB-^V1 Jvdx. Then 

(yv + c) € ̂ ( 6 ) and by (5.51) we again get 

0 «- <Vp,V(^(v-c) + c)> - <Vp,V(<p(v-c))> -

• <V(<pp)Vv> - <pV<p,Vv> + <Vp,V<pv> 

and therefore 

<V(<pp),Vv> -* <V(yp),Vv> * <pV<p,Vv> - <Vp,vVy> 

Since by (2.2) ||v||s, ^ < C(s')||Vv||s, ^ < C(s') |w|a , 

we get immediately with C • C(<p,R,s,q) > 0 

|< (w),vv>| <c ( | P | | q G 3 R + «vp||q(%R)IN| s / 

for v <= C*(iRn) and by Lemma 5.2 V(<pp) e Es(Rn). 

iv) Because of iii) we may assume that 1 < q < 2 < n. Then we proceed like as 
in part iv) of the proof of Lemma 5.H: Choose again k € IN, k < £ £ k+1. Let 

R 00 " 

Rj := R + j £j- for j = 0 ,1 , . . ,k+1. Let tpj e C (Rn), 0 * <pj < 1, tpj(x) - 0 for 
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| x | .- Rj, <Pj(x) -- 1 for {x| >. RJ+1. Given v € CQ(iRn) l e t Vj - v-Cj(v) where 

Cj(v) := |B.2R|-1 Jvdx. Since (<PjVj + Cj(v)) € £*(&) we can now go on l i k e as 
B2R 

in Lemma 5.11. Once we have shown V(<pp) € E^(G) and V(<pp) e Eqk(G), we see 

V(<pp) e ES(G) for q < s < qk: Write G'= (x e G: |V(<pp)(x)| >. 1} and 

G" =- ( x e G : |V(<pp)(x)| < 1} 

then 

J |V(<pp)|*dx - J |V(W)|«dx + J |V(<pp)|*dx <; 
G G' G M 

< J |V(</>p)|q*dx + J |V(fp)|«dx. • 
G' GM 

Lemma 5.14. Assume the same hypothesis as in Lemma 5.13. 
a) If Vp € Eq(G) then V(<pp) € Eq(G) and there is a constant C -- C(q,n,R) > 0 
such that 

(5.52) ||V(W)||q , c su8 MiffiMyii 
0*V€Co(G) |Vv| q , 

b) Suppose that Vp e Eq(G) satisfies 

<Vp,Vv> = 0 for all v € C ^ S ) . 
0 

Then: i ) If 1 < q <. - ~ j then V(<pp) € ES(G) for 1 < s < ». 

i i ) i f q > _!!-_ then V(<pp) e ES(G) for --"-j < s < «. 

Proof, i ) Since Vp e Eq(G) there i s a sequence (p t) c C^G) such that 
|Vp-VPl | f l -> 0. By (2.9)° |p-Pi |q § % | i < C(R) |Vp-VPi||q. Therefore 

V(<PPi) - PiV<p + <pVpt -> V(<pp) in L (̂G),<ppj <= C^G) and therefore V(<pp) € Eq(G). 

i i ) We f i r s t show (5.52) for 1 < q * -—j-. Then q' .> n. Let $ e Cw(lRn), 
0 <; t < 1 , «(x) = 1 for | x | > 2R, tf(x) - 0 for |x | <.*- R. for v e t (iRn) l e t 
cv * I ^ R I " 1 J vdx- We w^11 snow now t n a t v :- #(v-c v) € iEq(G) for q' ;> n. 

For t h i s purpose l e t p 6 C 0 0 ^ ) , 0 <. p < 1, p(x) » 1 for IxJ * 1, p(x) * 0 
for | x | > 2 and put pk(x) :* p(k -1x) for k e LN. Then 
supp(Vpk) c Rk := (x € (Rn : k < | x | £ 2k). Then vk :«- p k v € C*(G). There i s 
k0 € LN, k0 >. 2R, such that supp v c B . Then for k >. k̂ , 

ko 

Vvk - Vpk-0(v-cv) + p k W ) ( v - c v ) + p^-Vv 
=- -Vpkcv + (v-cv)V0 + tf-Vv. 

- , - 1 
Since |Vpk| < C-k"1 and vanishes outside \ we get ||Vpk|| , £ c-kq s const 

q fRk 
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for q'> n. If F* e Eq(G)* then it may be extended to a functional 

F* e (Lq'(G)n)* and therefore represented with f e L^(G)n as F*(V0) - <f,V0> 

for all V0 € Eq(G). Since |<f,Vpk>| < ||f|| R < const ||f|| R -> 0 we conclude 

1 „' k ' k 

f*(Vvk) -> F*(Vv). Since E
q(G) is closed it is weakly closed too and therefore 

Vv € Eq(G). Since V# - 0 on the support of ip we see 
V(vp)((v-cv)V0 + 0Vv) - V(cip)-Vv and therefore <V(<pp),Vv> - <V(yp),Vv>. 

By (2.2) (applied to B2R) we see ||Vv|| , < KflVvfl , and therefore 
l<V(»p)>Vv>] < K l<v(W>)»Vv>| if vv * 0. ' 

N l q , ||Vv||q, 
We abbreviate the sup at the right hand side of (5.52) by D. Since 0*Vv eEq(G) 
there is a sequence (vj c C^G) such that flVv-VvJ , -> 0. Then q 

|<v(yp),vv>| . l i m l<v(»P),Wi>l < D 

||Vv||q, i-*> | v V l | q , 

Therefore 1<V(<PP)>VV>1 < KD f o r t h o s e y 6 c « ( R n j s u c h t h a t v~ f Q I f y~ 
Vv , ° 

q 

vanishes then <V(<pp),Vq» too. Therefore we derive (5.52) from Lemma 5.2. 

iii) Let now q > -~y and therefore 1 < q' < n. Let i> e Cw(iRn) be defined as 
in ii). If v e C*(Kn) then *.v € C*(6) and ||V(0v)||q, < ||vV̂ ||q, + ||Vv||q,. 

Let q'* :=» jjSL,. Then by the Sobolev theorem and Holder's inequality 

l/n IvV0||q, < c W | | v | | q / ^ < c ( 0 ) | | v f l q , r B 2 R | B 2 ] 

^ * l % R | 1 / B M q , 

and so ||V(0v)|| , < c(R)||Vv|| , . Therefore 

|<V((pp),Vv>| -- |<V(g>p),V(0v)>| < D|V«v) |q , < c(R)-D |Vv|q, 

where D denotes the sup in (5.52) and again by Lemma 5.2 follows (5.52). 

iv) We prove now b). Let 1 < q < --V We first show 

(5.53) <Vp,Vq» - 0 for <p by Lemma 5 A 3 . 

Choose pk l ike as in part i i ) . Then for k >. 3R we have pk«p e C°°(G) and by 

assumption 

0 -» <Vp,V(pk<p)> - <Vp,pkV<p> + <Vp,<pVpk> -» <Vp,V^> + <Vp,Vpk> 

Remember ||Vpk||q, <, const, for q'>. n. Therefore 

|<Vp,Vpk>| - |<Vp,Vpk> | <C |Vp|| ->0. 
Kk q,Kk 
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v) For v e C (lRn), <pv e C (G) and therefore admissible in (5.52). We then get 

(5.54) <V(vp),Vv> = <pVy,Vv> - <Vp,v%>. 

Let c(v) := IBgRf'-Jvdx and put v:* v -c(v) . Then by (5.53) <Vp,vV^> =- <Vp,vV<p>. 
B 3 R 

Let now 1 < s <. q < --£--. Then p € LS(G3R) and Vp € LS(G3R). We therefore get 

|<Vp,vV»| < H . I|VPIISIG3RI|V|S, IB3R 

and by the PoincarS-inequality 

Hv||s, ^ * c||vv||s, - c |w| , , 
and so we derive from (5.54) for v € Cw(iRn) 

|<v(VP),vv>| < c'(||P||s63R + I H . J j ||VV||S, 

and so by Lemma 5.2 we get V(pp) e Es(iRn) 

vi) If n - q • 2 then we are ready. If n > 2, then 1 < q < — V < 2. Now we 

proceed similiarily as in parts iv) and v) of the proof of Lemma 5.11: Choose 

again k € N, k < £ < k+1. Let Rj = R + j |j- for j -= 0 A , . . . , 2 ( k + l ) . Let 
<Pj € C^LR"), 0 < pj < 1, vj(x) - 0 for |x| < Rj, <pj(x) « 1 for |x| > RJ+1. 

Given v € C^LR 1 1), then (p5 v € C^G) and from the assumption we again derive 

(5.38) now with Vj := v. Let now again 0 < j < k and assume that 

V(Vj-iP) € E ^ - ^ G ) . Since «Pj_t -» 1 for |x| > Rj, we conclude 

Vp e L^-Mdxl >. Rj}).- Since supp (Vyj) c Gj :» (x e LRn: Rj <; |x| < Rj+1) 

again by the Sobolev embedding theorem we get (5.39). Since qj'< n instead of 

(5.42) we use the Sobolev theorem for C^LR11) functions 

(5.55) | v | | , <C||W|| , . 
Vi HJ 

Then we can estimate (5.41) and end with 

|<v(VjP),vv>|< c||p|| |VV|| , . 
H ,q j_ ,1(Gj) MJ 

The remaining arguments are the same as in part iv) of the proof of Lemma 5.H 

vii) Assume now q > - ~ j . Let <p0 e C V ) » 0 < <p0 < 1, % * 0 on B-., %(x) « 1 

for |x| > | R and consider (5.54) with this 0̂. If n >_ 3 choose any qt with 

-~j < <\Y < 2 and qa < q. Put r :» ̂ iL.. Then 1 < r < ̂  < n (observe 

| k > 1 for n > 3). Further r < q and qx * j£-- - r*, q/ * ----^ and 

q '• = J-Sil -. r \ since r < q we have p, Vp € L-(MR), that is p e H*.-(MR), 
" M l ' 
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where M-. :-» (x e lRn: R < |x| < | R). The Sobolev inequality gives 

K * " |P,lr-.% * C||pflH>-^» 

Consider (5.54) for v e C*(iRn) and %. Then with C':« IfyJ^ 

(5.56) |<pVV,W>| * C'||p||qi(MR) |Vv||qi, < C'C ||p|lHl,r(MR)»Vv||qi, 

By the Sobolev inequality for v G C"(tRn) (see (5.55)) 

(5.57) |<Vp,WV>| iC'||Vp|rMR ||v||r, ^C'C|Vp||rMR||Vv||qi, 

By Lemma 5.2 we see from (5.54) that V(<p0p) € E
qi(tRn) holds. Now we may start 

the iteration procedure from part iii). 
- 2s - ' ~* 2r 

If n « 2 and given s > 2, we put r * £ ~ . Then 1 < r < 2 -* n, r * ^ * s 
and with estimates analogously to (5.56), (5.57) we conclude again via Lemma 
5.2 V(Vop) 6 E*(G). • 

Remark 5.15. 

If G c Rn is a bounded domain with sufficiently smooth boundary, say e.g. 

3G e Cl and if 1 < q < s < «, if Vp e Eq(G) and Vp € LS(G), then Vp e E*(G). 

As we have seen in Lemma 5.6 this conclusion still holds for the half-space. 

But it is no longer true for an exterior domain: Let K :-* B ^ 

G :* Rn\R - (x € Rn: |x| > 1} and consider for x e G 

(5.58) h(x) :-
1 - |x|2~n i f n > 3 

ln |x | i f n = 2 

Then h e C^G), h|aG =- 0, Ah = 0, Vh e L«(G) for q > -~y. Consider again 

p € C*(IRn), 0 <: p $ 1, p(x) * 1 for |x| * 1, p(x) = 0 for |x| >. 2 and 

P*W !• Pfk^x) for k e w. Since h|«6 • 0 i t is easily seen that 

hk :- pkh € Eq(G) for q > -"~j. Since Vhk = hVpk + pkVh because of (5.58) and 

the properties of h one immediately verifies ||pkh||q -> 0 i f q > n for n > 2. 

Clearly /̂ Vh -> Vh in L«(G). If n z 3 and q * 2 like as in part i i i ) of the 

proof of Lemma 5.6 one verifies Vhk -> Vh weakly in Eq(G) and therefore 

Vh e Eq(G) in this case too. This rests on the property ||vpk|q ^ const for 

q >. n and k € IN. If q « n « 2, Vln|x| $ L2(G). That these are the optimal q 

for Vh € Eq(G) may be seen as follows: If p e C"(G) c C®(tRn) by means of the 

Sobolev-inequality ||p|| , < c||Vp|| for Vp e Eq(G) and 1 < q < n. Clearly 

h $ LS(G) vor 1 * s < ». • 
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The best possible result we can expect therefore is 

Lemma 5.16. Let 1 < q < « and let G c Rn be an exterior domain, G - tRn\R, with 

0 f K cc Rn. Let R > 0 be such that K cc BR. Suppose there is 1 < q < n and 
Vp e Eq(G). Assume in addition p - 0 in 62R :- G n B2R. If there is any other 
1 < r < co with Vp 6 Lr(G). Then Vp € Er(G). 

Proof. Without loss of generality we may assume p e C ^ G ) . Otherwise we 

consider the mollification p£. Since p vanishes on G2R, V(p ) - (
VP) £ in 6 

for 0 < e < R. Clearly Vp G Eq(G) too. Consider again our standard cut-off 

function p G Cw(LRn), 0 * p < 1, p(x) = 1 for |x| ̂  1, p(x) * 0 for |x| > 2, 

Pk(x) := P(k~lx) an<- K :== (x e Rn: k < |x| < 2k). Then supp(Vpk) c Rk. Since 

by assumption Vp e Eq(G) and 1 < q < n, by the Sobolev embedding theorem 

p e L«*(G) with q* * £§-- and ||p||q, <; C||Vp||q. Define Ck :* |Rk|-* J pdx 
Rk 

By Holder's inequality 

SlП. < o for q < n and we get 

|Ck| < IM" ł M«. ,кk 

7' < C|Vp||q|Rk 

Since 

i 
«"-.Ѓг-

nq 
nq-n+q we have -гiт -1 

q 

Њľ7' -> 0 (k -> «) and therefore |Ck| 
(2.6) giving 

(5.59) ІP-CJL. < k.q wi,.. 

-> 0. Observe the Poincar^- inequality 

(s ince we assumed p e C^G) c lear ly p G L r (R k ) ) . Define <p(x) • l-p R (x) 

(with p l i k e as above) and pk :* <p(pk(p-Ck)) € C<0(G). 

Then Vpk « pk(p-Ck)V<p + <p(p-Ck)Vpk + <ppkVp. Since <p • 1 on supp(Vp) we see 

<ppkVp -> Vp in Lr(G). Since p vanishes on supp(V<p) c B2R, pk • 1 for k > R, 

ll/>k(P-Ck)V^||r = \Mm |Ck | |B2R| -> 0. By (5.59) and |Vpk| < Ck"1 , 

supp(V*.) c R, we see ||<p(p-Ck)Vpk||r < Ck^||p-Ck||r ^ CC'||Vp||r ^ 0 (k -> • ) . « 

Therefore ||Vp-Vpk||r -> 0. • 

Remark 5.17. Let the assumption of Lemma 5.14 be satisfied, expecially (5.52) 

with Vp G Eq(G). If 1 < q < -^.and n > 3 (then --- < n) we conclude via Lemma 

5.15 that V(<pp) G E*(G) for 1 < s < ». If n - 2 and 1 < q < 2 then 

V(<pp) G E*(G) for 1 < s < ». If n > 3 and -~ < q < n then V(<pp) G E*(G) for 

-r-V < s < ». These properties perfectly fits togehter with the observations 

made in Remark 5.15. • 
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The proof of estimates (5.35), (5.49), (5.50) was completely elementary (e.g. 
we needed only Sobolev's embedding theorem and Holder's inequality) but 
demanding lengthy hard work. It was done to prove in addition that solutions 
Vp € E*-(G) resp. Vp e Ej(G) of the homogeneous functional equations have 
integrability properties with respect to "other" exponents 1 < s < » and 
(compare Remark 5.17) belong under certain circumstances to E0(G) too. All 
this work we need to conclude via the trivial L2(G)-uniqueness of the 
Dirichlet and Neumann problem the L«-uniqueness. By means of a partition of 
unity the desired main theorems are then an easy consequence of the following 
uniqueness result. Concerning the Dirichlet problem we read off from Remark 
5.15 that the uniqueness result is best possible. I'm very much indepted to 
my colleque Professor Dr. Michael Wiegner, who gave me the example of the 
"exceptional functions" h in (5.58) and drew my attention in a very early 
stage of the consideration of exterior problems in the appropriate direction. 

Theorem 5.18. (Uniqueness) Let G c Rn be either a bounded or an exterior 

domain with boundary 3G e C1 and let 1 < q < ». Then: 

a) Uniqueness of the weak Neumann problem: 

If Vp € E*-(G) satisies <Vp,V0> - 0 for all V0 € E<*'(G), then Vp -- 0. 

b) Uniqueness of the weak Dirichlet problem: 

If Vp € Ej(G) satisfies <Vp,V0> - 0 for all V0 € E^j'(G). Then: 
i) If G is bounded, then Vp = 0 (and therefore p - 0) 
ii) If G is an exterior domain, and 

if n > 3 and 1 < q < n, then Vp « 0 
if n - 2 and 1 < q <: 2 =- n, then Vp - 0 
(and p - 0 too). 

Proof, i) By Lemma 5.11 for each x0 e 3G there is R'=- R'(x0) > 0 such that 
for G n BR,(x0) the properties c) respectively d) hold. By compactness of «9G 
we find finitely many xt € 3G and Rt :- R'fxJ > 0, i - 1,..,M, such that 

M M 
dG c UB., where Bt :*- BD (Xj). If G is bounded, ^ :- G n n LRn\Bi c G and is 

i-i l i-i 

compact. By means of Lemma 5.12 we see that Gt can be covered by finitely many 
balls Bt - BD (x.) cc G, i - M+1,...,N. Then the Bt,1 = 1,...,N form an open 

covering of 6. If G is an exerior domain, G - iRn\R, where 0 * K cc Rn, then we 
choose R > 0 such that K cc BR and put now G2 :- Gx n B3R c G2. Again G2 is 
compact and may be covered by Bt cc G, i - M+1,.,.,N. 
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Define B0 :- (x € Rn: |x| > 2R} c G. Then again the system Bj,i = 0,1,..,N 

forms an open covering of 6. Construct a part ion of unity (<Pi : i -= =,1,..,N} 

such that 0 < <Pi, ^ e C^tBj) for i * 1,...,N and % e c"(B0), % =- 1 for 
° N 

|x| >. 3R, <p0 vanishing in a neighborhood of |x| « 2R, S ^ f x ) = 1 for x € 6. 
i = l 

ii) In case a) we immediately conclude from the hypothesis and Lemmas 5.11 -
5.13 that V(<piP) c E2(G) (continue <pjP by zero for x e G, x $ G n B,) and 

N 
therefore Vp - 2 Vfop) e E2(G). Since £<°(G) - (V0 : 0 € C*^)} is dense in 

i-0 ° 
ES(G) for 1 < s < «> from Vp € E2(G) arid 0 = <Vp,V0> for V0 € ES(G) we see now 
0 - <Vp,Vp> and therefore Vp - 0. 

iii) In case b) and G bounded we similiarly conclude by Lemmas 5.11 and 

5.12 d) V(^p) e Ej(G) and therefore Vp 6 E?(G) and again Vp - 0. 

Clearly, we conclude p * 0 too. 

iv) If G is an exterior domain we consider Lemma 5.14 and 5.16: If n >. 3 and 

1 < q <. —• < n, then V(<p0p) e E0(G) for 1 < s < «. If -~- < q < n, then again 

V(p0p) € E
S(G) for 1 < s < ». In any case V(<p0p) € E0(G). If n - 2 and 

1 < q < 2, then by Lemma 5.15 and 5.16 V(«p0p) e E0(G). The case q * 2 is 
N > 

trivial. Since V(<pjp) e E0(G) for 1 - 0,..,N at the end Vp -.^Vfop) e E0(G) 
and again 0 -» <Vp,V0> for all 0 e C^G) and by density of {V0 : (j> <= C*(G)} in 

9 ° ° 

E0(G) we again have Vp -- 0 that is p - 0. • 

6. Proof of the main theorems. 

Proof of Theorem 4.L First we prove part i). Like as in part i) of the proof 
of Theorem 5.18 we construct a covering B|,i -* 0,1,..,N of G (B0 := 0 if G is 
bounded) and a partition of unity (^) with respect to this covering such that 

(5.35) holds for i - 1,..,M, (5.49) for i = M+1,..,N and (5.50) for i - 0. 

Suppose that the statement a) of Theorem 4 A is not true. Then there exists a 

sequence (Vpk) c E<*(G) such that ||Vpk||qjG - 1 and with 

(6.1) £k :- sup ^ffel 7^ 1 + 0 (k ->«). 
0*VveE<*'(G) > V V V 

Without loss of generality we may assume J pkdx * 0 if G is bounded and 
6 

J pkdx = 0 if G is an exterior domain. Then by the Poincare- inequality we get 



||PklHi,q(G) < const, if G is bounded, l|pJHi,q(S3R) *
 c o « s t if 6 is an 

exterior domain. Since E<*(G) is reflexive there is Vp e E<*(G) and a 
subsequence (again denoted by pk) such that Vpk converges weakly to Vp. for 

Vv € E<*'(G) we derive from (6.1) <Vp,Vv> = lim <Vpk,Vv> - 0. By Lemma 5.18 a) 
k->» 

we get Vp - 0. By the H^-boundedness we see by means of Rellich's theorem 

that pk -> p strongly in L«(G) resp. L
<i(G;3R). Then Jpdx - 0 (Jpdx = 0) too and 

G G 3 f i 

therefore p -» 0, that i s p -> 0 strongly in L* on G resp. G3R. Fix now any 

i € (0 ,1 , . ,N) . If i * 0 le t 0 :« Rn, i f i <- 1 , . . . ,N let Q := B2R ( x j . With a 

constant CJ > 0 we have by (5.35), (5.49) and (5.50) 

(6.2) C.|Y(*fc)|q< sup_ mxfh^l :» dk 

For each k e n there i s vk € C*(0), ||Vvk|| , * 1 and 

(6.3) 0 $ d k - <V(^fc),?v,->i l 

Let vk :- vk-ck, where ck :* IGI"
1 fvkdx if i - 1,..,N and ck := |G3R|-

1 Jvkdx 

for i « 0. Then by the Poincarg-inequality we conclude lvkIHi,q'#Q) $ const, 

for i * 1,...,N and I^IHi.^/(- } < const for i - 0. Again we select a sub­

sequence (vk) and find Vvk -> Vv weakly in E<*'(G) and vk -> v strongly in L<*(Q) 

resp. i«(^HI).-'By (6.3) 

4 * j + <V(ViPk),Vvk> 

88 l + <^Pk^(ViVk)> + <pkV(pi,vík> - <^Pk>yJ(Pi> 

* «J^(fiVk)L- + l<í^i,Vvk>| + l ^ v ^ l 

Since at the support of V^ we have pk -> 0 strongly in L* and Vvk -> Vv weakly 

we see <pkV^,Vvk> -> 0. Analogously <Vpk,vkV^> -> 0. Further flV^vjH , < 
const and ek -> 0. So we conclude by (6,2) ||V(9iPk)||q -> 0 (k -> «) and for 

i * 0 ,1 , . . ,N . Since Vpk - ..fo Vf^pJ we get ||Vpk||q » 1 forming a 

contradiction. Part b): By part a) G has property Pl{$) for s • q and q', 
• a 

therefore by Lemma 5.1 G has property P*(s) for s * q and q', that i s b). • 

Proof of Theorem 4.2. Part a): Like as in the proof of Theorem 4.1 we 

construct a covering Bi - BD (x . ) , i * 0 ,1 , . . ,N of G and a partition of unity 
R i 
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such that for i * 0,..,N e.g. (5.35) holds for (p e C^Bi) and the sup is taken 
over v € C*(G n B9D (xj), analogously for (5.49). For (5.52) the sup is taken 

over v € C (G). If G is bounded, let 1 < q < «. If G is an exterior domain and 

n >. 3, let 1 < q < n and if n - 2, let 1 < q < 2. Suppose again that (4.4) is 

not true. Then there is a sequence (Vpk) c EjJ(G) such that ||vpk|q » 1 and 

(6.4) ek :- sup , < M - > , 0. 
0*Vv€E«(G) ||Vv||q/ 

For G bounded, by (2.1) 

( 6 - 5 ) llPkllq * C ( G ) lvPkllq a"d f o r G a n exter ior domain by (2 .9) 

(6-6) |p k | | q ^ < C(R) ||Vpk||q,c. 

Again by reflexivity we find a subsequence (again denoted pk) such that 
Vpk -> Vp € E2(G) weakly. Since by (6.2) <Vp,Vv> -» 0 for all Vv € E*(G), by 
Theorem 5.18 Vp * 0. By (6.5), (6.6) we conclude p - 0. Then by Rellich's 
theorem pk -> 0 strongly in L<*(G) resp. L«(G3R). Now we proceed like as in the 
proof of Theorem 4.1: Consider (6.2). Observe that if x, e dG then the sup has 
to be taken over v € C*(G n B (xj) in (6.2). Again we find vk with 
llVvkll ̂  - 1 and (6.3). The use of the Poincare inequality is replaced by (6.5) 
and (6.6) for vk instead of pk and q' instead of q. The remaining arguments 
are the same. Part b): If G is bounded, by part a) G has property P°(s) for 
s - q and q' if 1 < q < «. If G is an exterior domain and n >. 3 G has property 
P°(s) for s = q and q' if ~ < q < n. If n - 2 the exterior domain G has 
property P°(s) for s • q and q' if and only if q « n - 2. Via Lemma 5.1 
part b) follows. • 

7. The exceptional spaces for the Pirichlet problem in exterior domains. 
By Theorem 5.18 b) from Vp € Ej(G), G c Rn(n >. 3) exterior domain, and 
<Vp,V0> - 0 for V# € EjJ(G) we can conclude Vp - 0 only if 1 < q < n and 
the functional representation (Theorem 4.2) holds only for ~ j < q < n. In 
the case G := (x € Rn : |x| > 1} the reason is clear by Remark 5.15. For an 
arbitrary exterior domain G with dG e C1 we see that the situation in Remark 
5.15 is typical: 

Theorem 7.L Let G c Rn (n > 2) be an exterior domain with boundary 

3G e C1, G - LRn\K, <j> t K cc Rn. Without loss of generality assume 0 € K. Then 
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there exists h e C*(G) n C°(G) such that Ah - 0 in G, h| a Q * 0 and Vh 6 E
q(G) 

for all q with n <; q < » if n > 3 and q > 2 if n - 2. Let 0 < r < 1 such that 
Br cc G. Then further there is a harmonic function u in Br with u(0) « 0 and 
constants a,b e LR, a * 0, b * 0 such that for |x| > -

(7.1) h(x) 
'a + w- 2 + A - 2 u ( w z ) for n ž 3 

a + b ln|x| + uť-rjp) for n - 2 l
T*Г 

Conversely if VR є E
q
(G), where q is subordinate to the restrictions above, 

and <vR,Vø> -- 0 for all ф є C
Ю
(G), then there exists a є IR sucht that n* - oth.и 

The proof (see [9]) is not difficult but somehow lengthy. The main tools are 

the mean value properties (3.1), (3.2), WeyTs Lemma ( « Theorem 3.1), the 

Kelvin-transform etc. 

This theorem has a lot of consequences. To avoid the cumbersotne distinction 

n ^ 3 and n - 2 we restrict ourselfes in the following considerations to the 

case n ^ 3. 

Let H(G) :=- (aVҺ : a є R}. For q ^ n let Vh
q
 :* •—- є E

q
(G). 

|Vh||
q 

Then H(G) :« (aVh
q
 : a є K}. Define F* : H(G) -» IR by 

(7.2) F*(Vg) * a for g * ah
q
. 

ч 
Then ||F*| - sup *} ?/ в

 1. Extend F* norm-preserving by the Hahn-Banach 
q
 O^gєH |Vg||

q

 q 

theorem to a continuous linear functional defined on the whole space E
q
(G) 

and denote if again by F
 t
 Define 

(7.3) P
q
(Vp) :- F*(Vp)Vh

q
 for Vp є E

q
(G). 

Then P
q
 : E

q
(G) -> H(G) is a projection, that is P

q
 - P

q
, with the additional 

property |P
q
| - 1. 

Define 

(7.4) P
c
,

q
 := I-P

q 

and 

(7.5) E
q
,

c
(G) := P

c
,

q
(E

q
(G)). 

Then we have in the sense of a direct sum 

(7.6) E
q
(G) - E

q
,

c
(G) ® H(G) 
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and there is a constant K > 0 such that 

(7 .7 ) ||Vp||q > K(||PCfq(Vp)||q + |Pq(Vp)|q) 

for all Vp € Eq(G). Clearly Eq
>c(G) is topologically equivalent to the 

quotient space Eq(G)/H(G). 

Concerning the estimates from Theorem 4.2, we have the following extension of 

Theorem 4.2: 

Theorem 7 .2. For G assume the same as in Theorem 7.1 and l e t n > 3. Then for 

1 < q < co there exists a constant C - C(G,q) > 0 such that 

a) for 1 < q $ - ^ (then q'* n) and all Vp e Eq(G) 

(7.8) ||Vp||q < C sup , J < M M . 

0#VtfeEo\c(G) | N | | q , 

b) for -—-- < q < n estimate (4.4) holds 

c) for q > n (then q'<. ^) and all Vp e Eq
fC(G) 

(7.9) ||Vp||q*C sup J i M > i . . 
0*VtfeE<i'(G) ||v^q, 

Observe that (7.8) is sharper then (4.4), because the variational class is 
smaller. (7.9) is an extension of (4.4) to the case q > n but for the narrower 
class Eq,c(G) c,E

q(G). 

Concerning the functional representation we get: ' 

Theorem 7.3. For G c i n assume the same as in Theorem 7 A and let n >. 3. Then 
for 1 < q < oo with the constants C :« C(G,q) > 0 by Theorem 7.2 holds: 

a) If 1 < q < --Ip and given F* € (Eq'c(G))*, 

IMI > := sup , J f ^ M I , then 
(Eq,c)* OfV0eEq

tC i N i q 

there is a unique Vp e Eq(G) such that 

(7.10) F*(V0) - <Vp,Vf> for all V0 € Eq'c(G) 

Further 

(7.11) ||Vp|q < C||F*|| , <; C||VpIq 

(E 0 , c )* 
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b) If -A- < q < n then Theorem 4.2 b) holds. 

c) If q >_ n and given F* e (Ej|(G))*, then there is a unique Vp e Ej>c(G) such 

that 

(7.12) F*(V0) -- <Vp,V0> for all V0 6 Ej(G) 

Further |Vp||q < C||F*|| , < C||Vp||q. 

For case a) we have in addition 

Theorem 7.4. Let the same assumptions as in Theorem 7.1 hold and let 
1 < q £ JL (n >. 3). Given F* € (Ej(G))*, then there exists Vp e Ej(G) with 
F*(V0) *n<Vp,V0> for all V0 e E*(G) if and only if F*(Vh) « 0 (h by Theorem 

7.1). Then in addition ||Vp|q <. C|F*|| <; c||Vp||q. 
(Ej(G))* 

8. Applications, concluding remarks. We are now able to prove existence of 
weak solutions for the Neumann- and Dirichlet problem in bounded as well as in 
exterior domains. E.g. let G be an exterior domain and let f e C°(G) be given. 

o 

Let F(0) : - <f,0> for 0 € C (G). Suppose supp(f) c BR for some R > 0. By (2.9) 

we get |F(0)| < IMIq J M l / ^ < C(R)||f||q |V0|q,. 

Then for -^- < q < » there exists Vp € Ej(G) with 

(7.13) <Vp,V0> - F(0) « <f,0> for 0 € E«(G). 

If in addition J fhdx * 0, then for 1 < q * ---- there is again Vp e E*(G) with 
6 

(7.13). Clearly p is a weak solution of the Dirichlet problem "-Ap - f in G 
and p|^6 « 0

M. It is not difficult to see that for |x| >. Ro, Ro > R suffici­
ently big, a representation like as in (7.1) holds (since Ap • 0 for |x| > R). 
In case 1 < q <; -^j follows a * b - 0. That means |p(x)| <. -rfrn-i * 
In case -̂ - < q < n follows a - 0 and |p(x)| £ T^TS-2- Analogous results hold 
for the Neumann problem. 
Most important applications are in connection with the Stokes problem in 
bounded as well as in exterior domains. With ideas similar to that one used 
here, Galdi and Simader [3] proved existence, uniqueness and L^-estimates for 
the Stokes problem in exterior domains G c IR3. 
A most convincing application of Theorem 4.1 is given in Simader and Sohr [8] 
in their proof of the Helmholtz decomposition. Moreover, in turn the Helmholtz 
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decomposition is equivalent (see [8]) to Theorem 4.L The results in [8] 
extend those given by Fujiwara and Morimoto [2] to unbounded domains too. 
It is well known (see e.g. [5], p. 337 and p. 341 or [6], p. 99 and p. 103) 
that for bounded domains G with dG e C1 and 1 < s < « there is a well defined 
continuous linear trace operator Vs : H

1*8^) -> W1~1/S'S(3G) such that for 
p € CH6) we have V8p -= p|aG# If W"1/S'»S'(3G) :-= («---'•»• (3G))* equipped 
with the "dual space norm", then in [8] is shown that for the subspace 
FS'(G) := (Vp € ES'(G) : Ap 6 LS'(G)} of ES'(G) equipped with norm 
1^!-*' :* (II^PII8' + ll--P|s')1/s' there is a continuous linear trace operator 
Ss, : F

S'(G) -> W~1/S'»S'(3G) such that for p e Cfl0(6) we have S, ,(Vp) = 3Np|dG, 

where 3Np|«G(x) • 2 Hi(x)dip(x)\Qr and N(x) denotes the outward unit normal 

vector in x0 at 3G. 

Via difference quotient methods, using (4.1) and (4.4) respectively, like as 

in the case q - 2 higher differentiability properties of weak solutions of 

e.g. equation (7.13) can be proved (compare e.g. [7]. 

The case of arbitrary elliptic operators of second order for G bounded, and 

under additional asymptotic assumptions for the coefficients for exterior 

domains, is reduced to A by elementary coordinate transform and standard 

localization procedures. 
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