NAFSA 4

Christian G. Simader

The weak Dirichlet and Neumann problem for the Laplacian in L^{q} for bounded and exterior domains. Applications

In: Miroslav Krbec and Alois Kufner and Bohumír Opic and Jiří Rákosník (eds.): Nonlinear Analysis, Function Spaces and Applications, Proceedings of the Spring School held in Roudnice nad Labem, 1990, Vol. 4. B. G. Teubner Verlagsgesellschaft, Leipzig, 1990. Teubner Texte sur Mathematik, Band 119. pp. 180--223.

Persistent URL: http://dml.cz/dmlcz/702444

Terms of use:

© Institute of Mathematics AS CR, 1990

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

The weak Dirichlet and Neumann problem for the Laplacian in Lq

for bounded and exterior domains. Applications.

Christian G. Simader

Abstract

The purpose of these lectures is to present a rather elementary and selfcontained approach to the weak first and second boundary value problem for the Laplacian in $L q$ where $1<q<\infty$. These problems are basic for a lot of applications in mathematical physics, like as e.g. Stokes' problem. From the viewpoint of applications it is necessary to consider as well bounded as exterior domains. Our approach rests on two variational inequalities in La and a type of regularity argument. The results presented here are part of a joint work with H. Sohr (Paderborn/FRG) [9].

1. Notations. Throughout this paper $G \subseteq \mathbb{R}^{n}(n \geq 2)$ denotes a domain, i.e. G is open and connected. G is called an exterior domain if G is a domain and if there exists a bounded open set $\phi \neq K \subset \mathbb{R}^{n}$ such that $G=\mathbb{R}^{n} \backslash K$. Without loss of generality we may assume $0 \in K$. If $G \subseteq \mathbb{R}^{n}$ is a domain we write $\partial G \in C^{1}$ if the boundary is of class C^{1}. If A, B are subsets of \mathbb{R}^{n} we write $A \subset C$ if A and B are open, \AA is compact and $\AA \subset B$. For $x \in \mathbb{R}^{n}$ and $r>0$ by $B_{r}(x)$ we denote the open ball with radius r centered a x. If $x=0$ we use the abbreviation $B_{r}:=B_{r}(0)$. If $M \subset \mathbb{R}^{n}$ is a Lebesgue measurable subset of \mathbb{R}^{n} by $|M|$ we denote its Lebesgue measure. Let $1<q<\infty$ and let q^{\prime} be defined by $\frac{1}{q}+\frac{1}{q}$, $=1$, that is $q^{\prime}=\frac{q}{q-1}$. Observe $\left(q^{\prime}\right)^{\prime}=q$. For a domain $G \subset \mathbb{R}^{n}$ by $L q(G)$ we denote the usual (real) Lebesgue space equipped with norm $\|u\|_{L_{(G)}}:=\|u\|_{q, G}:=$ $\left(\int_{G}|u(x)| q^{q} d x\right)^{1 / q}$. For $f \in L^{q}(G)$ and $g \in L^{\prime}(G)$ we write $\langle f, g\rangle:=\int_{G}^{G} f(x) g(x) d x$. If $f \in\left(L^{q}(G)\right)^{n}, g \in\left(L^{\prime}(G)\right)^{n}$ are vector fields we use the same notation $\langle f, g\rangle:=\sum_{i=1}^{n}\left\langle f_{i}, g_{1}\right\rangle$. Beside the usual space
$L_{l o c}^{q}(G):=\left\{f: G \rightarrow \mathbb{R}: f\right.$ measurable in G and $\left.f\right|_{X} \in L q(K)$ for each $\left.K \subset \subset G\right\}$
we use the convenient abbreviation
$L_{\text {loc }}^{q}(\mathbb{G}):=\left\{f: G \rightarrow \mathbb{R}: f\right.$ measurable in G and $\left.f\right|_{G \cap B_{R}} \in L \mathbb{G}\left(G \cap B_{R}\right)$ for each $\left.R>0\right\}$.
We write in the sequel $G_{R}:=G \cap B_{R}$. Observe that for G bounded $L_{l o c}^{q}(G)=L q(G)$.

So the notation $L_{l o c}^{q}(\bar{G})$ is interesting only in connection with unbounded domains. In the same sense we use the notation $C_{0}^{\infty}(\mathbb{G}):=\left\{\left.\phi\right|_{G}: \phi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)\right\}$. Observe again for G bounded that $C_{0}^{\infty}(G)=C^{\infty}(\mathcal{G})$. For $i=1, \ldots, n$ by $\partial_{1}:=\frac{\partial}{\partial x_{1}}$ we denote the partial derivates, $\nabla:=\nabla_{n}:=\left(\partial_{1}, \ldots, \partial_{n}\right)$ denotes the gradient and $\Delta:=\Delta_{n}:=\partial_{1}^{2}+\ldots+\partial_{n}^{2}$ the Laplacian. If X is a Banach space by X^{*} we denote the dual space equipped with norm

$$
\left\|x^{*}\right\|_{x^{*}}:=\sup _{0 \neq x \in x} \frac{\left|x^{*}(x)\right|}{\|x\|_{x}} \quad \text { for } x^{*} \in X^{*} .
$$

2. Sobolev spaces. For $1 \leq q<\infty$ and a domain $G \subset \mathbb{R}^{n}$ by $H^{1, q}(G):=\{p \in \operatorname{Lq}(G):$ $\left.\partial_{1} p \in \operatorname{Lq}(G), i=1, \ldots, n\right\}$ we denote the usual Sabolev space equipped with norm $\|p\|_{1, q}:=\left(\|p\|_{q}^{q}+\|\nabla p\|_{q}^{q}\right)^{1 / q}$ where $\|\nabla p\|_{q}:=\left(\sum_{i=1}^{n}\left\|\partial_{1} p\right\|_{q}^{q}\right)^{1 / q}$. Observe that this norm is equivalent to the norm $\left(\int_{G}|\nabla p(x)| q d x\right)^{1 / q}$ where $|\nabla p|=\left(\sum_{1}\left(\partial_{1} p\right)^{2}\right)^{1 / 2}$.
Here $\partial_{1} p$ denotes the weak ($=$ distributional) derivative of p. For the well known properties of these spaces we refer e.g. to Ne as [6] or Kufner, John, Fu ik [5]. As usual $H_{0}^{1, q}(G):=\overline{C_{0}^{\infty}(G)}\|\cdot\|_{1, q}$. Considering for G bounded the space $H_{0}^{1, q}(G)$, because of the elementary Poincare-inequality

$$
\begin{equation*}
\|p\|_{q} \leq C(G)\|\nabla p\|_{q} \quad \text { for } p \in C_{0}^{\infty}(G) \tag{2.1}
\end{equation*}
$$

a norm being equivalent to $\|p\|_{1, q}$ is defined by $\|\nabla p\|_{q}$. If G is a bounded domain say with boundary $\partial G \in C^{1}$ (or if G is convex, see e.g. [4]) then the general Poincaré-inequality

$$
\begin{equation*}
\|p\|_{q} \leq C(G)\|\nabla p\|_{q} \quad \text { for } p \in H^{1, q}(G) \text { with } \int_{G} p d y=0 \tag{2.2}
\end{equation*}
$$

holds true. Considering the quotient space $H^{1, q}(G) / \mathbb{R}$ (identifying elements whose difference is constant) then again by $\|\nabla p\|_{q}$ an equivalent norm on $H^{1, q}(G) / \mathbb{R}$ is defined. This procedure is no longer possible for G unbounded. But from the viewpoint of applications we have to use Sobolev spaces equipped with the (order homogeneous) norm $\|\nabla p\|_{q}$. For this purpose we define for a domain $G \subset \mathbb{R}^{n}$ with boundary $\partial G \in \mathbb{C}^{1}$ and for $1 \leq q<\infty$
(2.3) $E q(G):=\left\{\nabla p: p \in L_{l o c}^{q}(\bar{G}), \nabla p \in L^{q}(G)^{n}\right\}$.

This space is equipped with norm $\|\nabla p\|_{q}$. Observe that for G bounded we have $E^{q}(G)=\left\{\nabla p: p \in H^{1, q}(G)\right\}$. For technical reasons we need the following lemma
(compare [8], Lemma 2.2) admitting an elementary proof using solely the Poincaré-inequality (2.2) for balls:

Lemma 2.1. Let $n \geq 2$ and let $G \subset \mathbb{R}^{n}$ be a domain. Let $1 \leq q<\infty$ and let a sequence $\left(p_{1}\right) \subset H_{l o c}^{1, q}(G)$ be given such that $\left(\nabla p_{1}\right)$ is a Cauchy sequence in $L_{l o c}^{q}(G)^{n}$. Then there exists a sequence $\left(c_{1}\right) \subset \mathbb{R}$ and some $p \in H_{l o c}^{1, q}(G)$ such that $\left(p_{1}-c_{1}\right)$ converges in $H_{l o c}^{1, q}(G)$ to p. The sequence $\left(c_{i}\right)$ may be chosen independently of \mathbf{q}.

Using this lemma and the fact that for $\partial G \in C^{1}$ we may conclude from $p \in L_{l o c}^{1}(G)$ with $\nabla p \in L^{q}(G)$ that $p \in L_{l o c}^{q}(\bar{G})$ (see e.g. Necas [6], p. 114), it is not too hard to see that $E q(G)$ is complete. Since $E q(G)$ for $1<q<\infty$ may be regarded as a closed subspace of the reflexive space $\mathrm{Lq}^{(G)} \mathrm{G}^{n}$ it is reflexive too. So we end with

Theorem 2.2. Let $G \subset \mathbb{R}^{n}$ be a domain with boundary $\partial G \in C^{1}$ and let $1<q<\infty$. Then $E q(G)$ is a reflexive Banach space. For $q=2 E^{2}(G)$ is a Hilbert space with inner product $\langle\nabla p, \nabla \phi\rangle$ for $\nabla p, \nabla \phi \in E^{2}(G)$.

Next we study approximation properties. If G is bounded with $\partial G \in C^{1}$ from the fact $E(G)=\left\{\nabla p: p \in H^{1, q}(G)\right\}$ and the classical density result for Sobolev spaces $H^{1, q}(G)=\overline{C^{\infty}(G)}\|\cdot\|_{1, q}$ (compare e.g. Ne as [6], p. 67) we immediately derive

Theorem 2.3. Let $G \subset \mathbb{R}^{n}$ be a bounded domain with boundary $\partial G \in C^{1}$ and let $1<q<\infty$. Then
(2.4) $E q(G)=\overline{\left\{\nabla p: p \in C^{\infty}(\bar{G})\right\}}\|\cdot\|_{q}$

For exterior domains we get

Theorem 2.4. Let $G \subset \mathbb{R}^{n}$ be an exterior domain with boundary $\partial G \in C^{1}$ and let $1<q<\infty$. Then
(2.5) $E Q(G)=\overline{\left\{\nabla p: p \in C_{o}^{\infty}(\tilde{G})\right\}}\|\cdot\|_{G}$

Proof. i) For $k \in \mathbb{N}$ let $R_{k}:=\left\{x \in \mathbb{R}^{n}: k<|x|<2 k\right\}$. Then there is $k_{0} \in \mathbb{N}$ such that $R_{k} \subset \subset G$ for $k \geq k_{0}$. For $k=1, R_{1}$ is a C^{1}-domain and the Poincaré-
inequality (2.2) holds for q with $1<q<\infty$ and for R_{1} with a certain constant $C_{1}=C_{1}(q)>0$. If $k \in \mathbb{N}$ and $u \in H^{1, q}\left(R_{k}\right)$ with $\int u d y=0$ then with $p(x):=u(k x)$ for $x \in R_{1}$, we have $p \in H^{1, q}\left(R_{1}\right)$. Further
$\int_{R_{1}} p(x) d x=k^{-n} \int_{R_{k}} u(y) d y=0, \quad\|p\|_{q, R_{1}}=k^{-n / q}\|u\|_{q, R_{k}}$,

$$
\begin{equation*}
\|u\|_{q, R_{k}} \leq k \cdot C_{1}\|\nabla u\|_{q, R_{k}} \quad \text { for } u \in H^{1, q}\left(R_{k}\right) \text { with } \int_{R_{k}} u d y=0 \text {. } \tag{2.6}
\end{equation*}
$$

ii) Choose $\rho \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right), 0 \leq \rho \leq 1$ with $\rho(x)=1$ for $|x| \leq 1$ and $\rho(x)=0$ for $|x| \geq 2$. For $k \in \mathbb{N}$ put $\rho_{k}(x):=\rho\left(k^{-1} x\right)$. Then $\operatorname{supp} \nabla \rho_{k} \subset R_{k}$ and $\left|\nabla \rho_{k}(x)\right| \leq$ $M \cdot k^{-1}$ where $M=\max _{z \in \mathbb{R}^{n}}|\nabla \rho(z)|$. Take now some $p: G \rightarrow \mathbb{R}$ such that $\nabla p \in E^{q}(G)$. For $k \geq k_{0}$ put $h_{k}(x)^{z \in R^{n}}:=\rho_{k}(x)\left(p(x)-c_{k}\right)$ where $c_{k}:=\left|R_{k}\right|^{-1} \int_{R_{k}} p d y$. By the properties of p and ρ_{k} we see $\left.h_{k}\right|_{G_{2 R}} \in H^{1, q}\left(G_{2 R}\right)$ where $G_{2 R}:=G \cap B_{2 R}^{R_{k}}$.
Further $\nabla h_{k}=\rho_{k} \nabla p+\nabla \rho_{k}\left(p-c_{k}\right)$. Clearly $\left\|\nabla p-\rho_{k} \nabla p\right\|_{q} \rightarrow 0$. Since supp $\nabla \rho_{k} \subset R_{k}$ we derive from (2.6)
$\left\|\nabla \rho_{k}\left(p-c_{k}\right)\right\|_{q, G} \leq M \cdot k^{-1}\left\|p-c_{k}\right\|_{q, R_{k}} \leq M \cdot C_{1}\left\|\nabla_{p}\right\|_{q, R_{k}} \rightarrow 0$
for $k \rightarrow \infty$. Therefore $\left\|\nabla p-\nabla h_{k}\right\|_{q, G} \rightarrow 0$. Since
$\left.p\right|_{G_{2 k}} \in H^{1, q}\left(G_{2 k}\right)=\overline{C^{\infty}\left(\bar{G}_{2 k}\right)}\|\cdot\|_{1, q}$ there exists $\phi_{k} \in C^{\infty}\left(\bar{G}_{2 k}\right)$ such that

$$
\left\|\nabla p-\nabla \phi_{k}\right\|_{q, G_{2 k}} \leq\left\|p-\phi_{k}\right\|_{1, q, G_{2 k}} \leq k^{-1} .
$$

Put $p_{k}:=\rho_{k}\left(\phi_{k}-d_{k}\right)$ where $d_{k}:=\left|R_{k}\right|^{-1} \int_{R_{k}} \phi_{k} d y$.
Then $p_{k} \in C_{o}^{\infty}(\bar{G})$ is vanishing outside $G_{2 k}$ and again by (2.6)
$\left\|\nabla h_{k}-\nabla p_{k}\right\|_{q} \leq\left\|\rho_{k}\left(\nabla p-\nabla \phi_{k}\right)\right\|_{q, G_{2 k}}+M \cdot k^{-1}\left\|\left(p-c_{k}\right)-\left(\phi_{k}-d_{k}\right)\right\|_{q, R_{k}}$

$$
\leq\left\|\nabla p-\nabla \phi_{k}\right\|_{q, G_{2 k}}+M C_{1}\left\|\nabla p-\nabla \phi_{k}\right\|_{q, R_{k}} \leq\left(1+M C_{1}\right) \cdot \frac{1}{k}
$$

Altogether we get $\left\|\nabla p-\nabla p_{k}\right\|_{q, \mathrm{c}} \rightarrow 0$.
As an interesting corollary we derive
Corollary 2.5. Let $G \subset \mathbb{R}^{n}$ be an exterior domain with boundary $\partial G \in C^{1}$ and let $1<q<\infty$.

Then
(2.7) $\quad E(G)=\overline{\left\{\nabla p: p \in H^{1, q}(G)\right\}}\|\cdot\|_{q}$

Proof. Clearly $\left\{\nabla p: p \in C_{0}^{\infty}(\bar{G})\right\} \subset\left\{\nabla p: p \in H^{1, q}(G)\right\} \subset E q(G)$ and (2.7) follows from (2.5).

As we will see later for exterior domains we have $\left\{\nabla p: p \in H^{1, q}(G)\right\} \nsubseteq E q(G)$.
In connection with the Dirichlet problem with homogeneous boundary data we consider for $1<q<\infty$ and $G \subset \mathbb{R}^{n}$ an open set the spaces
(2.8) $E_{0}^{q}(G):=\overline{\left\{\nabla \phi: \phi \in C_{0}^{\infty}(G)\right\}}\|\cdot\|_{q}$

Clearly $E_{0}^{q}(G) \subset E q(G)$. If G is bounded we immediately see by means of (2.1) that $E_{0}^{q}(G)=\left\{\nabla p: p \in H_{0}^{1, q}(G)\right\}$. This representation no longer holds for exterior domains. A useful partial substitute for (2.1) is given by

Theorem 2.6. Let $G \subset \mathbb{R}^{n}$ be an exterior domain, $G=\mathbb{R}^{n} \backslash K$ where $\phi \neq K \subset \subset \mathbb{R}^{n}$. Suppose $0 \in K$. Let $1<q<\infty$. Then there is a constant $C=C(q, G, n)>0$ such that for each $R>0$ with $K \subset \subset B_{R}$
(2.9) $\|p\|_{p, G_{R}} \leq C^{n / q}+1 / q^{\prime}\|\nabla p\|_{q, G}$
holds for $p \in C_{0}^{\infty}(G)$, where $q^{\prime}=\frac{q}{q-1}$.
Proof. Since $0 \in K$ and K is open there is $\delta>0$ such that $B_{\delta} \subset \subset K$. Let $p \in C_{o}^{\infty}(G)$. Then p vanishes in a neighborhood of B_{δ}. Let
$S:=\left\{\zeta \in \mathbb{R}^{n}:|\zeta|=1\right\}$ denote the unit sphere. For $0 \neq x \in \mathbb{R}^{n}$ write $x=r \zeta, r=|x|, \zeta=\frac{x}{|x|} \in S$. Then

$$
p(x)=p(r \zeta)=p(r \zeta)-p(0)=\int_{0}^{r} \sum_{i=1}^{n}\left(\partial_{i} p\right)(t \zeta) \zeta_{i} d t
$$

and by Hölder's inequality

$$
|p(r \zeta)|^{q} \leq r^{q-1} \int_{0}^{r}|\nabla p(t \zeta)| q d t
$$

Since p vanishes in B_{δ} we get after integrating with respect to $\zeta \in S$ for $0<\delta<r \leq R$
$\int_{S}|p(r \zeta)|^{q} d \omega_{\zeta} \leq R^{q-1} \int_{\delta}^{R} \frac{t^{n-1}}{t^{n-1}} \int_{S}|\nabla p(t \zeta)|^{q d} \omega_{\zeta} d t \leq \delta^{1-n R q-1}\|\nabla p\|_{q, G_{R}}^{q}$
Multiplying by r^{n-1} and integrating with respect to $r \in[0, R]$ yields (2.9).
As an immediate consequence we get

Theorem 2.7. Let $G \subset \mathbb{R}^{n}$ be an exterior domain and let $1<q<\infty$. Then
(2.10) $E_{0}^{q}(G)=\left\{\nabla p \in E q(G)\right.$: there exists a sequence $\left(p_{1}\right) \subset C_{0}^{\infty}(G)$ such that $\left\|\nabla p-\nabla p_{1}\right\|_{q} \rightarrow 0$ and $\left\|p-p_{i}\right\|_{q, G_{R}} \rightarrow 0$ for each $\left.R>0\right\}$

Proof. i) If $\nabla p \in E_{0}^{q}(G)$ then by (2.8) there is a sequence $\left(p_{1}\right) \subset C_{0}^{\infty}(G)$ such that $\left\|\nabla p_{1}-\nabla p_{j}\right\|_{q} \rightarrow 0$. By (2.9) $\left(p_{1}\right)$ is a Cauchy sequence in G_{k} for each fixed $k \in \mathbb{N}$. Denote the $L q\left(G_{k}\right)-1$ imit of $\left(p_{i}\right)$ by $p^{(k)}$. Then after eventually changing $p^{(k+1)}$ on a subset $N_{k} \subset G_{k}$ of measure zero we may assume $\left.p^{(k+1)}\right|_{G_{k}}=p^{(k)}$. So we get a measurable $p: G \rightarrow \mathbb{R}$ such that $\left.p\right|_{G_{R}} \in L q\left(G_{R}\right)$ for $R>0$ and for $\phi \in C_{0}^{\infty}(G)$ we conclude

$$
\left\langle p, \partial_{j} \phi\right\rangle=\lim _{i \rightarrow \infty}\left\langle p_{i}, \partial_{j} \phi\right\rangle=-\lim _{i \rightarrow \infty}\left\langle\partial_{j} p_{i}, \phi\right\rangle
$$

telling us that the distributional gradient of p is given by the Lq-limit of the sequence $\left(\nabla p_{1}\right)$. That is $\nabla p \in E q(G)$ and the above approximation property holds.
ii) If conversely ∇p belongs to the set at the right hand side of (2.10), by (2.8) we see $\nabla p \in E_{0}^{q}(G)$.

By the Sobolev embedding theorem ([6], p.69, [5], p.282) we see that for any domain $G \subset \mathbb{R}^{n}$ (bounded or unbounded) and $1<q<n$ holds
(2.11) $\nabla p \in E_{0}^{q}(G) \Rightarrow p \in L q^{*}(G)$ where $q^{*}=\frac{n q}{n-q}$.

To study conversely the case $q>n$ we first consider the Morrey-estimate (compare e.g. [1], p.242): Let $G \subset \mathbb{R}^{n}$ be an open set and $0<\alpha \leq 1$ and let $p \in C_{0}^{\infty}(G)$ with the property that there is a constant $M \geq 0$ such that
(2.12) $\int_{G \cap B_{r}\left(x_{0}\right)}|\nabla p| d x \leq M r^{n-1+\alpha}$
holds for all $x_{0} \in G$ and $r>0$. Then there is a constant $C=C(n, \alpha)>0$
independent of p such that for $x_{1}, x_{2} \in G$
(2.13) $\left|p\left(x_{1}\right)-p\left(x_{2}\right)\right| \leq C \cdot M\left|x_{1}-x_{2}\right|^{\alpha}$.

For last estimate compare in addition e.g. [6], p. 73 or [5], p. 289. If now $\nabla p \in E_{0}^{q}(G)$ with $q>n$ then

$$
\int_{G \cap_{B_{r}}\left(x_{0}\right)}|\nabla p| d x \leq\|\nabla p\|_{q ; B_{r}\left(x_{0}\right)}\left|B_{r}\left(x_{0}\right)\right|^{1 / q} \leq C_{1}\|\nabla p\|_{q} r^{n / q},
$$

where $C_{1}=C_{1}(n, q)>0$. Since $\frac{n}{q},=n-\frac{n}{q}=n-1+\left(1-\frac{n}{q}\right)$
(2.12) holds with $0<\alpha:=1-\frac{n}{q}<1$. By definition there is a sequence $\left(p_{i}\right) \subset C_{0}^{\infty}(G)$ such that $\left\|\nabla p-\nabla p_{1}\right\|_{q}^{q} \rightarrow 0$. By (2.9) $\left\|p-p_{i}\right\|_{q, G_{k}} \rightarrow 0$ for each $k \in \mathbb{N}$.
So we may select a subsequence again denoted by $\left(p_{i}\right)$ such that $p_{i} \rightarrow p$ a.e. in
G. With $M:=C_{1} \sup \left\|\nabla p_{i}\right\|_{q}<\infty$ (2.13) holds for the p_{i} and at the end for p $i \in \mathbb{N}$
and almost all $x_{1}, x_{2} \in G$. After changing p on a set of measure zero (2.13) holds for all $x \in G$. So p is Hölder-continuous with Hölder exponent $\alpha=1-\frac{n}{q}$. Suppose now that $G \subset \mathbb{R}^{n}$ is an exterior domain, $G=\mathbb{R}^{n} \backslash K$ where $0 \in K \subset \subset \mathbb{R}^{n}$. Given $\nabla p \in E_{0}^{q}(G)$ we may extend p by zero to the whole \mathbb{R}^{n} leading to $\nabla p \in E^{q}\left(\mathbb{R}^{n}\right)$. (2.13) holds for this extension too and because of $p(0)=0$ we get
(2.14) $|p(x)| \leq C M|x|^{1-n / q}$.

By no means p need to vanish near $x=\infty$, neither pointwise nor in any Ls-mean. Conversely let $\varphi \in C^{\infty}\left(\mathbb{R}^{n}\right), 0 \leq \varphi \leq 1, \varphi(x)=0$ for $|x| \leq \mathbb{R}$ and $\varphi(x)=1$ for $|x| \geq 2 R$ where $R>0$ is such that $K \subset B_{R}$. Let $q>n$ and $0<\lambda<1-\frac{n}{q}$ and put $p(x):=\varphi(x)|x|^{\lambda}$. Then p vanishes in a neighborhood of ∂G. Let $\rho \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$, $0 \leq \rho \leq 1, \rho(x)=1$ for $|x| \leq 1, \rho(x)=0$ for $|x| \geq 2$ and for $k \in \mathbb{N}$ let $\rho_{k}(x):=\rho\left(k^{-1} x\right)$ and put $p_{k}:=\rho_{k} p$. Then $p_{k} \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$.
Since $|\nabla p(x)| \leq c|x|^{\lambda-1}$ for $|x| \geq 2 R$ we see $|\nabla p| \in L q(G)$ for $q>n$ and $\left\|\nabla p\left(1-\rho_{k}\right)\right\|_{q} \rightarrow 0(k \rightarrow \infty)$. Since $\left|\nabla \rho_{k}(x)\right| \leq \frac{c}{|x|}$ for $k \leq|x| \leq 2 k$ we see $\left\|p \cdot \nabla \rho_{k}\right\|_{q} \rightarrow 0$ and therefore $\left\|\nabla p-\nabla p_{k}\right\|_{q} \rightarrow 0$, that is $p \in E_{0}^{q}(G)$.
3. Some auxiliary tools. First we need some facts on harmonic functions. If $G \subset \mathbb{R}^{n}$ is an open set and $u \in C^{\infty}(G), \Delta u=0$, then we have the two mean value properties: If $x \in G, R>0$ such that $B_{R}(x) \subset \subset G$, then

$$
\begin{align*}
& u(x)=\frac{1}{\omega_{n}} \int_{S} u(x+r \zeta) d \omega_{\zeta} \text { for } 0<r \leq \mathbb{R} \text { where } S=\left\{\zeta \in \mathbb{R}^{n}:|\zeta|=1\right\} \text { and } \tag{3.1}\\
& u(x)=\left|B_{r}(x)\right|^{-1} \int_{B_{r}(x)} u(y) d y \text { for } 0<r \leq \mathbb{R} \tag{3.2}
\end{align*}
$$

We consider Friedrichs' mollifier with a r a $d i a l$ depending kernel: $j \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right), j(z)=j(|z|), 0 \leq j(z), j(z)=0$ for $|z| \geq 1$ and $\int_{\mathbb{R}^{n}} j(z) d z=1$ (with suitable $c \geq 0$ choose e.g. $j(z):=c \exp \left[\left(1-|z|^{2}\right)^{-1} \sim\right.$ for $|z|<1$ and $j(z)=0$ for $|z| \geq 1)$. For $\epsilon>0$ put $j_{\epsilon}(z):=\epsilon^{-n} j\left(\frac{z}{\epsilon}\right)$ and for $f \in L^{1}(G)$ put

$$
\begin{equation*}
f_{\epsilon}(x):=\int_{G} j_{\epsilon}(x-y) f(y) d y=\left(j_{\epsilon}^{*} f\right)(x) \tag{3.3}
\end{equation*}
$$

As is well known (see e.g. [6], p. 58 or [5],p.72)

$$
f_{\epsilon} \in C^{\infty}\left(\mathbb{R}^{n}\right) \text { and }\left\|f-f_{\epsilon}\right\|_{L^{1}(G)} \rightarrow 0
$$

Suppose now that u is harmonic in G and let $x \in G, \epsilon_{0}>0$ such that $B_{\epsilon_{0}}(x) \subset \subset G$. Then introducing polar coordinates $y=x+r \zeta, \zeta \in S$, we get for $0<\epsilon \leq \epsilon_{0}$ $u_{\epsilon}(x)=\int j_{\epsilon}(x-y) u(y) d y=\int_{0}^{\epsilon} r^{n-1} j_{\epsilon}(r) \int_{S} u(x+r \zeta) d \omega_{\zeta} d r$
$B y$ (3.1) $\int u(x+r \zeta) d \omega_{\zeta}=\omega_{\mathrm{n}} u(x)$ and

$$
\int_{0}^{\epsilon} r^{n-1} j_{\epsilon}(r) d r \omega_{n}=\int j_{\epsilon}(z) d z=1 . \text { Therefore }
$$

$$
\begin{equation*}
u_{\epsilon}(x)=u(x) \text { for harmonic } u, B_{\epsilon}(x) \propto \subset G \text {. } \tag{3.4}
\end{equation*}
$$

Last observation admits a rather simple proof of
Theorem 3.1 (Weyl's lemma). Let $G \subset \mathbb{R}^{n}$ be open and $u \in L_{\text {loc }}^{1}(G)$ such that (3.5) $\int_{G} u(x) \Delta \phi(x) d x=0$ for $\phi \in C_{0}^{\infty}(G)$

Then u coincides a. e. in G with a harmonic C^{∞}-function.

$G=\bigcup_{k=1}^{\infty} G_{k}$ it suffices to proof the theorem for any $G^{\prime} \subset \subset G$. Choose a set $G^{\prime \prime}$ such that $G^{\prime} \subset \subset G^{\prime \prime} \subset \subset G$. Let $\epsilon_{\circ}:=\frac{1}{2} \min \left(\operatorname{dist}\left(G^{\prime}, \partial G^{\prime \prime}\right), \operatorname{dist}\left(G^{\prime \prime}, \partial G\right)\right)>0$. Then for $y \in G^{\prime \prime}$ and $0<\epsilon \leq \epsilon_{0}$ with $\phi(x):=j_{\epsilon}(y-x)$ we see $\phi \in C_{0}^{\infty}(G)$ and therefore by (3.5)

$$
0=\int u(x) \Delta_{x} j_{\epsilon}(x-y) d x=\int u(x) \Delta_{y} j_{\epsilon}(x-y) d x=\Delta u_{\epsilon}(y)
$$

Therefore u_{ϵ} is harmonic in $G^{\prime \prime}$. Let $0<\delta \leq \epsilon_{0}$ and $x \in G^{\prime}$. Then by (3.4)

$$
u_{\epsilon}(x)=u_{\epsilon \delta}(x)=u_{\delta \epsilon}(x)=u_{\delta}(x)
$$

since the convolutions commute. But then for $x \in G^{\prime} u_{\epsilon}(x)$ does not depend on ϵ. Since $u \in L^{1}\left(G^{\prime}\right)$ and $\left\|u-u_{\epsilon}\right\|_{L^{1}\left(G^{\prime}\right)} \rightarrow 0$ we conclude $u=u_{\epsilon}$ a.e. in G^{\prime}, proving the theorem since $u_{\epsilon} \in C^{\infty}\left(G^{\prime}\right)$ and $\Delta u_{\epsilon}=0$.

An easy consequence is now

Theorem 3.2. Let $1<q<\infty$. Then
(3.6) $\quad L q\left(\mathbb{R}^{n}\right)=\overline{\left\{\Delta \phi: \phi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)\right\}}\|\cdot\|_{q}$

Proof. Denote by M_{q} the right hand side of (3.6) and suppose $M_{q} \subsetneq L^{q}\left(\mathbb{R}^{n}\right)$. By the Hahn-Banach theorem there exists $F^{*} \in L^{G}\left(\mathbb{R}^{n}\right)^{*}$ with $\left\|F^{*}\right\|_{*}>0$ and $\left.F^{*}\right|_{M_{q}}=0$. Since $L^{q}\left(\mathbb{R}^{n}\right)^{*} \cong L^{q^{\prime}}\left(\mathbb{R}^{n}\right)$ isometrically isomorphic $\quad\left(q^{\prime}=\frac{q}{q-1}\right)$ there is $f \in L^{q^{\prime}}\left(\mathbb{R}^{n}\right),\|f\|_{q,}=\|F\|_{*}>0$ such that $F(g)=\langle f, g\rangle$ for $g \in L^{q}\left(\mathbb{R}^{n}\right)$. Since $\left.F\right|_{M_{q}}=0$ we conclude $\langle f, \Delta \phi\rangle=0$ for $\phi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$. By Theorem $3.1 f$ is harmonic (eventually after change on a set of measure zero) and for $x \in \mathbb{R}^{n}$ and arbitrary $r>0$ by (3.2)

$$
|f(x)| \leq\left|B_{r}(x)\right|^{-1} \int_{B_{r}(x)}|f(y)| d y \leq\left|B_{r}(x)\right|^{-1 / q^{\prime}}\|f\|_{q^{\prime}, \mathbb{R}^{n}} \rightarrow 0
$$

for $r \rightarrow \infty$. Therefore $f \equiv 0$ contradicting $\|f\|_{q^{\prime}}>0$.

With the fundamental solution

$$
S(z):= \begin{cases}\frac{2}{(n-2) \omega_{n}}|z|^{2-n} & \text { for } n \geq 3 \\ -\frac{1}{2 \pi} \ln |z| & \text { for } n=2\end{cases}
$$

we have for $u \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ the representation

$$
\begin{equation*}
u(x)=-\int S(x-y) \Delta u(y) d y \tag{3.7}
\end{equation*}
$$

This formula is basic to derive La-estimates for second derivatives of u via

Theorem 3.3 (Calderon-Zygmund estimate). Let $n \geq 2$, $S_{n}:=\left\{z \in \mathbb{R}^{n}:|z|=1\right\}$ and let $K: S_{n} \rightarrow \mathbb{R}$ be a continuous function with the property $\int_{S_{n}} K(z) d \omega_{z}=0$. Let $l<q<\infty, f \in L^{q}\left(\mathbb{R}^{n}\right)$ and define for $\epsilon>0$

$$
\begin{aligned}
&\left(T_{\epsilon} f\right)(x):=\int \frac{K\left(\frac{x-y}{|x-y|}\right)}{|x-y|^{n}} f(y) d y \\
&\left\{y \in \mathbb{R}^{n}:|y-x| \geq \epsilon\right\}
\end{aligned}
$$

Then Tf := $\lim _{\epsilon \rightarrow 0} T_{\epsilon} f$ exists in $L^{q}\left(\mathbb{R}^{n}\right)$ and there is a constant $C=C(n, q, K)>0$ such that
(3.8) $\quad\|T f\|_{q} \leq C\|f\|_{q}$.

For a proof see e.g. [1], p.277, [10], p. 39

Theorem 3.4. Let $1<q<\infty$. Then there exists a constant $C=C(n, q)>0$ such that for $u \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$

$$
\begin{equation*}
\left(\sum_{j, k=1}^{n}\left\|\partial_{j} \partial_{k} u\right\|_{q}^{q}\right)^{1 / q} \leq c\|\Delta u\|_{q} \tag{3.9}
\end{equation*}
$$

Proof. By partial integration we derive from (3.7)

$$
\begin{aligned}
\partial_{j} u(x) & =-\int S(x-y) \Delta \partial_{j} u(y) d y \text { and therefore } \\
\partial_{k} \partial_{j} u(x) & =-\int \partial_{x_{k}} S(x-y) \partial_{j} \Delta u(y) d y= \\
& =-\lim _{\substack{\epsilon \rightarrow 0 \\
\epsilon>0}} \int \partial_{\substack{x_{k}}} S(x-|y-x|>\epsilon\}
\end{aligned}
$$

Let $\epsilon>0$ be fixed. Integrating by parts leads to

$$
\begin{aligned}
I_{\epsilon}(x):= & -\iint_{\{y:|y-x|>\epsilon\}} \partial_{x_{k}} S(x-y) \partial_{j} \Delta u(y) d y=\iint_{\{y:|y-x|=\epsilon\}}{\underset{x}{x_{k}}} S(x-y) \frac{y_{1}-x_{j} \mid}{|y-x|} \Delta u(y) d w_{y} \\
& +\iint_{\{y:|y-x|>\epsilon\}} \partial_{x_{k}} \partial_{y j} S(x-y) \Delta u(y) d y=: D_{\epsilon}(x)+T_{\epsilon}(x)
\end{aligned}
$$

For $n \geq 2$ and $x \neq y$ we have $\partial_{x_{k}} S(x-y)=\frac{1}{\omega_{n}} \frac{y_{k}-x_{k}}{|y-x|^{n}}$
and therefore writing $y=x+\epsilon \zeta, \zeta \in S_{n}$,

$$
D_{\epsilon}(x)=\frac{1}{\omega_{n}} \int_{S_{n}} \zeta_{k} \zeta_{j}(\Delta u)(x+\epsilon \zeta) d \omega_{\zeta}
$$

Since $u \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right), D_{\epsilon}$ has compact support too and is bounded. Since $\lim _{\epsilon \rightarrow 0} D_{\epsilon}(x)=\frac{\Delta u(x)}{n} \delta_{j k}$ we conclude by Lebesgue's theorem
(3.10) $\left\|\Delta u \cdot \frac{\delta_{j k}}{n}-D_{\epsilon}\right\|_{q} \rightarrow 0$.

Further $\partial_{x_{\mathbf{k}}} \partial_{y_{j}} S(x-y)=\frac{1}{\omega_{n}}\left[\frac{\delta_{j \mathbf{k}}}{|y-x|^{n}}-n \frac{\left(y_{\mathbf{k}}-x_{\mathbf{k}}\right)\left(y_{j}-x_{j}\right)}{|y-x|^{n+2}}\right]$
Writing $K(z):=\frac{1}{\omega_{n}}\left(\delta_{j k}-n z_{j} z_{k}\right)$ for $z \in S_{n}$ we get

$$
T_{\epsilon}(x)=\int_{\left\{y \in R^{n}:|y-x|>\epsilon\right\}} \frac{K\left(\frac{x-y}{|x-y|}\right)}{|x-y|^{n}} \Delta u(y) d y
$$

If $k=j$, then $\omega_{n} \int_{s_{n}} K(z) d \omega_{z}=\int_{s_{n}} d \omega_{z}-n \int_{s_{n}} z_{j}{ }^{2} d \omega_{z}=0$
If $k \neq j$, then $\omega_{n} \int_{s_{n}} K(z) d \omega_{z}=-n \int_{S_{n}} z_{j} z_{k} d \omega_{z}=0$
By Theorem 3.3 we then derive the existence of the Lq-1imit T of T_{ϵ} and by (3.8) $\|T\|_{q} \leq C\|\Delta u\|_{q}$. Combining this with (3.10) we are finished.
4. Main Theorems. A consequence of the following theorems is the weak solvability of the Dirichlet and of the Neumann problem in Lq for the Laplacian under the assumptions given there.

Theorem 4.1 ("Neumann problem"). Let $n \geq 2$ and let $G \subset \mathbb{R}^{n}$ be either a bounded or an exterior domain with boundary $\partial G \in C^{1}$ and let $1<q<\infty, q^{\prime}:=\frac{q}{q-1}$. Then:
a) There exists a constant $C=C(G, q)>0$ such that
(4.1) $\quad\|\nabla \mathrm{p}\|_{\mathrm{q}} \leq \underset{0 \neq \nabla \phi \in \mathrm{E}^{\prime}(\mathrm{G})}{ } \frac{|\langle\nabla p, \nabla \phi\rangle|}{\|\nabla \phi\|_{q^{\prime}}}$ for all $\nabla p \in \mathrm{Eq}^{\mathrm{q}}(\mathrm{G})$
b) For $F^{*} \in\left(E^{q^{\prime}}(G)\right)^{*},\left\|F^{*}\right\|_{\left(E^{q^{\prime}}\right)^{*}}:=\sup _{0 \neq \nabla \phi \in E^{G^{\prime}}(G)} \frac{\| F^{*}(\nabla \phi) \mid}{\|\nabla \phi\|_{q} \text {, }}$
there exists a unique $\nabla p \in E^{q}(G)$ such that

$$
\begin{equation*}
F^{*}(\nabla \phi)=\langle\nabla p, \nabla \phi\rangle \text { for all } \nabla \phi \in E^{q^{\prime}}(G) \tag{4.2}
\end{equation*}
$$

and
(4.3) $\quad\left\|\nabla_{p}\right\|_{q} \leq C\left\|F^{*}\right\|_{\left(⿷^{q^{\prime}}\right)^{*}} \leq C\|\nabla p\|_{q}$
with the same constant $C>0$ as in (4.1).

Theorem 4.2 ("Dirichlet problem"). Let $n \geq 2$ and $G \subset \mathbb{R}^{n}$ be either bounded or an exterior domain and assume $\partial G \in C^{1}$.
a) If G is bounded, let $1<q<\infty$.

If G is an exterior domain and if $n \geq 3$ let $1<q<n$ and if $n=2$ let
$1<q \leq 2$. Then there exists a constant $C=C(G, q)>0$ such iast
(4.4) $\quad\|\nabla p\|_{q} \leq \sup _{0 \neq \nabla \phi \in \mathrm{Eq}^{\prime}(G)} \frac{\left|\left\langle\nabla_{p}, \nabla \phi\right\rangle\right|}{\|\nabla \phi\|_{q},}$
holds for all $\nabla p \in E_{o}^{q}(G)$.
b) If G is bounded, let $1<q<\infty$.

If G is an exterior domain and if $n \geq 3$, let $\frac{n}{n-1}<q<n$ and if $n=2$ let
$q=2$. Then for $F^{*} \in\left(E_{0}^{q^{\prime}}(G)\right)^{*}, q^{\prime}=\frac{q}{q-1},\left\|F^{*}\right\|_{\left(E^{q}\right)^{*}}:=\sup _{0 \neq \nabla \phi \in E_{0}^{G^{\prime}}(G)} \frac{\left|F^{*}(\nabla \phi)\right|}{\|\nabla \phi\|_{q^{\prime}}}$
there exists a unique $\nabla p \in E_{0}^{q}(G)$ such that
(4.5) $F^{*}(\nabla \phi)=\langle\nabla p, \nabla \phi\rangle$ for all $\nabla \phi \in E_{0}^{q^{\prime}}(G)$
and
(4.6) $\|\nabla p\|_{q} \leq C\left\|F^{*}\right\|_{\left(E_{0}^{q^{\prime}}\right)^{*}} \leq C\|\nabla p\|_{q}$
with the constant $C>0$ from (4.4).
In case $n=q=2$ for the exterior domain too a) and b) are trivially satisfied by the Frechet-Riesz theorem. If e.g. $n \geq 3$ and $q \geq n$ in case of an exterior domain there is a one-dimensional exceptional space such that (4.4) don't hold. This case has to be treated separately and demands a more detailed analysis.
5. A priori estimates. Roughly spoken the proof of (4.1) resp. (4.4) is based on local estimates of the same type and at the end is performed by a partition of unity. The local estimates are derived from estimates in the whole space (interior estimates) and in the half-space (estimates up to the boundary). The case of the half-space is reduced in both cases to that of the whole space by means of reflection arguments. It turns out that the uniqueness results of Theorem 5.18 are decisive. These in turn are based on certain "regularity" properties, that is, e.g. under the assumptions of Theorem 4.1 we may conclude if $\nabla p \in E^{q}(G)$ for a q with $1<q<\infty$ and $\langle\nabla p, \nabla \phi\rangle=0$ for all $\nabla \phi \in E q^{\prime}(G)$, then $\nabla p \in L^{2}(G)$, analogously for the Dirichlet problem. For this reason we proof in Lemma 5.2 the estimates as well as the regularity property. The idea how part b) in Theorems 4.1 and 4.2 is derived from part a) by purely functional analytic considerations may be read off from Lemma 5.1.

In the following let $G \subset \mathbb{R}^{n}$ be a domain and $1<s<\infty$. For $\mathbf{i}=0$ we write $E_{0}^{s}(G)$ (compare 2.8) and for $i=1$ let $E_{1}^{s}(G):=E^{s}(G)$.
We say that G has property $P_{a}^{i}(s)$ for $i=0$ or 1
if there exists a constant $C_{s}=C(s, G)>0$ such that
(5.1.s.i) $\|\nabla p\|_{s} \leq C_{s} \sup _{0 \neq \nabla \phi \in \mathbb{E}_{i}^{\prime}(G)} \frac{\langle\nabla p, \nabla \phi\rangle}{\|\nabla \phi\|_{s^{\prime}}}$
holds for all $\nabla p \in E_{i}^{s}(G), w$ here $s^{\prime}=\frac{s}{s-1}$.
We say that G has the property $P_{b}^{i}(s)$ for $i=0$ or 1 if
the map $\sigma_{s}^{i}: E_{i}^{s}(G) \rightarrow\left(E_{i}^{s^{\prime}}(G)\right)^{*}$ defined by $\sigma_{s}^{i}: \nabla p \rightarrow\langle\nabla p,$.$\rangle (that is$ $\left(\sigma_{s}^{i}(\nabla p)\right)(\nabla \phi)=\langle\nabla p, \nabla \phi\rangle$ for $\nabla p \in E_{i}^{s}(G)$ and $\left.\nabla \phi \in E_{i}^{s^{\prime}}(G)\right)$ is a bijection and there is a constant $\mathcal{C}_{s}=\mathcal{C}(S, G)>0$ such that for $\nabla p \in E_{i}^{s}(G)$
(5.2.s.i)

$$
\mathcal{C}_{\mathrm{s}}\|\nabla p\|_{\mathrm{s}} \leq\left\|\sigma_{\mathrm{s}}^{i}(\nabla p)\right\|_{\left(\mathrm{E}_{\mathrm{i}}^{\prime}(G)\right)^{*}} \leq\|\nabla p\|_{\mathrm{s}}
$$

Lemma 5.1 Let $G \subset \mathbb{R}^{n}$ be a domain, $1<q<\infty$ and $q^{\prime}:=\frac{q}{q-1}$. For $\mathbf{i}=0$ or 1 holds: G has the property $P_{a}^{i}(s)$ for $s=q$ and $s=q^{\prime}$ if and only if G has the property $P_{b}^{i}(s)$ for $s=q$ and $s=q^{\prime}$.

Proof. We abbreviate $E_{i}^{s}:=E_{i}^{s}(G)$. Observe $\left(s^{\prime}\right)^{\prime}=s$.
i) Suppose G has the property $P_{a}^{i}(s)$ for $s=q$ and $s=q^{\prime}$.

By (5.2.s.i) we conclude for $\nabla p \in E_{i}^{s}$
(5.3.s.i) $C_{s}^{-1}\|\nabla p\|_{s} \leq \sup _{0 \neq \nabla \phi \in E_{i}^{s^{\prime}}} \frac{|\langle\nabla p, \nabla \phi\rangle|}{\|\nabla \phi\|_{s^{\prime}}}=\left\|\sigma_{s}^{i}(\nabla p)\right\|_{\left(E^{s^{\prime}}\right)} \leq\|\nabla p\|_{s}$

Therefore $\sigma_{s}^{i}\left(E_{i}^{s}\right)$ is a closed linear subspace of $\left(E^{s^{\prime}}\right)$ *. Suppose $\sigma_{s}^{i}\left(E_{i}^{s}\right) \subsetneq\left(E_{i}^{s^{\prime}}\right) *$. By the Hahn-Banach theorem there exists $F * * \in\left(E_{i}^{s^{\prime}}\right)$ ** such that $F * * \neq 0$ but $\left.F * *\right|_{\sigma_{s}^{i}\left(E_{i}^{s}\right)}=0$. Since $E_{i}^{s^{\prime}}$ may be regarded as a closed
subspace of the reflexive space $L^{s^{\prime}}(G)^{n}$, it is reflexive too and we may identify $\left(E_{i}^{s^{\prime}}\right)$ ** with $E_{i}^{s^{\prime}}$. Then there exists a unique $\nabla \phi \in E_{i}^{s^{\prime}}$ such that $F * *(F *)=F *(\nabla \phi)$ for all $F^{*} \in\left(E_{i}^{s^{\prime}}\right) *$ and $\|\nabla \phi\|_{s^{\prime}}=\|F * *\|_{\left(E_{i}^{s^{\prime}}\right) * *}^{.}>0$.
But for each $\nabla p \in E_{i}^{s}$ we then have $0=\left(\sigma_{s}^{i}(\nabla p)\right)(\nabla \phi)=\langle\nabla p, \nabla \phi\rangle$ and therefore by (5.1. $\left.\mathrm{s}^{\prime} . i\right)$ we conclude $\|\nabla \phi\|_{s^{\prime}}=0$ what is a contradiction.
ii) Suppose conversely that $P_{b}^{i}(s)$ holds for $s=q$ and $s=q^{\prime}$. Then because of $\sigma^{\prime}\left(E^{s^{\prime}}\right)=\left(E^{s}\right)^{*}$ and (5.2. $\left.s^{\prime} . i\right)$
$\|\nabla p\|_{s}=\sup _{0 \neq F^{*} \in\left(E_{i}^{s}\right)^{*}} \frac{F *(\nabla p)}{\|F *\|_{\left(E_{i}^{s}\right)^{*}} \leq \sup _{0 \neq \nabla \phi \in E_{i}^{s}}, \frac{\left.\mid \sigma_{s^{\prime}}^{i}(\nabla \phi)\right)(\nabla p) \mid}{\mathcal{C}_{s^{\prime}}\|\nabla \phi\|_{s^{\prime}}}=\mathcal{C}_{s^{\prime}}^{-1} \sup _{0 \neq \nabla \phi \in E^{s}}{ }_{i}^{\prime} \frac{\langle\nabla p, \nabla \phi\rangle}{\|\nabla \phi\|_{s^{\prime}}^{\prime}}, ~}$
Therefore (5.1.s.i) holds with $\mathcal{C}_{s}=\mathcal{C}_{s^{-1}}$.
In the terminology used above e.g. Theorem 4.1 tells that if G is bounded or an exterior domain with $\partial G \in C^{1}$ then G has property $P_{a}^{2}(q)$ and $P_{b}^{2}(q)$ for all $1<q<\infty$. Analogously we may understand Theorem 4.2. The proof of Theorems 4.1 and 4.2 is given via a number of steps. In fact we will prove more than section 4 says. First we show that the whole space and the half-space have property $P_{a}^{i}(q)$ for $1<q<\infty$ and $i=0$ and $i=1$ (and by Lemma 5.1 they have property $P_{b}^{i}(q)$ too). Then we will prove by a perturbation argument that a sufficiently small "bended" half-space (the "smalness" depends on q) has still property $P_{a}^{i}(q)$ for $\mathbf{i}=0,1$. The following lemma constitutes the basis for
all subsequent estimates. Solely in the proof of Lemma 5.2 we need estimate (3.9), a consequence of the Calderon-Zygmund-Theorem. Conversely, Remark 5.3 tells us that (3.9) is equivalent to the assertion of Lemma 5.2. According to (2.3) We have for $1<s<\infty$ that $E^{s}\left(\mathbb{R}^{n}\right)=\left\{\nabla p: p \in L_{l o c}^{s}\left(\mathbb{R}^{n}\right), \nabla p \in L^{s}\left(\mathbb{R}^{n}\right)\right\}$.

Lemma 5.2. Let $1<q<\infty, \quad 1<r<\infty$ and suppose $\nabla p \in E^{r}\left(\mathbb{R}^{n}\right)$ and

$$
\begin{equation*}
\sup _{0 \neq v \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)} \frac{|\langle\nabla p, \nabla v\rangle|}{\|\nabla v\|_{q^{\prime}}}<\infty . \tag{5.4}
\end{equation*}
$$

Then $\nabla p \in E^{q}\left(\mathbb{R}^{n}\right)$ and there is a constant $C_{1}=C_{1}(n, q)>0$ such that

$$
\begin{equation*}
\|\nabla p\|_{q} \leq c_{1} \sup _{0 \neq v \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)} \frac{|\langle\nabla p, \nabla v\rangle|}{\|\nabla v\|_{q^{\prime}}} . \tag{5.5}
\end{equation*}
$$

Proof. For $i=1, \ldots, n$ we conclude with $C_{1}:=C\left(n, q^{\prime}\right)^{-1}$ and $C\left(n, q^{\prime}\right)$ via Theorem 3.4 by means of (3.9)

$$
\begin{align*}
\text { 6) } & \infty>\sup _{0 \neq v \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)} \frac{|\langle\nabla p, \nabla v\rangle|}{\|\nabla v\|_{q^{\prime}}} \geq \sup _{0 \neq u \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)} \frac{\left|\left\langle\nabla p, \nabla \partial_{i} u\right\rangle\right|}{\left\|\nabla \partial_{i} u\right\|_{q^{\prime}}}= \tag{5.6}\\
= & \sup _{0 \neq u \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)} \frac{\left|\left\langle\partial_{1} p, \Delta u\right\rangle\right|}{\left\|\nabla \partial_{1} u\right\|_{q^{\prime}}} \geq C_{1} \sup _{0 \neq u \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)} \frac{\left|\left\langle\partial_{1} p, \Delta u\right\rangle\right| .}{\|\Delta u\|_{q^{\prime}}} .
\end{align*}
$$

From this we conclude that the linear functional $F *(f):=\left\langle\partial_{1} p, f\right\rangle$ for $f \in M:=\Delta u: u \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right) \subset L^{q^{\prime}}\left(\mathbb{R}^{n}\right)$ is well defined and continuous. By Theorem 3.2 M is dense in $L^{q^{\prime}}\left(\mathbb{R}^{\mathrm{n}}\right)$ with respect to Lq^{\prime}-norm. Therefore this functional may be uniquely and norm-preserving extended to a continuous linear functional on the whole space $L^{q^{\prime}}\left(\mathbb{R}^{n}\right)$. Therefore there is a unique $g \in L^{q}\left(\mathbb{R}^{n}\right)$ such that $\left\langle\partial_{i} p, \Delta u\right\rangle=\langle g, \Delta u\rangle$ for all $u \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$. From Weyl's lemma (Theorem 3.1) follows that $W:=\partial_{i} p-g$ is harmonic on \mathbb{R}^{n}. For fixed $x \in \mathbb{R}^{n}$ and $R>0$ by (3.2)

$$
W(x)=\left|B_{R}(x)\right|^{-1}\left(\int_{B_{R}(x)} \partial_{i} p(y) d y-\int_{B_{R}(x)} g(y) d y\right)
$$

and by Hölder's inequality

$$
|W(x)| \leq\left|B_{R}(x)\right|^{-\frac{1}{r}}\left\|\partial_{i}\right\|_{r}+\left|B_{R}(x)\right|^{-\frac{1}{q}}\|g\|_{q} \rightarrow 0(R \rightarrow \infty) .
$$

Therefore $\partial_{i} p=g \in L^{q}\left(\mathbb{R}^{n}\right)$ and again by Theorem 3.4

$$
\begin{equation*}
\sup _{0 \neq u \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)\|\Delta u\|_{q^{\prime}}} \frac{\left|\left\langle\partial_{i} p, \Delta u\right\rangle\right|}{}=\sup _{0 \neq f \in L^{q^{\prime}}\left(\mathbb{R}^{n}\right)} \frac{\left|\left\langle\partial_{1} p, f\right\rangle\right|}{\|f\|_{q^{\prime}}}=\left\|\partial_{i} p\right\|_{q^{\prime}} . \tag{5.7}
\end{equation*}
$$

Combining (5.6) and (5.7) yields (5.5).
It remains to show $p \in L_{l o c}^{q}\left(\mathbb{R}^{n}\right)$. Since $p \in L_{l o c}^{r}\left(\mathbb{R}^{n}\right) \subset L_{l o c}^{1}\left(\mathbb{R}^{n}\right)$ and given any ball $B_{R} \subset \mathbb{R}^{n}$ we see for the mollified functions
$c_{\epsilon}:=\left|B_{R}\right|^{-1} \int_{B_{R}} p_{\epsilon}(y) d y \rightarrow c:=\left|B_{R}\right|^{-1} \int_{B_{R}} p(y) d y$. Put $\tilde{p}_{\epsilon}:=p_{\epsilon}-c_{\epsilon}$. By (2.2)
with a constant $\gamma=\gamma(R, q)>0$
$\left\|\tilde{p}_{\epsilon^{\prime}}-\tilde{p}_{\epsilon}{ }^{\prime \prime}\right\|_{q, B_{R}} \leq \gamma\left\|\nabla\left(\tilde{p}_{\epsilon^{\prime}},-\tilde{p}_{\epsilon \prime}\right)\right\|_{q, B_{R}} \leq \gamma\left\|\nabla p_{\epsilon^{\prime}}-\nabla p_{\epsilon^{\prime \prime}}\right\|_{q} \rightarrow 0$.
Since (c_{ϵ}) converges in \mathbb{R} we conclude that ($p_{\epsilon^{\prime}}$) forms a Cauchy-sequence in $L^{q}\left(B_{R}\right)$ and has the limit $p_{1} \in L^{q}\left(B_{R}\right) \subset L^{1}\left(B_{R}\right)$ and therefore $\left\|p_{1}-p\right\|_{L^{1}\left(B_{R}\right)}=0$. So $p=p_{1} \in L^{q}\left(B_{R}\right)$.

Remark 5.3: Suppose $1<q<\infty$ and (5.5) holds for all $p \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$. Then (3.9) holds for all $p \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ too: Let $1 \leq i \leq n$. Then by (5.5)

$$
\left\|\nabla \partial_{1} p\right\|_{q} \leq C \sup _{0 \neq v \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)} \frac{\left|\left\langle\nabla \partial_{1} p, \nabla v\right\rangle\right|}{\|\nabla v\|_{q^{\prime}}}=C \sup _{0 \neq v \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)} \frac{\left|\left\langle\Delta p, \partial_{1} v\right\rangle\right|}{\|\nabla v\|_{q^{\prime}}} \leq c\|\Delta p\|_{q}
$$

immediately leading to (3.9).
An immediate consequence is the following density property.
Corollary 5.4. Let $1<q<\infty$. Then $E^{\infty}\left(\mathbb{R}^{n}\right):=\left\{\nabla v: v \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)\right\}$ is dense in $\mathrm{Eq}^{\mathrm{q}}\left(\mathbb{R}^{\mathrm{n}}\right)$ with respect to $\|\nabla \cdot\|_{q}$-norm.

Proof. Suppose $E^{\infty}\left(\mathbb{R}^{n}\right)$ is not dense in $E^{q}\left(\mathbb{R}^{n}\right)$. Then there exists $F^{*} \in\left(E^{q}\left(\mathbb{R}^{n}\right)\right)^{*}$ with $\left.F^{*}\right|_{E^{\infty}}=0,\left\|F^{*}\right\|_{\left(E^{q}\right)^{*}}>0$. By Theorem 5.2 we conclude that \mathbb{R}^{n} has property $P_{a}^{1}(s)$ for $s=q$ and q^{\prime}. Therefore by Lemma 5.1 there exists a unique $\nabla u \in E^{q^{\prime}}\left(\mathbb{R}^{n}\right)$ with $\|\nabla u\|_{q^{\prime}}>0$ such that $F^{*}(\nabla p)=\langle\nabla u, \nabla p\rangle$ for all $\nabla p \in E^{q}\left(\mathbb{R}^{n}\right)$. But since $F^{*}(\nabla v)=0$ for $\nabla v \in E^{\infty}\left(\mathbb{R}^{n}\right)$ by Lemma 5.2 we would conclude $\nabla u=0$ contradicting $\|\nabla u\|_{q}, ~ 0$.

Next we consider the half-space
(5.8) $H:=\left\{x=\left(x^{\prime}, x_{n}\right) \in \mathbb{R}^{n}: x^{\prime} \in \mathbb{R}^{n-1}, x_{n}<0\right\}$.

For $1<q<\infty$ and for $i=0$ let $E_{0}^{q}(H)$ be defined by (2.8) and let $E_{1}^{q}(H):=E^{q}(H)$.
Further we put

$$
\left\{\begin{array}{l}
E_{0}^{\infty}(H):=\left\{\nabla p: p \in C_{0}^{\infty}(H)\right\} \tag{5.10}\\
E_{1}^{\infty}(H):=\left\{\nabla p: p \in C_{0}^{\infty}(\bar{H})\right\} \equiv\left\{\left.\nabla p\right|_{\bar{H}}: p \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)\right\} .
\end{array}\right.
$$

Given $\nabla p \in E_{i}^{q}(H)(i=0$ or 1) we put
(5.11) $\quad p^{i}(x):=\left\{\begin{array}{l}p(x) \quad \text { for } x \in H \\ (-1)^{1+i} p\left(x^{\prime},-x_{n}\right) \text { for } x_{n} \geq 0\end{array} \quad\right.$ i=0 or 1
and for $\phi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ we put for $x \in H$ and $i=0$ or 1

$$
\begin{equation*}
\left(T_{1} \phi\right)(x):=\phi(x)+(-1)^{1+1} \phi\left(x^{\prime},-x_{n}\right) \tag{5.12}
\end{equation*}
$$

Lemma 5.5. Let $1<q<\infty$.

i) If $\nabla p \in E_{1}^{q}(H)$ then $\nabla p^{1} \in E\left(\mathbb{R}^{n}\right)$ and

$$
\begin{cases}\partial_{j} p^{1}(x)= \begin{cases}\partial_{j} p(x) \text { for } x \in H & \text { for } \mathfrak{i}=0 \text { or } 1 \\ (-1)^{1+1} \partial_{j} p\left(x^{\prime},-x_{n}\right) \text { for } x_{n} \geq 0 & \text { and } j=1, \ldots, n-1\end{cases} \tag{5.13}\\ \partial_{n} p^{1}(x)= \begin{cases}\left(\partial_{n} p\right)(x) \text { for } x \in H & i=0 \text { or } 1 \\ (-1)^{i}\left(\partial_{n} p\right)\left(x^{\prime},-x_{n}\right) \text { for } x_{n} \geq 0\end{cases} \end{cases}
$$

ii) For $\phi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ we have
a) $\nabla\left(T_{0} \phi\right) \in E_{1}^{\infty}(H),\left(T_{0} \phi\right)\left(x^{\prime}, 0\right)=0$ and therefore $\nabla\left(T_{0} \phi\right) \in E_{0}^{q}(H)$
b) $\nabla\left(T_{1} \phi\right) \in E_{1}^{\infty}(H)$
iii) Let $\nabla p \in E_{i}^{q}(H)(i=0$ or 1$)$. Then for $\phi \in C_{o}^{\infty}\left(\mathbb{R}^{n}\right)$
(5.14) $\left\langle\nabla p^{(1)}, \nabla \phi\right\rangle_{\mathbb{R}^{n}}=\left\langle\nabla p, \nabla\left(T_{1} \phi\right)\right\rangle_{H} \quad(i=0$ or 1$)$
(5.15) $\|\nabla p\|_{q, H} \leq\left\|\nabla p^{(1)}\right\|_{q, \mathbb{R}^{n}} \leq 2^{1 / q}\|\nabla p\|_{q, H}$ for $\nabla p \in E_{i}^{q}(H) \quad(i=1$ or 2$)$
(5.16) $\left\|\nabla\left(T_{1} \phi\right)\right\|_{q, H} \leq 2\|\nabla \phi\|_{q, \mathbb{R}^{n}}, i=0,1, \phi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$

Proof i) (5.13) and the integrability properties follow by elementary calculations. For $\nabla p \in E_{0}^{q}(H)$ observe definition (2.8).
ii) Let $\psi:=T_{0} \phi$ then clearly $\psi\left(x^{\prime}, 0\right)=0$. Let $\rho \in C^{\infty}(\mathbb{R}), \rho(t)=0$ for
$|t| \leq 1, \rho(t)=1$ for $|t| \geq 2,0 \leq \rho \leq 1$. For $k \in \mathbb{N}$ put $\rho_{k}(t):=\rho(k t)$.
Define $\psi_{k}(x):=\rho_{k}\left(x_{n}\right) \psi(x)$. Then $\psi_{k} \in C_{0}^{\infty}(H)$.
If for some $R>0 \operatorname{supp} \psi_{k} \subset Z_{R}:=\left\{x \in \mathbb{R}^{n}:\left|x^{\prime}\right| \leq R,-R \leq x_{n} \leq 0\right\}$, because of $\left|\psi\left(x^{\prime}, x_{n}\right)-\psi\left(x^{\prime}, 0\right)\right| \leq C(\nabla \psi)\left|x_{n}\right|$ we see $\left|\psi(x) \partial_{n} \rho_{k}\left(x_{n}\right)\right| \leq \operatorname{const}(\nabla \psi)$ and since
$\psi \partial_{\mathrm{n}} \rho_{\mathrm{k}}$ is vanishing outside $Z_{\mathrm{R}} \cap\left\{\mathrm{x}=\left(\mathrm{x}^{\prime}, \mathrm{x}_{\mathrm{n}}\right) \in \mathbb{R}^{\mathrm{n}}:-\frac{2}{k}<\mathrm{x}_{\mathrm{n}}<-\frac{1}{k}\right\}$ we get $\left\|\psi \cdot \partial_{n} \rho_{k}\right\|_{q} \rightarrow 0(k \rightarrow \infty)$. Therefore we immediately see $\left\|\nabla \psi-\nabla \psi_{k}\right\|_{q} \rightarrow 0$, therefore $\nabla \boldsymbol{\psi} \in \mathrm{E}_{\mathrm{o}}^{\mathrm{q}}(\mathrm{H})$. The remaining statements follow immediately by elementary calculations.

We need a further lemma seeming not to be obvious.
Lemma 5.6. Let $1<q, r<\infty$, let $\nabla p \in E_{0}^{r}(H)$ and suppose $\nabla p \in L^{q}(H)$. Then $\nabla p \in E_{0}^{q}(H)$.

Proof. i) Let $p \in C^{1}(\hat{H}), p\left(x^{\prime}, 0\right)=0$ for $x^{\prime} \in \mathbb{R}^{n-1}$ and let $\nabla p \in L^{q}(H)$. For $R>0$ define $Z_{R}:=\left\{x=\left(x^{\prime}, x_{n}\right) \in \mathbb{R}^{n}:-R<x_{n}<0\right\}$. Then for $x \in Z_{R}$ we get $p\left(x^{\prime}, x_{n}\right)=-\int_{x_{n}}^{0}\left(\partial_{n} p\right)\left(x^{\prime}, t\right) d t$. Applying Hölder's inequality and integrating with respect to $x \in Z_{R}$ we get

$$
\begin{equation*}
\|\mathrm{p}\|_{q, Z_{R}} \leq \mathrm{R}\left\|\partial_{\mathrm{n}} \mathrm{p}\right\|_{\mathrm{q}, \mathrm{Z}_{\mathrm{R}}} . \tag{5.17}
\end{equation*}
$$

Since (5.17) holds especially for $p \in C_{0}^{\infty}(H)$ we derive from the definition of $E_{0}^{q}(H)$ that (5.17) is true for $\nabla p \in E_{0}^{q}(H)$ too.
ii) Let now $p \in C_{0}^{1}(\bar{H}), p\left(x^{\prime}, 0\right)=0$. Consider ρ_{k} like as in part ii) of the proof of Lemma 5.5 and put $p_{k}(x)=\rho_{k}\left(x_{n}\right) p(x)$. Then $p_{k} \in C_{0}^{1}(H), \partial_{1} p_{k}=\rho_{k} \partial_{1} p$ for $\mathbf{i}=1, \ldots, n-1$ and $\partial_{n} p_{k}=\rho_{k} \partial_{n} p+p \cdot \partial_{n} \rho_{k}$. Clearly $\left\|\rho_{k} \partial_{1} p-\partial_{1} p\right\|_{q, H} \rightarrow 0$. Since $\left|\partial_{n} \rho_{k}\right| \leq c \cdot k$ and vanishes outside $Z_{2 k^{-1}}$ we get from (5.17)

$$
\begin{aligned}
& \left\|\partial_{n} \rho_{k} \cdot p\right\|_{q, H}=\left\|\partial_{n} \rho_{k} \cdot p\right\|_{q, Z_{2 k}-1} \leq c \cdot k \cdot 2 k^{-1}\left\|\partial_{n} p\right\|_{q, Z_{2 k}-1} \rightarrow 0 \text { and therefore } \\
& \left\|\partial_{n} p_{k}-\partial_{n} p\right\|_{q, H} \rightarrow 0 .
\end{aligned}
$$

For $0<\epsilon<k^{-1}$ we have $p_{k \epsilon} \in C_{0}^{\infty}(H),\left\|\nabla p_{k}-\nabla p_{k, \epsilon}\right\|_{q} \rightarrow 0$.
Therefore $\nabla p \in E_{0}^{q}(H)$.
iii) Let now $p \in C^{1}(\bar{H}), p\left(x^{\prime}, 0\right)=0, \nabla p \in L q(H)$.

Let $\eta \in C_{o}^{\infty}\left(\mathbb{R}^{n}\right), 0 \leq \eta \leq 1, \eta(x)=1$ for $|x| \leq 1, \eta(x)=0$ for $|x| \geq 2$ and put $\eta_{k}(x):=\eta\left(k^{-1} x\right)$ for $k \in \mathbb{N}$. By ii) $\nabla\left(\eta_{k} \cdot p\right) \in E_{0}^{q}(H)$. Clearly $\left\|\eta_{k} \nabla p-\nabla p\right\|_{q}, H \rightarrow 0$. Again by (5.17) because of $\left|\nabla \eta_{\mathbf{k}}(\mathrm{x})\right| \leq \mathrm{Ck}^{-1}$
(5.18) $\left\|p \cdot \nabla \eta_{k}\right\|_{q, H}=\left\|p \nabla \eta_{k}\right\|_{q, Z_{2 k}} \leq C k^{-1} \cdot 2 k\|\nabla p\|_{q, Z_{2 k}} \leq c\|\nabla p\|_{q, H}$.

Therefore $\left\|\nabla\left(\eta_{k} p\right)\right\|_{q} \leq C$ for all k. Clearly $\nabla p \in E^{q}(H) \supset E_{0}^{q}(H)$. We show now $\nabla\left(\eta_{k} p\right) \rightarrow \nabla p$ weakly in $E^{q}(H)$. Since $E_{0}^{q}(H)$ is weakly closed too this implies then $\nabla p \in E_{0}^{q}(H)$. Let $F^{*} \in E^{q}(H) *$. We may consider $E^{q}(H)$ as a closed subspace of $\mathrm{Lq}^{\mathrm{q}}(\mathrm{H})^{\mathrm{n}}$ and we may F^{*} extend normpreserving to an $\mathrm{F}^{*} \in\left(\mathrm{~L}^{q}(\mathrm{H})^{\mathrm{n}}\right)^{*}$. Then there is $f=\left(f_{1}, \ldots, f_{n}\right) \in L^{\prime}(H)$ such that $F^{*}(g)=\langle f, g\rangle_{H}=\sum_{i} \int_{H} f_{i} g_{1}$ for $g \in L^{q}(H)^{n}$.

Then $F^{*}\left(\nabla p-\nabla\left(\eta_{k} p\right)\right)=\int_{H} \sum_{i} f_{i}\left(1-\eta_{k}\right) \partial_{1} p-\int_{H} \sum_{i} f_{i} \partial_{1} \eta_{k} p$
Clearly the first integral tends to zero. By the properties of η_{k} the second integral reduces to an integral taken over $R_{k} \cap H=\{x \in H: k<|x|<2 k\}$ and therefore by (5.18) $\quad \sum_{i}\left|\int_{H} f_{i} \partial_{i} \eta_{k} \cdot p\right| \leq \sum_{i}\left\|f_{i}\right\|_{q^{\prime}, R_{k} O_{H}} \cdot C\|\nabla p\|_{q, H} \rightarrow 0$.
iv) Let now $\nabla p \in E_{0}^{r}(H)$ with $\nabla p \in L q(H)$. By Lemma 5.5 the extended function satisfies $\nabla p^{o} \in E_{0}^{r}\left(\mathbb{R}^{n}\right)$. Consider the mollified $\left(p^{0}\right)_{\epsilon}$ with radial depending mollifier kernel j_{ϵ}. Since $\nabla\left(p^{0}\right)_{\epsilon}=\left(\nabla p^{0}\right)_{\epsilon}$ we see moreover $\nabla\left(p^{0}\right)_{\epsilon} \in \mathbb{L a}^{q}\left(\mathbb{R}^{n}\right)$ and $\left\|\nabla p-\nabla\left(p^{0}\right)_{\epsilon}\right\|_{p, H}=\left\|\left.\nabla p^{0}\right|_{H}-\left.\nabla\left(p^{0}\right)_{\epsilon}\right|_{H}\right\|_{q, H}^{\epsilon} \leq\left\|\nabla p^{0}-\nabla\left(p^{0}\right)_{\epsilon}\right\|_{q, R^{n}} \rightarrow 0$.
Observe by the properties of the mollifier and (5.11) for $\mathfrak{i}=0$ that $\nabla\left(p^{0}\right)_{\epsilon}\left(x^{\prime}, 0\right)=0$ for $x^{\prime} \in \mathbb{R}^{n}$. By iii) we conclude $\left.\nabla\left(p^{\circ}\right)_{\epsilon}\right|_{H} \in E_{0}^{q}(H)$ and therefore $\nabla p \in E_{0}^{q}(H)$ too.

Remark 5.7 The linear space
$E_{v}^{q}(H):=\left\{\nabla p: p \in C^{1}(\bar{H}), p\left(x^{\prime}, 0\right)=0\right.$ for $x^{\prime} \in \mathbb{R}^{n-1}$ and $\left.\nabla p \in L^{q}(H)\right\}$
satisfies $E_{0}^{\infty}(H) \subset E_{v}^{q}(H) \subset E_{0}^{q}(H)$ and is therefore dense in $E_{0}^{q}(H)$.

Lemma 5.8 Let $1<q<\infty, 1<r<\infty$.

i) Let $\nabla p \in E_{0}^{r}(H)$ and

$$
d_{0}:=\sup _{0 \neq v \in C_{0}^{\infty}(H)} \frac{|\langle\nabla p, \nabla v\rangle|}{\|\nabla v\|_{q^{\prime}}, H}<\infty
$$

Then $\nabla p \in E_{0}^{q}(H)$ and

$$
\begin{equation*}
\|\nabla p\|_{q, H} \leq C_{2} \sup _{0 \neq v \in C_{0}^{\infty}(H)} \frac{|\langle\nabla p, \nabla v\rangle|}{\|\nabla v\|_{q^{\prime}, H}} \tag{5.19}
\end{equation*}
$$

Here $C_{2}=2 C_{1}$ with C_{1} by Lemma 5.2.
ii) Let $\nabla p \in E^{r}(H)$ and
$d_{1}:=\sup _{0 \neq v \in C_{0}^{\infty}(H)} \frac{|\langle\nabla p, \nabla v\rangle|}{\|\nabla v\|_{q^{\prime}, H}}<\infty$
Then $\nabla p \in E^{q}(H)$ and
(5.20) $\|\nabla p\|_{q, H} \leq C_{2} \sup _{0 \neq v \in C_{0}^{\infty}(\hat{H})} \frac{|\langle\nabla p, \nabla v\rangle|}{\|\nabla v\|_{q^{\prime}, H}}$.

Proof. In both cases we have with $p^{(1)}(i=0$ or 1) by (5.11) and by Lemma 5.5 that $\nabla p^{(1)} \in \mathrm{Eq}^{q}\left(\mathbb{R}^{\mathrm{n}}\right)$. For $\phi \in \mathrm{C}_{0}^{\infty}\left(\mathbb{R}^{\mathrm{n}}\right)$ we have by (5.14) for $\mathbf{i}=0$ or 1

$$
\left\langle\nabla p^{(1)}, \nabla \phi\right\rangle_{\mathbb{R}^{n}}=\left\langle\nabla p, \nabla\left(T_{1} \phi\right)\right\rangle_{H}
$$

For $\mathbf{i}=0$ by Lemma 5.5 part $i i)$ we get $\left(T_{0} \phi\right)\left(x^{\prime}, 0\right)=0$. Then with $v:=T_{0} \phi$ we have $v \in C_{0}^{1}(\bar{H}), v\left(x^{\prime}, 0\right)=0$. Like as in part $\left.i i\right)$ of the proof of Lemma 5.6 consider $v_{k}(x):=\rho_{k}\left(x_{n}\right) \cdot v(x)$. Then $v_{k} \in C_{0}^{1}(H)$ and clearly $v_{k \in} \in C_{0}^{\infty}(H)$ for $1<\epsilon<k^{-1}$. Since $\left\|\nabla v_{k}-\nabla v_{k \epsilon}\right\|_{r^{\prime}} \rightarrow 0$ and $\left\|\nabla v_{k}-\nabla v_{k \epsilon}\right\|_{q^{\prime}} \rightarrow 0$ we see $\left\langle\nabla p, \nabla v_{k \epsilon}\right\rangle\left\|\nabla v_{k \epsilon}\right\|_{q^{\prime}}^{-1} \rightarrow\left\langle\nabla p, \nabla v_{k}\right\rangle\left\|\nabla v_{k}\right\|_{q^{\prime}}^{-1}$ since $\nabla p \in L^{r}(G)$. Analogously (compare part ii) of proof of Lemma 5.6) we see $\left\|\nabla v-\nabla v_{\mathbf{k}}\right\|_{r}, \rightarrow 0,\left\|\nabla v-\nabla v_{\mathbf{k}}\right\|_{q}, \rightarrow 0$
 conclude

$$
\left|\langle\nabla p(0), \nabla \phi\rangle_{R^{n}}\right| \leq\left|\left\langle\nabla p, \nabla\left(T_{0} \phi\right)\right\rangle\right| \leq d_{0}\left\|\nabla T_{0} \phi\right\|_{q^{\prime}, H} \leq 2 d_{0}\|\nabla \phi\|_{q, \mathbb{R}^{n}} .
$$

For $\mathbf{i}=1$ analogously we get

$$
\left|\left\langle\nabla p^{(1)}, \nabla \phi\right\rangle_{\mathbb{R}^{n}}\right| \leq 2 d_{1}\|\nabla \phi\|_{q^{\prime} \mathbb{R}^{n}}
$$

By Lemma 5.2 we conclude $\nabla p^{1} \in \operatorname{Lq}\left(\mathbb{R}^{n}\right)$.
Since $\left.\nabla p^{(1)}\right|_{H}=\nabla p$ we see for $i=0$ by Lemma 5.6 that $\nabla p \in E_{0}^{q}(H)$. For $i=1$, from $\nabla p \in E^{r}(H)$ and $\nabla p \in \operatorname{Lq}(H)$ we conclude like at the end of the proof of Lemma 5.2 that $\nabla p \in E q(H)$. Estimates (5.19) and (5.20) then are trivial. Observe that in (5.19) the sup may be taken for $0 \neq \nabla v \in E_{0}^{q^{\prime}}(H)$ and in (5.20) for $0 \neq \nabla v \in E q^{\prime}(H)$.

In the next step we consider a "bended" half-space. Let $\omega \in C^{1}\left(\mathbb{R}^{n-1}\right)$ and $x^{\prime} \in \mathbb{R}^{n-1}$. We suppose that there is some $R=R(\omega)>0$ such that $\omega\left(x^{\prime}\right)=0$ for $\left|x^{\prime}\right| \geq R$. Then we define

$$
\begin{equation*}
H_{\omega}:=\left\{x=\left(x^{\prime}, x_{n}\right) \in \mathbb{R}^{n}: x^{\prime} \in \mathbb{R}^{n-1}, x_{n}<\omega\left(x^{\prime}\right)\right\} \tag{5.21}
\end{equation*}
$$

We want now to extend the results of Lemma 5.8 to H_{ω}. This will be done by a perturbation argument. For technical reasons we need a density result similar to Corollary 5.4.

Lemma 5.9. Let $1<q<\infty$ and let Ω denote either H_{ω} or a bounded domain or an exterior domain G with boundary $\partial G \in C^{1}$. Then $E^{\infty}(\Omega):=\left\{\nabla v: v \in C^{\infty}(\Omega)\right\}$ is dense in $E q(\Omega)$.

Sketch of proof. By well known techniques (see [5], [6]) given $\nabla v \in E q(\Omega)$ there exists $\nabla \tilde{v} \in E q\left(\mathbb{R}^{n}\right)$ such that $\left.\nabla \tilde{v}\right|_{\Omega}=\nabla v$ and $\|\nabla \tilde{v}\|_{q} \leq\|\nabla v\|_{q}$. Apply now Corollary 5.4.

Lemma 5.10. Let $l<q<\infty, 1<r<\infty$. Then there exists a constant $K=K(q, r, n)>0$ with the following property. If $\|\nabla \omega\|_{\infty}:=\sup _{x^{\prime} \in \mathbb{R}^{n-1}}\left|\nabla \omega\left(x^{\prime}\right)\right| \leq K$ then
i) a) there are constants $C(s)=C(s, K, n)$ such that
(5.22) $\quad\|\nabla p\|_{s, H_{\omega}} \leq C(s) \sup _{0 \neq v \in C_{0}^{\infty}\left(H_{\omega}\right)} \frac{|\langle\nabla p, \nabla v\rangle|}{\|\nabla v\|_{s^{\prime}}, H_{\omega}}$
holds for $\nabla p \in E_{0}^{s}\left(H_{\omega}\right)$ and $s=q, q^{\prime}, r, r^{\prime}$ (here $s^{\prime}=\frac{s}{s-1}$).
b) If $\nabla p \in E_{0}^{r}\left(H_{\omega}\right)$ and $D:=\sup _{0 \neq v \in C_{0}^{\infty}\left(H_{\omega}\right)} \frac{|\langle\nabla p, \nabla v\rangle|}{\|\nabla v\|_{q^{\prime}}{ }^{\prime} H_{\omega}}<\infty$ then $\nabla p \in E_{0}^{q}\left(H_{\omega}\right)$ and (5.22) holds for $s=q$.
ii) The assertions of i) hold true if $E_{0}^{s}\left(H_{\omega}\right)$ is replaced by $E^{s}\left(H_{\omega}\right)$ and $C_{0}^{\infty}\left(H_{\omega}\right)$ is replaced by $C_{0}^{\infty}\left(H_{\omega}\right) \quad(s=r, q)$.

Proof: i) We define $y: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ by

$$
\left\{\begin{array}{l}
y_{1}(x):=x_{1} \quad \text { for } i=1, \ldots, n-1 \tag{5.23}\\
y_{n}(x):=x_{n}-\omega\left(x^{\prime}\right)
\end{array}\right.
$$

then y maps \mathbb{R}^{n} one-to-one on $\mathbb{R}^{\mathrm{n}}, \mathrm{y} \in \mathbb{C}^{1}\left(\mathbb{R}^{\mathrm{n}}\right)$.
Further $\left.y\right|_{\omega}: H_{\omega} \rightarrow H$ is onto, $y\left(x^{\prime}, \omega\left(x^{\prime}\right)\right)=\left(x^{\prime}, 0\right)$ that is $y\left(\partial H_{\omega}\right)=\partial H$.
Further $J[y(x)]=1$. The inverse map is given by $x_{1}(y):=y_{i}(i=1, \ldots, n-1)$ and $x_{n}(y):=y_{n}+\omega\left(y^{\prime}\right)$. For $p \in C^{1}\left(H_{\omega}\right)$ we put $\tilde{p}(y):=p(x(y))$ for $y \in H$.

Then $\tilde{p} \in C^{1}(H), p(x)=\tilde{p}(y(x))$ and

$$
\left\{\begin{array}{l}
\partial_{1} p(x)=\left(\partial_{1} \tilde{p}\right)(y(x))-\left(\partial_{n} \tilde{p}\right)(y(x)) \partial_{1} \omega\left(x^{\prime}\right) \text { for } i=1, \ldots, n-1 \tag{5.24}\\
\partial_{n} p(x)=\left(\partial_{n} \tilde{p}\right)(y(x))
\end{array}\right.
$$

and conversely

$$
\begin{aligned}
& \left(\partial_{1} \tilde{p}\right)(y)=\left(\partial_{1} p\right)(x(y))+\left(\partial_{n} p\right)(x(y)) \partial_{1} \omega\left(y^{\prime}\right) \text { for } i=1, \ldots, n-1 \\
& \left(\partial_{n} \tilde{p}\right)(y)=\left(\partial_{n} p\right)(x(y))
\end{aligned}
$$

With the aid of Lemma 5.9 we immediately conclude for s with $1<s<\infty$: $\nabla p \in E^{s}\left(H_{\omega}\right)$ if and only if $\nabla \tilde{p} \in E^{s}(H)$ and $\nabla p \in E_{0}^{s}\left(H_{\omega}\right)$ if and only if $\nabla \tilde{p} \in E_{0}^{s}(H)$. From (5.24) we derive with a constant $d_{1}(s)=d_{1}(s, n)>0$ for $\nabla p \in \mathrm{E}^{\mathbf{s}}\left(\mathrm{H}_{\omega}\right)$
(5.25) $\|\nabla p\|_{s, H_{\omega}} \leq d_{1}(s)\left(1+\|\nabla \omega\|_{\infty}\right)\|\nabla \tilde{p}\|_{s, H}$

Let $\phi \in C_{0}^{\infty}\left(\bar{H}_{\omega}\right)$ and define $\bar{\phi}(y):=\phi(x(y))$ for $y \in H$. Then $\bar{\phi} \in C_{0}^{1}\left(\bar{H}_{\omega}\right)$: If $\nabla p \in E^{s}\left(H_{\omega}\right)$ then define

$$
\begin{aligned}
B_{\omega}[\nabla \tilde{p}, \nabla \bar{\phi}]: & =-\sum_{i=1}^{n-1} \int_{H}\left(\partial_{n} \tilde{p}(y) \partial_{1} \tilde{\phi}(y)+\partial_{1} \tilde{p}(y) \partial_{n} \tilde{\phi}(y)\right) \partial_{1} \omega(y) d y \\
& +\int_{H} \sum_{i=1}^{n-1}\left(\partial_{i} \omega\right)^{2}(y) \partial_{n} \tilde{p}(y) \partial_{n} \tilde{\phi}(y) d y
\end{aligned}
$$

and therefore with a constant $d_{2}(s)=d_{2}(s, n)$
(5.26) $\left|B_{\omega}[\nabla \tilde{p}, \nabla \bar{\phi}]\right| \leq d_{2}(s)\|\nabla \omega\|_{\infty}\left(1+\|\nabla \omega\|_{\infty}\right)\|\nabla \tilde{p}\|_{s, H}\|\nabla \tilde{\phi}\|_{\mathbf{s}^{\prime}, \mathrm{H}}$

From (5.24) via the change of variables formula we immediately derive
(5.27) $\quad\langle\nabla p, \nabla \phi\rangle_{H_{\omega}}=\langle\nabla \tilde{p}, \nabla \bar{\phi}\rangle_{H}+B_{\omega}[\nabla \tilde{p}, \nabla \bar{\phi}]$
and therefore by (5.25) for s^{\prime} and (5.26) for $\nabla \phi \neq 0$

$$
\begin{align*}
\frac{\left|\langle\nabla p, \nabla \phi\rangle_{H_{\omega}}\right|}{\|\nabla \phi\|_{s^{\prime}, H}} & \geq\left[d_{1}\left(s^{\prime}\right)\left(1+\|\nabla \omega\|_{\infty}\right)\right]^{-1}\left\{\frac{|\langle\nabla \tilde{p}, \nabla \tilde{\phi}\rangle|}{\|\nabla \bar{\phi}\|_{s^{\prime}, H}}-\right. \tag{5.28}\\
& \left.-d_{2}(x)\|\nabla \omega\|_{\infty}\left(1+\|\nabla \omega\|_{\infty}\right)\|\nabla \tilde{p}\|_{s, H}\right\}
\end{align*}
$$

ii) Choose now $K \leq 1$ such that $0<K \leq \min \left\{\left(4 C_{2}(s) d_{2}(s)\right)^{-1}: s=q, q^{\prime}, r, r^{\prime}\right\}$ with $C_{2}(s)>0$ by Lemma 5.8.
If $\nabla p \in E_{0}^{s}\left(H_{\omega}\right)$ we then get from (5.19) and (5.28) if $\|\nabla \omega\|_{\infty} \leq K \leq 1$

$$
\begin{aligned}
& \sup _{0 \neq \phi \in C_{0}^{\infty}\left(H_{\omega}\right)} \frac{|\langle\nabla p, \nabla \phi\rangle|}{\|\phi\|_{q^{\prime}} \cdot H} \geq\left(2 d_{1}\left(s^{\prime}\right)\right)^{-1}\left\{\sup _{0 \neq \phi \in C_{0}^{\infty}(H)} \frac{|\langle\nabla \tilde{p}, \nabla \tilde{\phi}\rangle|}{\|\nabla \tilde{\phi}\|_{s^{\prime}} \cdot H}-2 d_{2}(s) K\|\nabla \tilde{p}\|_{s, H}\right\} \geq \\
& \geq\left(2 d_{1}\left(s^{\prime}\right)^{-1}\left\{C_{2}(s)^{-1}\|\nabla \tilde{p}\|_{s, H}-2 d_{2}(s) \cdot K\|\nabla \tilde{p}\|_{s, H}\right\}\right. \\
& \geq\left(4 d_{1}\left(s^{\prime}\right) C_{2}(s)\right)^{-1}\|\nabla \tilde{p}\|_{s, H} \geq C(s)^{-1}\|\nabla p\|_{s, H} \\
& \quad \text { with } C(s):=\left(8 d_{1}\left(s^{\prime}\right) d_{1}(s) C_{2}(s)\right) .
\end{aligned}
$$

iii) If $\nabla p \in \mathrm{Eq}^{(}(\mathrm{H})$ and K is chosen like as in ii) then the analogous calculation using now (5.20) leads to (5.22) in that case too.
iv) In order to prove b) let $\nabla \mathrm{p} \in \mathrm{E}^{\mathrm{r}}\left(\mathrm{H}_{\omega}\right)$. We consider first the case $\mathrm{r} \geq \mathrm{q}$.

We use a cut-off procedure in order to reduce this case to the half-space. Let $R=R(\omega)>0$ denotes the constant with $\omega\left(x^{\prime}\right)=0$ for $\left|x^{\prime}\right| \geq R$ and choose $R_{1} \geq R$ such that $\max \left|\omega\left(x^{\prime}\right)\right| \leq R_{1}$. Choose $\varphi \in C^{\infty}\left(\mathbb{R}^{n}\right)$ such that $\varphi(x)=0$ for $|x| \leq R_{1}, \varphi(x)=1$ for $|x| \geq 2 R_{1}$ and $0 \leq \varphi \leq 1$.
Let $L:=\left\{x \in \mathbb{R}^{n}: x \in H, R_{1}<|x|<2 R_{1}\right\} \subset H_{\omega}$. Given $h \in C_{0}^{\infty}(\bar{H})$ we choose $c(h) \in \mathbb{R}$ such that with $\bar{K}:=h+c(h)$ we have $\int_{L} \bar{h} d x=0$. By the properties of φ we get

$$
\begin{align*}
\langle\nabla(\varphi p), \nabla h\rangle & =\langle\nabla(\varphi p), \nabla \hbar\rangle= \tag{5.29}\\
& =\langle\nabla p, \nabla(\varphi \hbar)\rangle-\langle\nabla p, \nabla \varphi \hbar\rangle+\langle p \nabla \varphi, \nabla \hbar\rangle
\end{align*}
$$

By the Poincaré-inequality (2.2) we get with a constant $c_{1}>0$
(5.30) $\quad\|\hbar\|_{q^{\prime}, L} \leq c_{1}\|\nabla \hbar\|_{q^{\prime}, L} \leq c_{1}\|\nabla h\|_{q,}$

Since $r \geq q$ we have $\|\nabla p\|_{q, L} \leq c_{3}\|\nabla p\|_{r, L}$ and therefore

$$
\begin{equation*}
|\langle\nabla p, \nabla \varphi \overline{ } \quad\rangle| \leq c_{4}\|\nabla p\|_{r, L} \cdot\|\nabla h\|_{q}, \tag{5.31}
\end{equation*}
$$

Since $p \in L^{r}(L)$ and $r \geq q$ we have $p \in L q(L)$,

$$
\begin{align*}
& |\langle p \nabla \varphi, \nabla \hbar\rangle| \leq c_{5}\|p\|_{r, L} \cdot\|\nabla h\|_{q} \\
& \|\nabla(\varphi \hbar)\|_{q,} \leq\|\nabla \varphi \Gamma\|_{q,, L}+\|\varphi \nabla \hbar\|_{q} \leq c_{8}\|\nabla h\|_{q} \tag{5.32}
\end{align*}
$$

By definition $h \in C_{0}^{\infty}(\bar{H})$ if h is the restriction of a $C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$-function to \hat{H}. Therefore $h \in C_{0}^{\infty}\left(H_{\omega}^{0}\right)$. Clearly $(1-\varphi) \in C_{0}^{\infty}\left(H_{\omega}\right)$. Then $\varphi_{0}:=\varphi h+c(h)(\varphi-1) \in C_{0}^{\infty}\left(H_{\omega}\right)$ and since $\varphi \hbar=\varphi_{0}+c(h), \nabla(\varphi \hbar)=\nabla \varphi_{0}$ and so

$$
\begin{equation*}
|<\nabla p, \nabla(\varphi \overline{)})>| \leq \sup _{0 \neq v \in C_{0}^{\infty}\left(H_{\omega}\right)} \frac{|\langle\nabla p, \nabla v\rangle|}{\|\nabla v\|_{q^{\prime}}}\|\nabla(\varphi \hbar)\|_{q,} \leq D \cdot c_{6}\|\nabla h\|_{q}, \tag{5.33}
\end{equation*}
$$

Therefore we derive from $(5,29)$ - (5.32) $\sup _{0 \neq h \in C_{0}^{\infty}(\bar{H}) \quad\|\nabla h\|_{q^{\prime}}} \leq c_{3}\|\nabla p\|_{r, L}+c_{4}\|p\|_{r, L}+c_{5} D<\infty$
Since $\nabla(\varphi p) \in E^{r}(H)$ by Lemma 5.8 , ii) we conclude $\nabla(\varphi p) \in \mathrm{Eq}^{(}(H)$ and therefore $\nabla(\varphi p) \in \mathrm{Eq}^{\mathrm{q}}\left(\mathrm{H}_{\omega}\right)$. Because of $\mathrm{r} \geq \mathrm{q}$ clearly $\nabla[(1-\varphi) \mathrm{p}] \in \mathrm{Eq}^{\mathrm{q}}\left(\mathrm{H}_{\omega}\right)$.
v) In order to prove b) in the case $\nabla p \in E_{0}^{r}\left(H_{\omega}\right)$ for $r \geq q$ we proceed similar as in iv). We take any $h \in C_{0}^{\infty}(H)$ and put $\hbar \equiv h$ in (5.29). By (5.17) we get
(5.34) $\quad\|h\|_{q^{\prime}, L} \leq\|h\|_{q^{\prime}, z_{2 R_{1}}} \leq 2 R_{1}\|\nabla h\|_{q^{\prime}}$

If we replace (5.30) by (5.34) we get again (5.31), (5.32). Clearly
$\varphi h \in C_{0}^{\infty}\left(H_{\omega}\right)$ and therefore again $|<\nabla p, \nabla(\varphi h)>| \leq D c_{5}\|\nabla h\|_{q}$,
and

$$
\sup _{O \neq h \in C_{0}^{\infty}(H)} \frac{\mid\langle\nabla(\varphi p), \nabla h>|}{\|\nabla h\|_{q^{\prime}}} \leq c_{3}\|\nabla p\|_{r, L}+c_{4}\|p\|_{r, L}+c_{5} D<\infty
$$

By Lemma 5.8 i) we see $\nabla(\varphi p) \in E_{0}^{q}(H)$.
If $\left(p_{k}\right) \subset C_{0}^{\infty}(H)$ is a sequence such that $\left\|\nabla p_{k}-\nabla(\varphi p)\right\|_{q, H} \rightarrow 0$. Then clearly (observe (5.17)) $\left\|\nabla\left(\varphi p_{k}\right)-\nabla(\varphi p)\right\|_{q, H} \rightarrow 0$. Since $\varphi p_{k} \in C_{0}^{\infty}\left(H_{\omega}\right)$ we see $\nabla(\varphi p) \in E_{0}^{q}\left(H_{\omega}\right)$. Clearly $\nabla((1-\varphi) p) \in E_{0}^{q}\left(H_{\omega}\right) \subset E_{0}^{r}\left(H_{\omega}\right)$.
vi) By part ii) and iii) of proof H_{ω} has property $P_{a}^{i}(s)$ for $i=0$ and 1 and for $s=r, r^{\prime}, q, q^{\prime}$. Then by Lemma $5.1 H_{\omega}$ has property ${ }_{p}^{a}(s)$ too. Again we write $E_{i}^{s}\left(H_{\omega}\right)\left(i=0\right.$ or 1) and $E_{0}^{\infty}\left(H_{\omega}\right):=\left\{\nabla \phi: \phi \in C_{0}^{\infty}\left(H_{\omega}\right)\right\}, E_{1}^{\infty}\left(H_{\omega}\right):=\left\{\nabla \phi: \phi \in C_{0}^{\infty}\left(H_{\omega}\right)\right\}$. We consider now the case $r<q$ in b). This case can be reduced to the previous one: Let now $\nabla p \in E_{i}^{q}\left(H_{\omega}\right)$ and $r<q$. According to the assumption in b) by $F *(\nabla v):=\langle\nabla p, \nabla v\rangle$ for $\nabla v \in E_{i}^{\infty}\left(H_{\omega}\right)$ a linear functional continuous with respect to $\|\nabla \cdot\|_{G}$ - -norm is defined on the dense subspace $E_{i}^{\infty}\left(H_{\omega}\right)$ of $E_{i}^{q^{\prime}}\left(H_{\omega}\right)$. By property $P_{b}^{i}(q)$ the unique extension \hat{F}^{*} of $F *$ to the whole space $E_{i}^{q^{\prime}}\left(H_{\omega}\right)$ may be represented, with a uniquely determined $\nabla \hat{\rho} \in E_{i}^{q}\left(H_{\omega}\right)$ in the form $\hat{F} *(\nabla v)=\langle\hat{p}, \nabla v\rangle$ for $\nabla v \in E_{i}^{q^{\prime}}\left(H_{\omega}\right)$. For $\nabla v \in E_{i}^{\infty}\left(H_{\omega}\right)$ we have $\langle\nabla p, \nabla v\rangle=F^{*}(\nabla v)=\hat{F} *(\nabla v)=\langle\nabla \hat{p}, \nabla v\rangle$. Since $\nabla p \in E^{r}\left(H_{\omega}\right)$ we see

$$
\sup _{0 \neq \nabla v \in E_{i}^{\infty}\left(H_{\omega}\right)} \frac{|\langle\nabla \hat{p}, \nabla v\rangle|}{\|\nabla v\|_{r^{\prime}}} \leq\|\nabla p\|_{r}
$$

Since now r < q we may apply parts iv) and v) of proof (with interchanged meaning of r and q) and conclude $\nabla \hat{p} \in E_{i}^{r}\left(H_{\omega}\right)$. Then $\langle\nabla p-\nabla \hat{p}, \nabla v\rangle=0$ for $\nabla v \in E_{i}^{\infty}\left(H_{\omega}\right)$ and by part a) we conclude $\nabla p=\nabla \hat{p}$. For $i=1$ we see immediately because of $\nabla \hat{p} \in E^{q}\left(H_{\omega}\right)$ that $\nabla p \in E^{q}\left(H_{\omega}\right)$. For $\mathfrak{i}=0$ consider the function \tilde{p} transformed like as in part i). Then $\nabla \tilde{p} \in E_{0}^{r}(H)$ and $\nabla \bar{p} \in L q(H)$. By Lemma 5.6 we conclude $\nabla \tilde{p} \in E_{0}^{q}(H)$ and transforming back $\nabla p \in E_{0}^{q}\left(H_{\omega}\right)$.

Lemma 5.11. Let $1<q<\infty$ and let $G \subset \mathbb{R}^{n}$ be a domain with boundary $\partial G \subset C^{1}$. Then for every $x_{0} \in \partial G$ there exists $R=R\left(x_{0}, \partial G, q, n\right)>0$ and a constant $C=$ $C(q, n, R)>0$ with the following properties (write $G_{R}:=G \cap B_{R}\left(x_{0}\right)$):
a) If $\nabla p \in E q(G)$ then

$$
\begin{equation*}
\|\nabla(\varphi p)\| \leq C \sup _{\substack{v \in C_{0}^{\infty}\left(B_{R}\left(x_{0}\right)\right) \\ 0 \neq \nabla v \text { on } G_{R}}} \frac{\left|\langle\nabla(\varphi p), \nabla v\rangle_{G_{R}}\right|}{\|\nabla v\|_{q^{\prime}, G_{R}}} \tag{5.35}
\end{equation*}
$$

holds for any $\varphi \in C^{\infty}\left(B_{R / 2}\left(x_{0}\right)\right)$
b) If $\nabla p \in E_{0}^{q}(G)$ then (5.35) holds if the sup is taken over all $0 \neq v \in C_{0}^{\infty}\left(G_{R}\right)$
c) If $\nabla p \in E^{q}(G)$ and $\langle\nabla p, \nabla \phi\rangle=0$ for all $\phi \in E^{\prime}(G)$, then given $1<s<\infty$, there is $0<R^{\prime}<R, R^{\prime}=R^{\prime}(s)$, such that $\nabla p \in E^{s}\left(G_{R^{\prime}}\right)$.
d) If $\nabla p \in E_{0}^{q}(G)$ and $\langle\nabla p, \nabla \phi\rangle=0$ for all $\phi \in E_{0}^{q^{\prime}}(G)$, then given $1<s<\infty$, there is $0<R^{\prime}<R, R^{\prime}=R^{\prime}(s)$, such that $\nabla(\varphi p) \in E_{0}^{s}\left(G_{R^{\prime}}\right)$ for each $\varphi \in C^{\infty}\left(B_{\mathrm{R}}\right)$.

Proof. i) After a translation we may assume $x_{0}=0$. Since $\partial G \in C^{1}$ there exists a $\rho>0$ and a function $\sigma \in \mathbb{C}^{1}\left(\bar{B}_{\rho}\right)$ with $(\nabla \sigma)(0) \neq 0$ such that $G \cap B_{\rho}=\left\{x \in B_{\rho}: \sigma(x)<0\right\}$ and $\partial G \cap B_{\rho}=\left\{x \in B_{\rho}: \sigma(x)=0\right\}$. A local parametrisation of ∂G most adequate to the problem under consideration is found by projecting $\partial G \cap B_{\rho}$ on the tangential hyperplane of ∂G at $x_{0}=0$. Essentially this is done in the following. Observe that $|\nabla \sigma(0)|^{-1} \nabla \sigma(0)$ equals the exterior unit normal of ∂G at $x_{0}=0$. This procedure enables us to reduce the situation to that of Lemma 5.10. There exists an orthogonal matrix S such that $S[\nabla \sigma(0)]=|\nabla \sigma(0)| e_{n}$, where $e_{n}=\left(\delta_{1 n}, \ldots, \delta_{n n}\right)$. Define $y(x):=S x$ and put $\hat{\sigma}(y):=\sigma\left(S^{-1} y\right)$ for $y \in B_{\rho}$. Let $G_{\rho}:=G \cap B_{\rho}, \hat{G}=S G$ and $\hat{G}_{\rho}:=\hat{G} \cap B_{\rho}$. For $\nabla v \in E^{s}\left(G_{\rho}\right)$ we put $\hat{v}(y):=v\left(S^{-1} y\right)$ for $y \in \hat{G}_{\rho}(1<s<\infty)$. Then $\nabla \hat{v} \in E^{s}\left(\hat{G}_{\rho}\right)$ and the norms $\|\nabla \hat{v}\|_{s, \hat{G}_{s}}$ and $\|\nabla v\|_{s, G}$ are equivalent. Clearly $\nabla v \in E^{s}\left(G_{\rho}\right)$ if and only if $\nabla \hat{v} \in E_{o}^{s}\left(\hat{G}_{\rho}\right)$. The most important property (reflecting the invariance of Δ under orthogonal transforms) is that if $\nabla p \in E^{s}\left(G_{\rho}\right), \quad \nabla v \in E^{s}\left(G_{\rho}\right)$ then $\left\langle\nabla \hat{p}, \nabla \hat{v}_{\sigma_{\rho}}=\langle\nabla p, \nabla v\rangle_{G_{\rho}}\right.$. This is seen by a trivial calulation. Because of these properties we may omit in the sequel the distinction between \hat{v} and v, \hat{G} and $G, \hat{\sigma}$ and σ etc. and assume that the above rotation is performed. Since now $\nabla \sigma(0)=|\nabla \sigma(0)| e_{n} \neq 0$ by the implicit function theorem we find $0<\rho^{\prime} \leq \rho, h>0$ and a function $\psi \in \mathrm{C}^{1}\left(\bar{B}^{\top}{ }_{\rho^{\prime}}\right)$, where $B^{\prime}{ }_{\rho^{\prime}}:=\left\{y^{\prime} \in \mathbb{R}^{n-1}:\left|y^{\prime}\right|<\rho^{\prime}\right\}$ with the following properties: If $Z \equiv Z_{\rho^{\prime}, h}:=\left\{y \in \mathbb{R}^{n}:\left|y^{\prime}\right|<\rho^{\prime},\left|y_{n}\right|<h\right\}$ then $Z \subset B_{\rho}$. For $y^{\prime} \in B_{\rho^{\prime}}^{\prime}$, we have $\left(y^{\prime}, \psi\left(y^{\prime}\right)\right) \in Z \quad$ and $\sigma\left(y^{\prime}, \psi\left(y^{\prime}\right)\right)=0$. Further $\psi(0)=0,\left(\nabla^{\prime} \psi\right)(0)=0$ (where $\nabla^{\prime}=\left(\partial_{1}, \ldots, \partial_{\mathrm{n}-1}\right)$) and $\partial G \cap Z=\left\{y \in Z: y_{\mathrm{n}}=\psi\left(y^{\prime}\right)\right\}, G \cap Z=$ $\left\{y \in Z: y_{n}<\psi\left(y^{\prime}\right)\right\}$. Let $\eta \in C_{0}^{\infty}\left(\mathbb{R}^{n-1}\right)$ such that $\eta\left(y^{\prime}\right)=1$ for $\left|y^{\prime}\right| \leq 1$ and
$\eta\left(y^{\prime}\right)=0$ for $\left|y^{\prime}\right| \geq 2,0 \leq \eta \leq 1$ else. For $0<\lambda<\rho^{\prime} / 2$ put $\eta_{\lambda}\left(y^{\prime}\right):=\eta\left(\lambda^{-1} y^{\prime}\right)$ and $\omega_{\lambda}\left(y^{\prime}\right):=\eta_{\lambda}\left(y^{\prime}\right) \psi\left(y^{\prime}\right)$ for $\left|y^{\prime}\right| \leq \rho$ and $\omega_{\lambda}\left(y^{\prime}\right)=0$ otherwise. Since $\psi(0)=$ $=\left|\nabla^{\prime} \phi(0)\right|=0$ we get $\sup \left\{\left|\nabla^{\prime} \omega_{\lambda}\left(y^{\prime}\right)\right|: y^{\prime} \in \mathbb{R}^{\mathrm{n}-1}\right\} \rightarrow 0$ for $\lambda \rightarrow 0$. Let now $1<q<\infty$ be given. Denote by $K_{o}:=K(q, n)>0$ the constant according to Lemma 5.10. We choose now $0<\lambda<\rho^{\prime} / 2$ so small that $\left\|\nabla \omega_{\lambda}\right\|_{\infty} \leq K$ and define $H_{\omega_{\lambda}}$ according to (5.21). We choose any $0<R<\lambda$ such that $B_{R} \subset C Z$.
ii) If $\nabla \mathrm{p} \in \mathrm{Eq}^{\mathrm{G}}(\mathrm{G})$ then for $\varphi \in \mathrm{C}_{0}^{\infty}\left(\mathrm{B}_{\mathrm{R} / 2}\right)$ clearly $\nabla(\varphi \mathrm{p}) \in \mathrm{Eq}^{\mathrm{G}}\left(\mathrm{G}_{\mathrm{R}}\right)$ where $G_{R}:=G \cap B_{R}$. By the choice of λ and R we have $G_{R} \subset H_{\omega_{\lambda}}$ and we may extend φp by zero to $H_{\omega_{\lambda}}$. Denoting the extended function again by φp we have $\nabla(\varphi p) \in \mathrm{Eq}^{q}\left(\mathrm{H}_{\omega_{\lambda}}\right)$. By Lemma 5.10 a)

$$
\begin{equation*}
\|\nabla(\varphi p)\| \quad=\|\nabla(\varphi p)\|_{q_{,}, H_{\omega_{\lambda}}} \leq C_{0 \neq v \in C_{0}^{\infty}\left(H_{\omega_{\lambda}}\right)} \frac{|\langle\nabla(\varphi p), \nabla v\rangle|}{\|\nabla v\|_{q^{\prime}}, H_{\omega_{\lambda}}} \tag{5.36}
\end{equation*}
$$

Abbreviate the sup at the right hand side of 5.35) by d. Observe that the Poincaré inequality applies to G_{R}. Choose now $\psi \in C_{0}^{\infty}\left(B_{r}\right), 0 \leq y \leq 1$ such that $\psi=1$ on $B_{R / 2}$. Let $v \in C_{0}^{\infty}\left(\bar{H}_{\omega_{\lambda}}\right)$ and let $c:=\left|G_{R}\right|^{-1} \int_{G_{R}} v d y$. Then because of the Poincaré-inequality there is $C^{\prime}=C^{\prime}(R, \psi)$ such that $\|\nabla(\psi(v-c))\|_{q^{\prime}, H_{\omega_{\lambda}}} \leq C^{\prime}\|\nabla v\|_{q^{\prime}, H_{\omega_{\lambda}}}$. By definition of $C_{0}^{\infty}\left(\bar{H}_{\omega_{\lambda}}\right)$ there is $\tilde{v} \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ with $\left.\tilde{v}\right|_{H_{\omega_{\lambda}}}=v$. Then $\psi(\tilde{v}-c) \in C_{0}^{\infty}\left(B_{R}\right)$. Since $\psi \equiv 1$ on $\operatorname{supp}(\varphi p)$ we get

$$
\begin{align*}
|\langle\nabla(\varphi p), \nabla v\rangle| & =|\langle\nabla(\varphi p), \nabla(v-c)\rangle|=|\langle\nabla(\varphi p), \nabla(\psi(v-c))\rangle| \leq \tag{5.37}\\
& \leq d\|\nabla(\psi(v-c))\|_{q^{\prime}}, G_{R} \leq d \cdot c^{\prime}\|\nabla v\|_{q^{\prime}}
\end{align*}
$$

and (5.35) follows immediately from (5.36) and (5.37) with $C=C_{o} \cdot C^{\prime}$.
iii) Let $Z_{R}:=\left\{y=\left(y^{\prime}, y_{n}\right) \in \mathbb{R}^{n}:-R<x_{n}<\omega_{\lambda}\left(x^{\prime}\right)\right\}$. By means of the transform (5.23) we immediately see that (5.17) remains true for Z_{R} and $\nabla v \in E_{0}^{q^{\prime}}\left(H_{\omega_{\lambda}}\right)$. The proof of part b) is analogous to part ii) with the following changes: We use now (5.22). Given $v \in C_{0}^{\infty}\left(H_{\omega}\right)$, then by means of (5.17) we get $\|\nabla(\psi v)\|_{q^{\prime}, G_{R}} \leq C^{\prime}\|\nabla v\|_{q^{\prime} H_{\omega^{\prime}}}, \psi v \in C_{0}^{\infty}\left(G_{R}\right)$ and instead of (5.37) $|<\nabla(\varphi p), \nabla v\rangle|=|<\nabla(\varphi p), \nabla(\psi v)\rangle \mid \leq d C^{\prime}\|\nabla v\|_{q}$.
iv) The proof of c) and d) respectively is performed by induction using the Sobolev embedding theorem. We may assume $1<q<2 \leq n$ and $\nabla p \in E^{q}\left(G_{R}\right)$. If $q \geq 2$ then clearly $\nabla p \in E^{r}\left(G_{R}\right)$ for $1<r \leq q$. Denote by k the biggest integer smaller than $\frac{n}{q}$. Then $k<\frac{n}{q} \leq k+1$ and let $q_{j}:=\frac{n q}{n-j q}$ for $j=0,1, \ldots, k$. Since $k+1 \geq \frac{n}{q}$ we get $q_{k} \geq n \geq 2$. Let $K\left(q_{j-1}, q_{j}\right)>0$ for $j=1, \ldots, k$ denote the constants according to Lemma 5.10 and $K_{1}:=\min \left\{K\left(q_{j-1}, q_{j}\right): j=1, \ldots, k\right\}>0$. Choose now $\lambda>0$ in addition so small that $\left\|\nabla \omega_{\lambda}\right\|_{q} \leq K$ and consider again $H_{\omega_{\lambda}}$. Let $0<R<\lambda$ (R as above). Let $R_{j}:=R 2^{-(j+1)}$ for $j=0,1, \ldots, k+1$. Choose $\varphi_{j} \in C_{0}^{\infty}\left(B_{R_{j}}\right)$ such that $0 \leq \varphi_{j} \leq 1$ and $\varphi_{j}=1$ on $B_{R_{j+1}}$.
Let $G_{j}:=G \cap B_{R_{j}}$ for $j=0,1, \ldots, k, k+1$. Given $v \in C_{0}^{\infty}\left(H_{\omega_{\lambda}}\right)$ let $v_{j}:=v-c_{j}(v)$ where $c_{j}(v):=\left|G_{j}\right|^{-1} \int_{G_{j}} v d x$. Then $\varphi_{j} v_{j} \in C_{0}^{\infty}\left(\bar{H}_{\omega_{\lambda}}\right)$ and $\nabla\left(\varphi_{j} v_{j}\right) \in E^{q}(G)$.
Therefore

$$
0=\left\langle\nabla p, \nabla\left(\varphi_{j} v_{j}\right)\right\rangle=\left\langle\nabla\left(\varphi_{j} p\right), \nabla v_{j}\right\rangle-\left\langle p \nabla \varphi_{j}, \nabla v_{j}\right\rangle+\left\langle\nabla p, v_{j} \nabla \varphi_{j}\right\rangle
$$

that is

$$
\begin{equation*}
\left\langle\nabla\left(\varphi_{j} p\right), \nabla v_{j}\right\rangle=\left\langle p \nabla \varphi_{j}, \nabla v_{j}\right\rangle-\left\langle\nabla p, v_{j} \nabla \varphi_{j}\right\rangle \tag{5.38}
\end{equation*}
$$

We prove now by induction that $\nabla(\varphi, p) \in E^{q_{j}}\left(H_{\omega_{\lambda}}\right)$ for $j=0,1, \ldots, k$. The case $j=0$ is clear. Let now $0<j \leq k$ and suppose $\nabla\left(\varphi_{j-1} p\right) \in E^{q_{j-1}}\left(H_{\omega_{\lambda}}\right)$. Since $\varphi_{j-1}=1$ on G_{j} we conclude $\left.\nabla p\right|_{G_{j}} \in L^{G_{j-1}}\left(G_{j}\right)$ and by the Sobolev embedding theorem $p \in L^{q_{j}}\left(G_{j}\right)$ and

$$
\begin{equation*}
\|p\|_{q_{j}, G_{j}} \leq d_{1 j}\left\|_{p}\right\|_{H^{1, q_{j-1}\left(G_{j}\right)}} . \tag{5.39}
\end{equation*}
$$

Therefore with $M_{j}:=\left\|\nabla \varphi_{j}\right\|_{\infty}$
(5.41) $\left|\left\langle\nabla p, v_{j} \nabla \varphi_{j}\right\rangle\right| \leq M_{j}\left\|\nabla p_{q_{j-1}, G_{j}}\right\| v_{j} \|_{q_{j-1}, G_{j}}$

Since $\frac{n}{q}-n+1<1 \leq j$ we conclude $q_{j}{ }^{\prime}=\frac{n q}{n q-n+j q}<n$
and by the Sobolev theorem $v_{j} \in L^{q_{j}}{ }^{\prime *}\left(G_{j}\right)$ where

$$
q_{j}^{\prime *}=\frac{n q_{j}^{\prime}}{n-q_{j}^{\prime}}=q_{j-1}^{\prime} \text { and }
$$

(5.42) $\left\|v_{j}\right\|_{q^{\prime}{ }_{j-1}, G_{j}} \leq d_{2 j}\left\|v_{j}\right\|_{H^{1}, G_{j}{ }^{\prime}\left(G_{j}\right)}$

Since $\int_{G_{j}} v_{j} d x=0$ we get by the Poincaré-inequality
(5.43) $\left\|v_{j}\right\|_{H^{1}, q_{j}{ }^{\prime}\left(G_{j}\right)} \leq d_{3 j}\left\|\nabla v_{j}\right\|_{q_{j}{ }^{\prime}, G_{j}} \leq d_{3 j}\|\nabla v\|_{q_{j}{ }^{\prime} \cdot{ }_{\omega_{\lambda}}}$

By means of (5.40), (5.41) and (5.43) we get from (5.38) for $v \in C_{0}^{\infty}\left(H_{\omega_{\lambda}}\right)$

$$
\left|\left\langle\nabla\left(\varphi_{j} p\right), \nabla v\right\rangle\right|=\left|\left\langle\nabla\left(\varphi_{j} p\right), \nabla v_{j}\right\rangle\right| \leq d_{4 j}\|p\|_{H^{1}, q_{j-1}\left(q_{j}\right)}\|\nabla v\|_{q_{j}{ }^{\prime}, H_{\omega_{\lambda}}} .
$$

By Lemma 5.10 we conclude $\nabla(\varphi, p) \in E^{q_{j}}\left(H_{\omega_{\lambda}}\right)$ and therefore $\left.\nabla p\right|_{G_{k+1}} \in L^{q_{j}}\left(G_{j+1}\right)$. At the end follows $\left.\nabla p\right|_{G_{k+1}} \in L^{q_{k}}\left(G_{k+1}\right)$ where $q_{k} \geq n>2$. Let now an arbitrary $s>n$ be given. Choose $0<\epsilon<1$ such that $s=\frac{n}{\epsilon}$. From the choice of k above we conclude $\frac{n}{n+1} \leq q<\frac{n}{k}$. Define $\tilde{q}:=\frac{n}{k+\epsilon}$. Then $\frac{n}{k+1} \leq \tilde{q}<\frac{n}{k}$ and $k<\frac{n}{\tilde{q}} \leq k+1$ Since we originally assumed $1<q<2$ we have $k \geq \frac{n}{q}-1>\frac{n}{2}-1 \geq 0$ we see $\tilde{q} \leq \frac{n}{1+\epsilon} \leq n \leq q_{k}$ so that by the proof above we have $\left.\nabla p\right|_{G_{k+1}} \in L^{\tilde{q}}\left(G_{k+1}\right)$. We repeat now the induction proof starting with $\tilde{\mathbf{q}}_{0}=\tilde{q}$ and ending with $\tilde{q}_{k}=\frac{n \tilde{q}}{n-k \tilde{q}}=\frac{n}{\epsilon}=s$. But observe that the constant $K_{1}=K_{1}(\tilde{q})$ and therefore λ and especially R have to be taken depending on s.
v) Part d) is proven similiarily: Let $v \in C_{0}^{\infty}\left(H_{\omega_{\lambda}}\right)$ be given. We no longer need to apply (5.42), instead we apply (5.17) for Z_{R} and $\nabla v \in E_{0}^{q^{\prime}}\left(H_{\omega_{\lambda}}\right)$ (see the beginning of part iii) of proof). We put now $\nabla_{j} \equiv v$ and derive again (5.38). Since $\nabla\left(\varphi_{J-1} p\right) \in E_{0}^{q_{j-1}}\left(H_{\omega_{\lambda}}\right) \subset E_{0}^{q_{j-1}}\left(\mathbb{R}^{n}\right)$ we immediately get from the Sobolev estimate with a constant $d_{1 j}=d_{1 j}\left(q_{j}, n\right)>0$

$$
\begin{equation*}
\left\|\varphi_{j-1} p\right\|_{q_{j}} \leq d_{1 j}\left\|\nabla\left(\varphi_{j-1} p\right)\right\|_{q_{j-1}} \tag{5.44}
\end{equation*}
$$

replacing now (5.39). Analogously
(5.46) $\|v\|_{q_{j-1}^{\prime}} \leq d_{2 f}\|\nabla v\|_{q_{j}}$,
(observe $q_{j-1}^{\prime}=q_{j}^{\prime *}$) replacing (5.42). Then observing $p \nabla \varphi_{j} \equiv\left(\varphi_{j-1} p\right) \nabla \varphi_{j}$ we get for $v \in C_{0}^{\infty}\left(H_{\omega_{\lambda}}\right)$

$$
\begin{align*}
& \left|\left\langle p \nabla \varphi_{j}, \nabla v\right\rangle\right| \leq M_{j} d_{1 j}\left\|\nabla\left(\varphi_{j-1} p\right)\right\|_{q_{j-1}}\|\nabla v\|_{q_{j}^{\prime}} \tag{5.47}\\
& \left|\left\langle\nabla p, v \nabla \varphi_{j}\right\rangle\right| \leq M_{j} d_{2 j}\left\|\nabla\left(\varphi_{j-1} p\right)\right\|_{q_{j-1}}\|\nabla v\|_{q_{j}}
\end{align*}
$$

and so for $v \in C_{0}^{\infty}\left(H_{\omega_{\lambda}}\right)$

$$
\left|\left\langle\nabla\left(\varphi_{j} p\right), \nabla v\right\rangle\right| \leq d_{4 j}\left\|\nabla\left(\varphi_{j-1} p\right)\right\|_{q_{j-1}}\|\nabla v\|_{q_{j}} .
$$

Again by Lemma 5.10 i) b) $\nabla\left(\varphi_{j} p\right) \subset E_{0}^{q_{j}}\left(H_{\omega_{\lambda}}\right)$ and $\operatorname{since} \operatorname{supp}\left(\varphi_{j} p\right) \subset G_{j+1}$ we have $\nabla\left(\varphi_{j} p\right) \in E_{0}^{q_{j}}\left(G_{j+1}\right)$. By induction we end with $\nabla\left(\varphi_{k} p\right) \in E_{0}^{q_{k}}\left(G_{k+1}\right)$. Choose $R^{\prime}=R_{k+1}$. If $\varphi \in C_{0}^{\infty}\left(B_{R}\right)$ then because of $\varphi_{k}=1$ on B_{k+1} we have $\varphi \varphi_{k} p=\varphi p$. The remaining considerations are like as in iv).
The most difficult hard work is now done. For an easier later application we consider two further lemmas.

Lemma 5.12. Let $1<q<\infty$ and let $G \subset \mathbb{R}^{n}$ be a domain. Let $x_{0} \in G$ and let $R>0$ be such that $B_{R}\left(x_{0}\right) \subset C$.
a) Let $\nabla p \in E^{q}(G)$. Then for $\varphi \in C_{0}^{\infty}\left(B_{R / 2}\left(x_{0}\right)\right), \nabla(\varphi p) \subset E_{0}^{q}\left(B_{R / 2}\left(x_{0}\right)\right) \subset E_{0}^{q}(G)$ and with a constant $C=C\left(R, C_{1}(q)\right)>0$, where C_{1} is by Lemma 5.2 , we have

$$
\begin{equation*}
\|\nabla(\varphi p)\|_{q} \leq C \sup _{0 \neq v \in C_{0}^{\infty}\left(B_{R}\right)} \frac{\mid\langle\nabla(\varphi p), \nabla v>|}{\|\nabla v\|_{q^{\prime}}} \tag{5.49}
\end{equation*}
$$

b) Let $\nabla \mathrm{p} \in \mathrm{Eq}^{\mathrm{q}}(\mathrm{G})$ and $\langle\nabla \mathrm{p}, \nabla \phi\rangle=0$ for all $\phi \in \mathrm{C}_{0}^{\infty}(\mathrm{G})$. Given $1<\mathrm{s}<\infty$ then there is a $0<R^{\prime} \leq R$ with $R^{\prime}=R^{\prime}(s)$ such that $\nabla(\varphi p) \in E_{0}^{s}\left(B_{R},\left(x_{0}\right)\right)$ for each $\varphi \in C_{o}^{\infty}\left(B_{R},\left(X_{0}\right)\right)$.

Proof. The proof is almost identical with that of Lemma 5.12. In the sequel we abbreviate $B_{r}:=B_{r}\left(x_{0}\right)$ for $r>0$. i) If $x \in B_{R / 2}$ and $0<\epsilon<R / 2$ then for the mollified p_{ϵ} we have $\nabla p_{\epsilon}(x)=(\nabla p)_{\epsilon}(x)$ and therefore $\left\|\nabla p-\nabla p_{\epsilon}\right\|_{q, B_{R / 2}} \rightarrow 0$. For $\varphi \in C_{0}^{\infty}\left(B_{R / 2}\right)$ we have $\varphi p_{\epsilon} \in C_{0}^{\infty}\left(B_{R / 2}\right)$ and clearly $\left\|\nabla(\varphi p)-\nabla\left(\varphi p_{\epsilon}\right)\right\|_{q, B_{R / 2}} \rightarrow 0$ proving $\varphi p \in E_{0}^{q}\left(B_{R / 2}\right) \subset E_{0}^{q}\left(\mathbb{R}^{n}\right)$. Now we proceed like as in part ii) of the preceeding lemma applying Lemma 5.2 instead of Lemma 5.10: Choose again $\psi \in C_{0}^{\infty}\left(B_{R}\right)$ with $0 \leq \psi \leq 1, \psi=1$ on $B_{R / 2}$. If $v \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ put $c:=\left|B_{R}\right|^{-1} \int v d y$ and use now the Poincaré-inequality for B_{R}. Consider again $\psi(v-c) \in C_{0}^{\infty}\left(B_{R}\right)$ and proceed analogously.
ii) The proof of b) is literally the same as part iv) of proof of Lemma 5.11, beginning with the $g^{\text {th }}$ line before formula (5.38). Observe that $G_{j}=B_{R_{j}}$.

Lemma 5.13. Let $1<q<\infty$ and let $G \subset \mathbb{R}^{n}$ be an exterior domain, $G=\mathbb{R}^{n} \backslash \mathbb{K}$ with $\phi \neq K \subset \subset \mathbb{R}^{n}$. Let $R>0$ be such that $K \subset \subset B_{R}$, let $\varphi \in C^{\infty}\left(\mathbb{R}^{n}\right), \varphi(x)=0$ for $|x| \leq 2 R, \varphi(x)=1$ for $|x| \geq 3 R$.
a) If $\nabla p \in E q(G)$ then $\nabla(\varphi p) \in E q(G)$.
b) There is a constant $C=C(q, n, R)>0$ such that
(5.50) $\|\nabla(\varphi p)\|_{q} \leq C \sup _{0 \neq v \in C_{o}^{\infty}(\bar{G})} \frac{|\langle\nabla(\varphi p), \nabla v\rangle|}{\|\nabla v\|_{q^{\prime}, G}}$
c) If $\nabla p \in E^{q}(G)$ has the property
(5.51) $\langle\nabla p, \nabla v\rangle=0$ for all $v \in C_{0}^{\infty}(G)$.

Then $\nabla(\varphi p) \in E^{s}(G)$ for any $1<s<\infty$.
Proof. i) Because of the properties of φ clearly $\nabla(\varphi p) \in E q(G)$.
ii) (φp) may be extended by zero to the whole \mathbb{R}^{n}. Then $\nabla(\varphi p) \in \mathbb{E}\left(\mathbb{R}^{n}\right)$. Since $\|\nabla v\|_{q^{\prime}, \mathbb{R}^{n}} \geq\|\nabla v\|_{q^{\prime}, G}$ for $v \in C_{o}^{\infty}\left(\mathbb{R}^{n}\right)$ estimate (5.50) follows immediately from (5.5).
iii) We will first show $\nabla(\varphi p) \in E^{s}(G)$ for $1<s \leq q$. This is a priori by no means trivial. By definition of $E q(G)$ we clearly have $\nabla p \in L^{s}\left(G_{3 R}\right), p \in L^{s}\left(G_{3 R}\right)$ for $1<s \leq q$. If $v \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ put $\tilde{v}:=v$-c where $c:=\left|B_{3 R}\right|^{-1} \int_{B_{3 R}} v d x$. Then $(\varphi \bar{v}+c) \in C_{0}^{\infty}(\bar{G})$ and by (5.51) we again get

$$
\begin{aligned}
0 & =\langle\nabla p, \nabla(\varphi(v-c)+c)\rangle=\langle\nabla p, \nabla(\varphi(v-c))\rangle= \\
& =\langle\nabla(\varphi p) \nabla v\rangle-\langle p \nabla \varphi, \nabla v\rangle+\langle\nabla p, \nabla \varphi \tilde{v}\rangle
\end{aligned}
$$

and therefore
$\langle\nabla(\varphi p), \nabla v\rangle=\langle\nabla(\varphi p), \nabla \tilde{v}\rangle=\langle p \nabla \varphi, \nabla \tilde{v}\rangle-\langle\nabla p, \tilde{v} \nabla \varphi\rangle$
Since by (2.2) $\|\tilde{v}\|_{s^{\prime}, B_{3 R}} \leq C\left(s^{\prime}\right)\|\nabla \tilde{v}\|_{s^{\prime}, B_{3 R}} \leq C\left(s^{\prime}\right)\|\nabla v\|_{s^{\prime}}$
we get immediately with $C=C(\varphi, R, s, q)>0$

$$
|<(\varphi p), \nabla v>| \leq C\left(\|p\|_{q, G_{3 R}}+\|\nabla p\|_{q, G_{3 R}}\right)\|\nabla v\|_{s^{\prime}}
$$

for $v \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ and by Lemma 5.2 $\nabla(\varphi p) \in E^{s}\left(\mathbb{R}^{n}\right)$.
iv) Because of iii) we may assume that $1<q<2 \leq n$. Then we proceed like as in part iv) of the proof of Lemma 5.11: Choose again $k \in \mathbb{N}, k<\frac{n}{q} \leq k+1$. Let $R_{j}:=R+j \frac{R}{5 k}$ for $j=0,1, \ldots, k+1$. Let $\varphi_{j} \in C^{\infty}\left(\mathbb{R}^{n}\right), 0 \leq \varphi_{j} \leq 1, \varphi_{j}(x)=0$ for
$|x| \leq R_{j}, \varphi_{j}(x)=1$ for $|x| \geq R_{j+1}$. Given $v \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ let $v_{j}=v-c_{j}(v)$ where $c_{j}(v):=\left|B_{2 R}\right|^{-1} \int_{B_{2 R}} v d x$. Since $\left(\varphi_{j} v_{j}+c_{j}(v)\right) \in C_{0}^{\infty}(\mathcal{G})$ we can now go on like as in Lemma 5.11. Once we have shown $\nabla(\varphi p) \in E^{q}(G)$ and $\nabla(\varphi p) \in E^{G_{k}}(G)$, we see $\nabla(\varphi p) \in E^{s}(G)$ for $q \leq s \leq q_{k}$: Write $G^{\prime}=\{x \in G:|\nabla(\varphi p)(x)| \geq 1\}$ and $G^{\prime \prime}=\{x \in G:|\nabla(\varphi p)(x)| \leq 1\}$
then

$$
\begin{aligned}
\int_{G}|\nabla(\varphi p)|^{s} d x & =\int_{G},|\nabla(\varphi p)|^{s} d x+\int_{G}|\nabla(\varphi p)|^{s} d x \leq \\
& \leq \int_{G}|\nabla(\varphi p)|^{q_{k}} d x+\int_{G^{\prime \prime}}|\nabla(\varphi p)|^{q} d x .
\end{aligned}
$$

Lemma 5.14. Assume the same hypothesis as in Lemma 5.13.
a) If $\nabla p \in E_{0}^{q}(G)$ then $\nabla(\varphi p) \in E_{0}^{q}(G)$ and there is a constant $C=C(q, n, \mathbb{R})>0$ such that
(5.52) $\|\nabla(\varphi p)\|_{q} \leq C \operatorname{sug}_{0 \neq v \in C_{0}^{C_{0}}(G)} \frac{\mid\langle\nabla(\varphi p), \nabla v>|}{\|\nabla v\|_{q^{\prime}}}$
b) Suppose that $\nabla p \in E_{0}^{q}(G)$ satisfies

$$
\langle\nabla p, \nabla v\rangle=0 \text { for all } v \in C_{0}^{\infty}(\tilde{G}) .
$$

Then: i) If $1<q \leq \frac{n}{n-1}$ then $\nabla(\varphi p) \in E^{s}(G)$ for $1<s<\infty$.
ii) If $q>\frac{n}{n-1}$ then $\nabla(\varphi p) \in E^{s}(G)$ for $\frac{n}{n-1}<s<\infty$.

Proof. i) Since $\nabla p \in E_{0}^{q}(G)$ there is a sequence $\left(p_{1}\right) \subset C_{0}^{\infty}(G)$ such that $\left\|\nabla p-\nabla p_{1}\right\|_{q} \rightarrow 0$. By (2.9) $\left\|p-p_{i}\right\|_{q, G_{3 R}} \leq C(R)\left\|\nabla p-\nabla p_{1}\right\|_{q}$. Therefore $\nabla\left(\varphi p_{1}\right)=p_{1} \nabla \varphi+\varphi \nabla p_{1} \rightarrow \nabla(\varphi p)$ in $L^{q}(G), \varphi p_{1} \in C_{0}^{\infty}(G)$ and therefore $\nabla(\varphi p) \in E_{0}^{q}(G)$.
ii) We first show (5.52) for $1<q \leq \frac{n}{n-1}$. Then $q^{\prime} \geq n$. Let $\notin C^{\infty}\left(\mathbb{R}^{n}\right)$, $0 \leq \psi \leq 1, \psi(x)=1$ for $|x| \geq 2 R, \psi(x)=0$ for $|x| \leq_{2}^{3}$ - R. For $v \in \prod_{0}^{\ell}\left(\mathbb{R}^{n}\right)$ let $c_{v}=\left|B_{2 R}\right|^{-1} \int_{B_{2 R}} v d x$. We will show now that $\tilde{v}:=\psi\left(v-c_{v}\right) \in E_{0}^{q}(G)$ for $q^{\prime} \geq n$. For this purpose let $\rho \in \mathbb{C}_{0}^{\infty}\left(\mathbb{R}^{n}\right), 0 \leq \rho \leq 1, \rho(x)=1$ for $|x| \leq 1, \rho(x)=0$ for $|x| \geq 2$ and put $\rho_{k}(x):=\rho\left(k^{-1} x\right)$ for $k \in \mathbb{N}$. Then $\operatorname{supp}\left(\nabla \rho_{k}\right) \subset R_{k}:=\left\{x \in \mathbb{R}^{n}: k \leq|x| \leq 2 k\right\}$. Then $\tilde{v}_{k}:=\rho_{k} \cdot \tilde{v} \in C_{0}^{\infty}(G)$. There is $k_{0} \in \mathbb{N}, k_{0} \geq 2 R$, such that supp $v \subset B_{k_{0}}$. Then for $k \geq k_{0}$

$$
\begin{aligned}
\nabla \tilde{v}_{k} & =\nabla \rho_{k} \cdot \psi\left(v-c_{v}\right)+\rho_{k}(\nabla \psi)\left(v-c_{v}\right)+\rho_{k} \psi \cdot \nabla v \\
& =-\nabla \rho_{k} c_{v}+\left(v-c_{v}\right) \nabla \psi+\psi \cdot \nabla v .
\end{aligned}
$$

Since $\left|\nabla \rho_{k}\right| \leq C \cdot k^{-1}$ and vanishes outside R_{k} we get $\left\|\nabla \rho_{k}\right\|_{q^{\prime}, R_{k}} \leq c \cdot k^{\frac{n}{9^{\prime}-1}} \leq$ const
for $q^{\prime} \geq n$. If $F * \in E_{0}^{q^{\prime}}(G) *$ then it may be extended to a functional $F * \in\left(L^{q^{\prime}}(G)^{n}\right)^{*}$ and therefore represented with $f \in L^{q}(G)^{n}$ as $F *(\nabla \phi)=\langle f, \nabla \phi\rangle$ for all $\nabla \phi \in E_{0}^{q^{\prime}}(G)$. Since $\left|\left\langle f, \nabla \rho_{k}\right\rangle\right| \leq\|f\|_{q, R_{k}} \leq$ const $\|f\|_{q, R_{k}} \rightarrow 0$ we conclude $f^{*}\left(\nabla \tilde{v}_{k}\right) \rightarrow F^{*}(\nabla \tilde{v})$. Since $E_{0}^{q}(G)$ is closed it is weakly closed too and therefore $\nabla \tilde{v} \in E_{0}^{q^{\prime}}(G)$. Since $\nabla \psi=0$ on the support of φ we see
$\nabla(\varphi p) \cdot\left(\left(v-c_{v}\right) \nabla \psi+\psi \cdot \nabla v\right)=\nabla(\varphi p) \cdot \nabla v$ and therefore $\langle\nabla(\varphi p), \nabla \bar{v}\rangle=\langle\nabla(\varphi p), \nabla v\rangle$. By (2.2) (applied to $B_{2 R}$) we see $\|\nabla \tilde{v}\|_{q^{\prime}} \leq K\|\nabla v\|_{q^{\prime}}$, and therefore

$$
\frac{|\langle\nabla(\varphi p), \nabla v\rangle|}{\|\nabla v\|_{q^{\prime}}} \leq K \frac{1\langle\nabla(\varphi p), \nabla \tilde{v}\rangle \mid}{\|\nabla \tilde{v}\|_{q^{\prime}}} \text { if } \nabla \tilde{v} \neq 0 .
$$

We abbreviate the sup at the right hand side of (5.52) by D. Since $0 \neq \nabla \tilde{v} \in E_{0}^{q^{\prime}}(G)$ there is a sequence $\left(v_{i}\right) \subset C_{0}^{\infty}(G)$ such that $\left\|\nabla v-\nabla v_{1}\right\|_{q^{\prime}} \rightarrow 0$. Then

$$
\frac{|\langle\nabla(\varphi p), \nabla \tilde{v}\rangle|}{\|\nabla \tilde{v}\|_{q^{\prime}}}=\lim _{i \rightarrow \infty} \frac{\left|\left\langle\nabla(\varphi p), \nabla v_{i}\right\rangle\right|}{\left\|\nabla v_{i}\right\|_{q^{\prime}}} \leq 0 .
$$

Therefore $\frac{|\langle\nabla(\varphi p), \nabla v\rangle|}{\|\nabla v\|_{q^{\prime}}} \leq K D$ for those $v \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ such that $\nabla \tilde{v} \neq 0$. If $\nabla \tilde{v}$ vanishes then $\langle\nabla(\varphi \mathrm{P}), \nabla \varphi\rangle$ too. Therefore we derive (5.52) from Lemma 5.2.
iii) Let now $q>\frac{n}{n-1}$ and therefore $1<q^{\prime}<n$. Let $\psi \in C^{\infty}\left(\mathbb{R}^{n}\right)$ be defined as in ii). If $v \in C_{o}^{\infty}\left(\mathbb{R}^{n}\right)$ then $\psi \cdot v \in C_{o}^{\infty}(G)$ and $\|\nabla(\psi v)\|_{q^{\prime}} \leq\|v \nabla \psi\|_{q^{\prime}}+\|\nabla v\|_{q^{\prime}}$. Let $q^{\prime *}:=\frac{n q^{\prime}}{n-q^{\prime}}$. Then by the Sobolev theorem and Hölder's inequality

$$
\begin{aligned}
\|v \nabla \psi\|_{q^{\prime}} & \leq c(\psi)\|v\|_{q^{\prime}, B_{2 R}} \leq c(\psi)\|v\|_{q^{\prime} * B_{2 R}}\left|B_{2 R}\right|^{1 / n} \\
& \leq c(\psi)\left|B_{2 R}\right|^{1 / n}\|\nabla v\|_{q^{\prime}}
\end{aligned}
$$

and so $\|\nabla(\psi v)\|_{q^{\prime}} \leq c(R)\|\nabla v\|_{q^{\prime}}$. Therefore

$$
|<\nabla(\varphi p), \nabla v\rangle|=|<\nabla(\varphi p), \nabla(\psi v)\rangle \mid \leq D\|\nabla(\phi v)\|_{q^{\prime}} \leq c(R) \cdot D\|\nabla v\|_{q^{\prime}}
$$

where D denotes the sup in (5.52) and again by Lemma 5.2 follows (5.52).
iv) We prove now b). Let $1<q \leq \frac{n}{n-1}$. We first show
(5.53) $\langle\nabla p, \nabla \varphi\rangle=0$ for φ by Lemma 5.13.

Choose ρ_{k} like as in part ii). Then for $k \geq 3 R$ we have $\rho_{k} \varphi \in C_{0}^{\infty}(G)$ and by assumption

$$
0=\left\langle\nabla p, \nabla\left(\rho_{k} \varphi\right)\right\rangle=\left\langle\nabla p, \rho_{k} \nabla \varphi\right\rangle+\left\langle\nabla p, \varphi \nabla \rho_{k}\right\rangle=\langle\nabla p, \nabla \varphi\rangle+\left\langle\nabla p, \nabla \rho_{k}\right\rangle
$$

Remember $\left\|\nabla \rho_{\mathrm{k}}\right\|_{q}, \leq$ const. for $q^{\prime} \geq \mathrm{n}$. Therefore

$$
\left|<\nabla p, \nabla \rho_{p_{k}}>|=|<\nabla p, \nabla \rho_{p_{k}}\right\rangle_{R_{k}} \mid \leq C\|\nabla p\|_{q, R_{k}} \rightarrow 0 .
$$

v) For $v \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right), \varphi v \in C_{0}^{\infty}(G)$ and therefore admissible in (5.52). We then get (5.54) $\langle\nabla(\varphi p), \nabla v\rangle=\langle p \nabla \varphi, \nabla v\rangle-\langle\nabla p, v \nabla \varphi\rangle$.

Let $c(v):=\left|B_{3 R}\right|^{-1} \int_{B_{3 R}} v d x$ and put $\tilde{v}:=v-c(v)$. Then by (5.53) $\langle\nabla p, \tilde{v} \nabla \varphi\rangle=\langle\nabla p, v \nabla \varphi\rangle$.
Let now $1<s \leq q \leq \frac{n}{n-1}$. Then $p \in L^{s}\left(G_{3 R}\right)$ and $\nabla p \in L^{s}\left(G_{3 R}\right)$. We therefore get

$$
|\langle\nabla p, \tilde{v} \nabla \varphi\rangle| \leq\|\nabla \varphi\|_{\infty}\|\nabla p\|_{s, G_{3 R}}\|\tilde{v}\|_{s^{\prime}, B_{3 R}}
$$

and by the Poincaré-inequality

$$
\|\tilde{v}\|_{s^{\prime}, B_{3 R}} \leq c\|\nabla \tilde{v}\|_{s^{\prime}}=c\|\nabla v\|_{s^{\prime}}
$$

and so we derive from (5.54) for $v \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$

$$
|<\nabla(\varphi p), \nabla v>| \leq C^{\prime}\left(\|p\|_{s, G_{3 R}}+\|\nabla p\|_{s, G_{3 R}}^{0}\right)\|\nabla v\|_{s^{\prime}}
$$

and so by Lemma 5.2 we get $\nabla(\varphi p) \in E^{s}\left(\mathbb{R}^{n}\right)$
vi) If $n=q=2$ then we are ready. If $n>2$, then $1<q \leq \frac{n}{n-1}<2$. Now we proceed similiarily as in parts iv) and v) of the proof of Lemma 5.11: Choose again $k \in \mathbb{N}, k<\frac{n}{q} \leq k+1$. Let $R_{j}=R+j \frac{R}{5 k}$ for $j=0,1, \ldots, 2(k+1)$. Let $\varphi_{j} \in C^{\infty}\left(\mathbb{R}^{n}\right), 0 \leq \varphi_{j} \leq 1, \varphi_{j}(x)=0$ for $|x| \leq R_{j}, \varphi_{j}(x)=1$ for $|x| \geq R_{j+1}$. Given $v \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$, then $\varphi_{j} v \in C_{0}^{\infty}(G)$ and from the assumption we again derive (5.38) now with $v_{j}:=v$. Let now again $0<j \leq k$ and assume that
$\nabla\left(\varphi_{j-1} p\right) \in E^{q_{j-1}}(G)$. Since $\varphi_{j-1}=1$ for $|x| \geq R_{j}$, we conclude
$\nabla p \in L^{q_{j-1}}\left(\left\{|x| \geq R_{j}\right\}\right)$. Since supp $\left(\nabla \varphi_{j}\right) \subset G_{j}:=\left\{x \in \mathbb{R}^{n}: R_{j} \leq|x| \leq R_{j+1}\right\}$
again by the Sobolev embedding theorem we get (5.39). Since $q_{j}{ }^{\prime}<n$ instead of (5.42) we use the Sobolev theorem for $C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ functions
(5.55) $\|v\|_{q_{j-1}^{\prime}} \leq c\|\nabla v\|_{q_{j}}$.

Then we can estimate (5.41) and end with

$$
\left|\left\langle\nabla\left(\varphi_{j} p\right), \nabla v\right\rangle\right| \leq C\|p\|_{H^{1, q_{j-1}\left(G_{j}\right)}}\|\nabla v\|_{q_{j}} .
$$

The remaining arguments are the same as in part iv) of the proof of Lemma 5.11 vii) Assume now $q>\frac{n}{n-1}$. Let $\varphi_{0} \in C^{\infty}\left(\mathbb{R}^{n}\right), 0 \leq \varphi_{0} \leq 1, \varphi_{0}=0$ on $B_{R}, \varphi_{0}(x)=1$ for $|x| \geq \frac{3}{2} R$ and consider (5.54) with this φ_{0}. If $n \geq 3$ choose any q_{1} with $\frac{n}{n-1}<q_{1}<2$ and $q_{1} \leq q$. Put $r:=\frac{q_{1} n}{n+q_{1}}$. Then $1<r<\frac{2 n}{n+2}<n$ (observe $\frac{2 n}{n+2}>1$ for $\left.n \geq 3\right)$. Further $r \leq q$ and $q_{1}=\frac{n r}{n-r}=r^{*}, q_{1}{ }^{\prime}=\frac{n r}{n r-n+r}$ and $q_{1^{\prime}}{ }^{* *}=\frac{n q_{1}{ }^{\prime}}{n-q_{1^{\prime}}}=r^{\prime}$. Since $r \leq q$ we have $p, \nabla p \in L^{r}\left(M_{R}\right)$, that is $p \in H^{1, r}\left(M_{R}\right)$,
where $M_{R}:=\left\{x \in \mathbb{R}^{n}: R<|x|<\frac{3}{2} R\right\}$. The Sobolev inequality gives

$$
\|p\|_{q_{1}, M_{R}}=\|p\|_{r^{*}, \mu_{R}} \leq c\|p\|_{H^{1}, r\left(M_{R}\right)}
$$

Consider (5.54) for $v \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ and φ_{0}. Then with $C^{\prime}:=\left\|\nabla \varphi_{0}\right\|_{\infty}$
(5.56) $|\langle p \nabla \varphi, \nabla v\rangle| \leq C^{\prime}\|p\|_{q_{1}\left(M_{R}\right)}\|\nabla v\|_{q_{1}}, \leq C^{\prime} C\|P\|_{H^{1}, r\left(M_{R}\right)}\|\nabla v\|_{q_{1}}$,

By the Sobolev inequality for $v \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ (see (5.55))
(5.57) $|\langle\nabla p, v \nabla \varphi\rangle| \leq C^{\prime}\|\nabla p\|_{r, M_{R}}\|v\|_{r^{\prime}} \leq C^{\prime} C\|\nabla p\|_{r, \mu_{R}}\|\nabla v\|_{q_{1}}{ }^{\prime}$

By Lemma 5.2 we see from (5.54) that $\nabla\left(\varphi_{0} p\right) \in E^{q_{1}}\left(\mathbb{R}^{n}\right)$ holds. Now we may start the iteration procedure from part iii).
If $n=2$ and given $s>2$, we put $\tilde{r}=\frac{2 s}{2+s}$. Then $1<\tilde{r}<2=n, \tilde{r}^{*}=\frac{2 r}{2-r}=s$ and with estimates analogously to (5.56), (5.57) we conclude again via Lemma 5.2 $\nabla\left(\varphi_{0} p\right) \in E^{s}(G)$.

Remark 5.15.

If $G \subset \mathbb{R}^{n}$ is a bounded domain with sufficiently smooth boundary, say e.g. $\partial G \in C^{1}$ and if $1<q<s<\infty$, if $\nabla p \in E_{0}^{q}(G)$ and $\nabla p \in L^{s}(G)$, then $\nabla p \in E_{0}^{s}(G)$. As we have seen in Lemma 5.6 this conclusion still holds for the half-space. But it is no longer true for an exterior domain: Let $K:=B_{1}$, $G:=\mathbb{R}^{n} \backslash \mathbb{K}=\left\{x \in \mathbb{R}^{n}:|x|>1\right\}$ and consider for $x \in G$

$$
h(x):=\left\{\begin{array}{cc}
1-|x|^{2-n} & \text { if } n \geq 3 \tag{5.58}\\
\ln |x| & \text { if } n=2
\end{array}\right.
$$

Then $h \in C^{\infty}(G),\left.h\right|_{\partial G}=0, \Delta h=0$, $\nabla h \in L q(G)$ for $q>\frac{n}{n-1}$. Consider again $\rho \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right), 0 \leq \rho \leq 1, \rho(x)=1$ for $|x| \leq 1, \rho(x)=0$ for $|x| \geq 2$ and $\rho_{k}(x):=\rho\left(k^{-1} x\right)$ for $k \in \mathbb{N}$. Since $\left.h\right|_{\partial G}=0$ it is easily seen that $h_{k}:=\rho_{k} h \in E_{0}^{q}(G)$ for $q>\frac{n}{n-I}$. Since $\nabla h_{k}=h \nabla \rho_{k}+\rho_{k} \nabla h$ because of (5.58) and the properties of h one immediately verifies $\left\|\rho_{k} h\right\|_{q} \rightarrow 0$ if $q>n$ for $n \geq 2$. Clearly $\rho_{k} \nabla h \rightarrow \nabla h$ in $L q(G)$. If $n \geq 3$ and $q=2$ like as in part iii) of the proof of Lemma 5.6 one verifies $\nabla h_{k} \rightarrow \nabla h$ weakly in $E_{0}^{q}(G)$ and therefore $\nabla h \in E_{0}^{q}(G)$ in this case too. This rests on the property $\left\|\nabla \rho_{k}\right\|_{G} \leq$ const for $q \geq n$ and $k \in \mathbb{N}$. If $q=n=2, \nabla \ln |x| \notin L^{2}(G)$. That these are the optimal q for $\boldsymbol{\nabla} h \in E_{0}^{q}(G)$ may be seen as follows: If $p \in C_{0}^{\infty}(G) \subset C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ by means of the Sobolev-inequality $\|p\|_{q^{*}} \leq C\|\nabla p\|_{q}$ for $\nabla p \in E_{0}^{q}(G)$ and $1 \leq q<n$. Clearly $h \notin L^{s}(G)$ vor $1 \leq s<\infty$.

Lemma 5.16. Let $1<q<\infty$ and let $G \subset \mathbb{R}^{n}$ be an exterior domain, $G=\mathbb{R}^{n} \backslash \bar{K}$, with $\phi \neq K \subset \subset \mathbb{R}^{n}$. Let $R>0$ be such that $K \subset C B_{R}$. Suppose there is $1<q<n$ and $\nabla p \in E_{0}^{q}(G)$. Assume in addition $p=0$ in $G_{2 R}:=G \cap B_{2 R}$. If there is any other $1<r<\infty$ with $\nabla p \in L^{r}(G)$. Then $\nabla p \in E_{0}^{r}(G)$.
Proof. Without loss of generality we may assume $p \in C^{\infty}(G)$. Otherwise we consider the mollification p_{ϵ}. Since p vanishes on $G_{2 R}, \nabla\left(p_{\epsilon}\right)=(\nabla p)_{\epsilon}$ in G for $0<\epsilon<R$. Clearly $\nabla p_{\epsilon} \in E_{0}^{q}(G)$ too. Consider again our standard cut-off function $\rho \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right), 0 \leq \rho \leq 1, \rho(x)=1$ for $|x| \leq 1, \rho(x)=0$ for $|x| \geq 2$, $\rho_{k}(x):=\rho\left(k^{-1} x\right)$ and $R_{k}:=\left\{x \in \mathbb{R}^{n}: k<|x| \leq 2 k\right\}$. Then $\operatorname{supp}\left(\nabla \rho_{k}\right) \subset R_{k}$. Since by assumption $\nabla p \in E_{0}^{q}(G)$ and $1<q<n$, by the Sobolev embedding theorem $p \in L q^{*}(G)$ with $q^{*}=\frac{n q}{n-1}$ and $\|p\|_{q^{*}} \leq C\|\nabla p\|_{q}$. Define $C_{k}:=\left|R_{k}\right|^{-1} \int_{R_{k}} p d x$ By Hölder's inequality
$\left|C_{k}\right| \leq\left|R_{k}\right|^{-1}\|p\|_{q^{*}, R_{k}}\left|R_{k}\right|^{\frac{1}{q^{* \prime}}} \leq c\|\nabla p\|_{q}\left|R_{k}\right|^{\frac{1}{q^{* \prime}}-1}$.
Since $q^{* \prime}=\frac{q^{*}}{q^{*}-I}=\frac{n q}{n q-n+q}$ we have $\frac{1}{q^{* r}}-1=\frac{q-n}{q}<0$ for $q<n$ and we get
$\left|R_{k}\right|^{\frac{1}{a^{\prime \prime}}-1} \rightarrow 0(k \rightarrow \infty)$ and therefore $\left|C_{k}\right| \rightarrow 0$. Observe the Poincaré-inequality (2.6) giving

$$
\begin{equation*}
\left\|p-C_{k}\right\|_{r, R_{k}} \leq k \cdot C_{1}\|\nabla p\|_{r, R_{k}} \tag{5.59}
\end{equation*}
$$

(since we assumed $p \in C^{1}(G)$ clearly $p \in L r\left(R_{k}\right)$). Define $\varphi(x)=1-\rho_{R}(x)$
(with ρ like as above) and $p_{k}:=\varphi\left(\rho_{k}\left(p-C_{k}\right)\right) \in C_{0}^{\infty}(G)$.
Then $\nabla p_{k}=\rho_{k}\left(p-C_{k}\right) \nabla \varphi+\varphi\left(p-C_{k}\right) \nabla \rho_{k}+\varphi \rho_{k} \nabla p$. Since $\varphi \equiv 1$ on supp (∇p) we see $\varphi \rho_{\mathrm{k}} \nabla \mathrm{p} \rightarrow \nabla \mathrm{p}$ in $\mathrm{Lr}(G)$. Since p vanishes on $\operatorname{supp}(\nabla \varphi) \subset B_{2 R}, \rho_{\mathrm{k}} \equiv 1$ for $\mathrm{k}>\mathrm{R}$, $\left\|\rho_{k}\left(p-C_{k}\right) \nabla \varphi\right\|_{r}=\|\nabla \varphi\|_{\infty}\left|C_{k}\right| \quad\left|B_{2 R}\right| \rightarrow 0$. By (5.59) and $\left|\nabla \rho_{k}\right| \leq C \cdot k^{-1}$, $\operatorname{supp}\left(\nabla \rho_{k}\right) \subset R_{k}$ we see $\left\|\varphi\left(p-C_{k}\right) \nabla \rho_{k}\right\|_{r} \leq C k^{-1}\left\|p-C_{k}\right\|_{r, R_{k}} \leq C \cdot C^{\prime}\|\nabla p\|_{r, R_{k}} \rightarrow 0(k \rightarrow \infty) . *$ Therefore $\left\|\nabla p-\nabla p_{k}\right\|_{r} \rightarrow 0$.

Remark 5.17. Let the assumption of Lemma 5.14 be satisfied, expecially (5.52) with $\nabla p \in E_{0}^{q}(G)$. If $1<q \leq \frac{n}{n-1}$ and $n \geq 3$ (then $\frac{n}{n-1}<n$) we conclude via Lemma 5.15 that $\nabla(\varphi p) \in E_{0}^{s}(G)$ for $1<s<\infty$. If $n=2$ and $1<q<2$ then $\nabla(\varphi p) \in E_{0}^{s}(G)$ for $1<s<\infty$. If $n \geq 3$ and $\frac{n}{n-1}<q<n$ then $\nabla(\varphi p) \in E_{0}^{s}(G)$ for $\frac{n}{n-1}<s<\infty$. These properties perfectly fits togehter with the observations made in Remark 5.15.

The proof of estimates (5.35), (5.49), (5.50) was completely elementary (e.g. we needed only Sobolev's embedding theorem and Holder's inequality) but demanding lengthy hard work. It was done to prove in addition that solutions $\nabla p \in E q(G)$ resp. $\nabla p \in E_{0}^{q}(G)$ of the homogeneous functional equations have integrability properties with respect to "other" exponents $1<s<\infty$ and (compare Remark 5.17) belong under certain circumstances to $E_{0}^{s}(G)$ too. All this work we need to conclude via the trivial $L^{2}(G)$-uniqueness of the Dirichlet and Neumann problem the Lq-uniqueness. By means of a partition of unity the desired main theorems are then an easy consequence of the following uniqueness result. Concerning the Dirichlet problem we read off from Remark 5.15 that the uniqueness result is best possible. I'm very much indepted to my colleque Professor Dr. Michael Wiegner, who gave me the example of the "exceptional functions" h in (5.58) and drew my attention in a very early stage of the consideration of exterior problems in the appropriate direction.

Theorem 5.18. (Uniqueness) Let $G \subset \mathbb{R}^{n}$ be either a bounded or an exterior domain with boundary $\partial G \in C^{1}$ and let $1<q<\infty$. Then:
a) Uniqueness of the weak Neumann problem:

If $\nabla p \in E^{q}(G)$ satisies $\langle\nabla p, \nabla \phi\rangle=0$ for all $\nabla \phi \in \mathrm{Eq}^{\prime}(G)$, then $\nabla p=0$.
b) Uniqueness of the weak Dirichlet problem:

If $\nabla p \in E_{o}^{q}(G)$ satisfies $\langle\nabla p, \nabla \phi\rangle=0$ for all $\nabla \phi \in E_{o}^{q^{\prime}}(G)$. Then:
i) If G is bounded, then $\nabla p=0$ (and therefore $p=0$)
ii) If G is an exterior domain, and
if $n \geq 3$ and $1<q<n$, then $\nabla p=0$
if $n=2$ and $1<q \leq 2=n$, then $\nabla p=0$
(and $p=0$ too).

Proof. i) By Lemma 5.11 for each $x_{0} \in \partial G$ there is $R^{\prime}=R^{\prime}\left(x_{0}\right)>0$ such that for $G \cap B_{R^{\prime}}\left(x_{0}\right)$ the properties $\left.c\right)$ respectively d) hold. By compactness of ∂G we find finitely many $x_{1} \in \partial G$ and $R_{1}:=R^{\prime}\left(x_{1}\right)>0, i=1, \ldots, M$, such that $\partial G \subset \bigcup_{i=1}^{M} B_{i}$, where $B_{i}:=B_{R_{1}}\left(x_{i}\right)$. If G is bounded, $G_{1}:=G \cap \cap_{i=1}^{M} \mathbb{R}^{n} \backslash B_{1} \subset G$ and is compact. By means of Lemma 5.12 we see that G_{1} can be covered by finitely many balls $B_{i}=B_{R_{1}}\left(x_{i}\right) \subset \subset G, i=M+1, \ldots, N$. Then the $B_{1}, i=1, \ldots, N$ form an open covering of \mathcal{G}. If G is an exerior domain, $G=\mathbb{R}^{n} \backslash \bar{K}$, where $\phi \neq K \subset \subset \mathbb{R}^{n}$, then we choose $R>0$ such that $K \subset B_{R}$ and put now $G_{2}:=G_{1} \cap B_{3 R} \subset G_{2}$. Again G_{2} is compact and may be covered by $B_{i} \subset \subset G, i=M+1, \ldots, N$.

Define $B_{o}:=\left\{x \in \mathbb{R}^{n}:|x|>2 R\right\} \subset G$. Then again the system $B_{i}, i=0,1, \ldots, N$ forms an open covering of \bar{G}. Construct a partion of unity $\left\{\varphi_{1}: \mathfrak{i}==, 1, \ldots, N\right\}$ such that $0 \leq \varphi_{1}, \varphi_{1} \in C_{0}^{\infty}\left(B_{1}\right)$ for $i=1, \ldots, N$ and $\varphi_{0} \in C^{\infty}\left(B_{0}\right), \varphi_{0}=1$ for $|x| \geq 3 R, \varphi_{0}$ vanishing in a neighborhood of $|x|=2 R, \sum_{i=1}^{N} \varphi_{1}(x)=1$ for $x \in G$.
ii) In case a) we immediately conclude from the hypothesis and Lemmas 5.115.13 that $\nabla\left(\varphi_{1} p\right) \subset E^{2}(G)$ (continue $\varphi_{1} p$ by zero for $x \in G, x \notin G \cap B_{1}$) and therefore $\nabla p=\sum_{i=0}^{N} \nabla\left(\varphi_{1} p\right) \in E^{2}(G)$. Since $E^{\infty}(G)=\left\{\nabla \phi: \phi \in C_{0}^{\infty}(\bar{G})\right\}$ is dense in $E^{\mathrm{E}}(\mathrm{G})$ for $1<S<\infty$ from $\nabla p \in E^{2}(G)$ and $0=\langle\nabla p, \nabla \phi\rangle$ for $\nabla \phi \in E^{s}(G)$ we see now $0=\langle\nabla p, \nabla p\rangle$ and therefore $\nabla p=0$.
iii) In case b) and G bounded we similiarly conclude by Lemmas 5.11 and
5.12 d) $\nabla\left(\varphi_{i} p\right) \in E_{0}^{q}(G)$ and therefore $\nabla p \in E_{0}^{2}(G)$ and again $\nabla p=0$.

Clearly, we conclude $p=0$ too.
iv) If G is an exterior domain we consider Lemma 5.14 and 5.16: If $n \geq 3$ and $1 \leq q \leq \frac{n}{n-1}<n$, then $\nabla\left(\varphi_{0} p\right) \in E_{0}^{s}(G)$ for $1<s<\infty$. If $\frac{n}{n-1}<q<n$, then again $\nabla\left(\rho_{0} p\right) \in E_{0}^{s}(G)$ for $1<s<\infty$. In any case $\nabla\left(\varphi_{0} p\right) \in E_{0}^{s}(G)$. If $n=2$ and $1<q<2$, then by Lemma 5.15 and $5.16 \nabla\left(\varphi_{0} p\right) \in E_{0}^{s}(G)$. The case $q=2$ is trivial. Since $\nabla\left(\varphi_{i} p\right) \in E_{0}^{s}(G)$ for $i=0, \ldots, N$ at the end $\nabla p=\sum_{i=0}^{N} \nabla\left(\varphi_{i} p\right) \in E_{0}^{2}(G)$ and again $0=\langle\nabla p, \nabla \phi\rangle$ for all $\phi \in C_{0}^{\infty}(G)$ and by density of $\left\{\nabla \phi: \phi \in C_{0}^{\infty}(G)\right\}$ in $E_{o}^{2}(G)$ we again have $\nabla p=0$ that is $p=0$.
6. Proof of the main theorems.

Proof of Theorem 4.1. First we prove part i). Like as in part i) of the proof of Theorem 5.18 we construct a covering $B_{1}, i=0,1, \ldots, N$ of $G\left(B_{o}:=\phi\right.$ if G is bounded) and a partition of unity (φ_{1}) with respect to this covering such that
(5.35) holds for $\mathbf{i}=1, \ldots, M$, (5.49) for $i=M+1, \ldots, N$ and (5.50) for $i=0$. Suppose that the statement a) of Theorem 4.1 is not true. Then there exists a sequence $\left(\nabla p_{k}\right) \subset E^{q}(G)$ such that $\left\|\nabla p_{k}\right\|_{q, G}=1$ and with

$$
\begin{equation*}
\epsilon_{k}:=\sup _{0 \neq \nabla v \in \mathbb{G}^{\prime}(G)} \frac{\left|\left\langle\nabla p_{p_{k}} \nabla v\right\rangle\right|}{\|\nabla v\|_{q^{\prime}}} \rightarrow 0(k \rightarrow \infty) . \tag{6.1}
\end{equation*}
$$

Without loss of generality we may assume $\int_{G} p_{k} d x=0$ if G is bounded and $\int_{G_{3 R}} p_{k} d x=0$ if G is an exterior domain. Then by the Poincaré- inequality we get
$\left\|p_{k}\right\|_{H^{1}, q_{(G)}} \leq$ const. if G is bounded, $\left\|p_{p_{k}}\right\|_{\mathbb{H}^{1}, q_{\left(G_{B R}\right)}} \leq$ const if G is an exterior domain. Since $\mathrm{Eq}^{\mathrm{q}}(\mathrm{G})$ is reflexive there is $\nabla p \in \mathrm{Eq}^{q}(\mathrm{G})$ and a subsequence (again denoted by p_{k}) such that ∇p_{k} converges weakly to ∇p. for $\nabla v \in E q^{\prime}(G)$ we derive from (6.1) $\langle\nabla p, \nabla v\rangle=\lim _{k \rightarrow \infty}\left\langle\nabla p_{k}, \nabla v\right\rangle=0$. By Lemma 5.18 a) we get $\nabla p=0$. By the $H^{1, q}$-boundedness we see by means of Rellich's theorem that $p_{k} \rightarrow p$ strongly in $L(G)$ resp. $L q\left(G_{3 R}\right)$. Then $\int_{G} p d x=0\left(\int_{G_{3 R}} p d x=0\right)$ too and therefore $p=0$, that is $p \rightarrow 0$ strongly in Lq on G resp. $G_{3 R}$. Fix now any $i \in\{0,1, ., N\}$. If $i=0$ let $\Omega:=\mathbb{R}^{n}$, if $i=1, \ldots, N$ let $\Omega:=B_{2 R_{1}}\left(x_{1}\right)$. With a constant $C_{i}^{\prime}>0$ we have by (5.35), (5.49) and (5.50)

$$
\begin{equation*}
C_{1}\left\|\nabla\left(\varphi_{1} p_{k}\right)\right\|_{q} \leq \sup _{0 \neq v \in C_{0}^{\infty}(\Omega)} \frac{\left\langle\nabla\left(\varphi, p_{k}\right), \nabla v\right\rangle}{\|\nabla v\|_{q^{\prime}}, G \cap \Omega}:=d_{k} \tag{6.2}
\end{equation*}
$$

For each $k \in \mathbb{N}$ there is $v_{k} \in C_{0}^{\infty}(\Omega),\left\|\nabla v_{\mathbf{k}}\right\|_{q^{\prime}}=1$ and
(6.3) $0 \leq d_{k}-\left\langle\nabla\left(\varphi_{1} p_{k}\right), \nabla v_{k}\right\rangle \leq \frac{1}{k}$.

Let $\tilde{v}_{k}:=v_{k}-c_{k}$, where $c_{k}:=|\Omega|^{-1} \int_{\Omega} v_{k} d x$ if $i=1, \ldots, N$ and $c_{k}:=\left|G_{3 R}\right|^{-1} \int_{G_{3 R}} v_{k} d x$ for $i=0$. Then by the Poincaré-inequality we conclude $\left\|\tilde{v}_{k}\right\|_{H^{1}, q^{\prime}(\Omega)} \leq$ const. for $i=1, \ldots, N$ and $\left\|\tilde{v}_{k}\right\|_{H^{1}, q^{\prime}\left(G_{3 R}\right)} \leq$ const for $i=0$. Again we select a subsequence (\tilde{v}_{k}) and find $\nabla \tilde{v}_{k} \rightarrow \nabla v$ weakly in $E^{\prime}(G)$ and $\tilde{v}_{k} \rightarrow v$ strongly in $L^{q}(\Omega)$ resp. $L^{q}\left(G_{3 R}\right)$. By (6.3)

$$
\begin{aligned}
d_{k} & \leq \frac{1}{k}+\left\langle\nabla\left(\varphi_{1} p_{k}\right), \nabla \tilde{v}_{k}\right\rangle \\
& =\frac{1}{k}+\left\langle\nabla p_{k}, \nabla\left(\varphi_{1} \tilde{v}_{k}\right)\right\rangle+\left\langle p_{k} \nabla \varphi_{1}, \nabla \tilde{v}_{k}\right\rangle-\left\langle\nabla p_{k}, \tilde{v}_{k} \nabla \varphi_{1}\right\rangle \\
& \leq \frac{1}{k}+\epsilon_{k}\left\|\nabla\left(\varphi_{1} \tilde{v}_{k}\right)\right\|_{q^{\prime}}+\left|\left\langle p_{k} \nabla \varphi_{1}, \nabla \tilde{v}_{k}\right\rangle\right|+\left|\left\langle\nabla p_{k}, \tilde{v}_{k} \nabla \varphi_{1}\right\rangle\right|
\end{aligned}
$$

Since at the support of $\nabla \varphi_{1}$ we have $p_{k} \rightarrow 0$ strongly in $L q$ and $\nabla \tilde{v}_{k} \rightarrow \nabla v$ weakly we see $\left\langle p_{k} \nabla \varphi_{1}, \nabla \tilde{v}_{k}\right\rangle \rightarrow 0$. Analogously $\left\langle\nabla p_{k}, \tilde{v}_{k} \nabla \varphi\right\rangle \rightarrow 0$. Further $\left\|\nabla\left(\varphi_{1} \tilde{v}_{k}\right)\right\|_{q^{\prime}} \leq$ const and $\epsilon_{k} \rightarrow 0$. So we conclude by (6.2) $\left\|\nabla\left(\varphi_{1} p_{k}\right)\right\|_{q} \rightarrow 0(k \rightarrow \infty)$ and for $\boldsymbol{i}=0,1, \ldots, N$. Since $\nabla p_{k}=\sum_{i=0}^{n} \nabla\left(\varphi_{i} p_{k}\right)$ we get $\left\|\nabla p_{k}\right\|_{q}=1$ forming a contradiction. Part b): By part a) G has property $P_{a}^{1}(s)$ for $s=q$ and q^{\prime}, therefore by Lemma 5.1 G has property $P_{b}^{1}(s)$ for $s=q$ and q^{\prime}, that is b).

Proof of Theorem 4.2. Part a): Like as in the proof of Theorem 4.1 we construct a covering $B_{1}=B_{R_{1}}\left(x_{1}\right), i=0,1, \ldots, N$ of G and a partition of unity
such that for $i=0, \ldots, N$ e.g. (5.35) holds for $\varphi \in C_{0}^{\infty}\left(B_{1}\right)$ and the sup is taken over $v \in C^{\infty}\left(G \cap B_{2 R_{1}}\left(x_{1}\right)\right)$, analogously for (5.49). For (5.52) the sup is taken over $v \in C_{0}^{\infty}(G)$. If G is bounded, let $1<q<\infty$. If G is an exterior domain and $n \geq 3$, let $1<q<n$ and if $n=2$, let $1<q \leq 2$. Suppose again that (4.4) is not true. Then there is a sequence $\left(\nabla p_{k}\right) \subset E_{o}^{q}(G)$ such that $\left\|\nabla p_{k}\right\|_{q}=1$ and

$$
\begin{equation*}
\epsilon_{k}:=\sup _{0 \neq \nabla v \in E_{0}^{q^{\prime}}(G)} \frac{\left\langle\nabla p_{k}, \nabla v\right\rangle}{\|\nabla v\|_{q^{\prime}}} \rightarrow 0 . \tag{6.4}
\end{equation*}
$$

For G bounded, by (2.1)
(6.5) $\quad\left\|p_{k}\right\|_{q} \leq C(G)\left\|\nabla p_{k}\right\|_{q}$ and for G an exterior domain by (2.9)
(6.6) $\left\|p_{k}\right\|_{q, G_{3 R}} \leq C(R)\left\|\nabla p_{k}\right\|_{q, ~}$.

Again by reflexivity we find a subsequence (again denoted p_{k}) such that $\nabla p_{k} \rightarrow \nabla p \in E_{0}^{q}(G)$ weakly. Since by (6.2) $\langle\nabla p, \nabla v\rangle=0$ for all $\nabla v \in E_{0}^{q_{0}^{\prime}}(G)$, by Theorem $5.18 \mathrm{\nabla p}=0$. By (6.5), (6.6) we conclude $p=0$. Then by Rellich's theorem $p_{k} \rightarrow 0$ strongly in $L q(G)$ resp. $L q\left(G_{3 R}\right)$. Now we proceed like as in the proof of Theorem 4.1: Consider (6.2). Observe that if $x_{1} \in \partial G$ then the sup has to be taken over $v \in C_{0}^{\infty}\left(G \cap B_{2 R_{1}}\left(x_{1}\right)\right)$ in (6.2). Again we find v_{k} with $\left\|\nabla v_{k}\right\|_{q^{\prime}}=1$ and (6.3). The use of the Poincaré inequality is replaced by (6.5) and (6.6) for v_{k} instead of p_{k} and q^{\prime} instead of q. The remaining arguments are the same. Part b): If G is bounded, by part a) G has property $P_{a}^{0}(s)$ for $s=q$ and q^{\prime} if $1<q<\infty$. If G is an exterior domain and $n \geq 3 G$ has property $P_{a}^{o}(s)$ for $s=q$ and q^{\prime} if $\frac{n}{n-1}<q<n$. If $n=2$ the exterior domain G has property $p_{a}^{0}(s)$ for $s=q$ and q^{\prime} if and only if $q=n=2$. Via Lemma 5.1 part b) follows.
7. The exceptional spaces for the Dirichlet problem in exterior domains. By Theorem 5.18 b) from $\nabla p \in E_{0}^{q}(G), G \subset \mathbb{R}^{n}(n \geq 3)$ exterior domain, and $\langle\nabla p, \nabla \phi\rangle=0$ for $\nabla \phi \in E_{0}^{q}(G)$ we can conclude $\nabla p=0$ only if $1<q<n$ and the functional representation (Theorem 4.2) holds only for $\frac{n}{n-1}<q<n$. In the case $G:=\left\{x \in \mathbb{R}^{n}:|x|>1\right\}$ the reason is clear by Remark 5.15. For an arbitrary exterior domain G with $\partial G \in C^{1}$ we see that the situation in Remark 5.15 is typical:

Theorem 7.1. Let $G \subset \mathbb{R}^{n}(\mathrm{n} \geq 2)$ be an exterior domain with boundary $\partial G \in \mathbb{C}^{1}, G=\mathbb{R}^{\mathbf{n}} \backslash \bar{K}, \phi \neq K \subset \subset \mathbb{R}^{\mathbf{n}}$. Without loss of generality assume $0 \in K$. Then
there exists $h \in C^{\infty}(G) \cap C^{0}(G)$ such that $\Delta h=0$ in $G,\left.h\right|_{\partial G}=0$ and $\nabla h \in E_{0}^{G}(G)$ for all q with $n \leq q<\infty$ if $n \geq 3$ and $q>2$ if $n=2$. Let $0<r<1$ such that $B_{r} \subset \subset G$. Then further there is a harmonic function u in B_{r} with $u(0)=0$ and constants $\mathrm{a}, \mathrm{b} \in \mathbb{R}, \mathrm{a} \neq 0, \mathrm{~b} \neq 0$ such that for $|\mathrm{x}| \geq \frac{1}{r}$
(7.1) $h(x)=\left\{\begin{array}{l}a+\frac{b}{|x|^{n-2}}+\frac{1}{|x|^{n-2}} u\left(\frac{x}{|x|^{2}}\right) \text { for } n \geq 3 \\ a+b \ln |x|+u\left(\frac{x}{|x|^{2}}\right) \text { for } n=2\end{array}\right.$

Conversely if $\nabla \hbar \in E_{0}^{q}(G)$, where q is subordinate to the restrictions above, and $\langle\nabla \hbar, \nabla \phi\rangle=0$ for all $\phi \in C_{0}^{\infty}(G)$, then there exists $\alpha \in \mathbb{R}$ sucht that $\hbar=\alpha h$. $\boldsymbol{\omega}^{\prime}$

The proof (see [9]) is not difficult but somehow lengthy. The main tools are the mean value properties (3.1), (3.2), Weyl's Lemma (= Theorem 3.1), the Kelvin-transform etc.

This theorem has a lot of consequences. To avoid the cumbersome distinction $n \geq 3$ and $n=2$ we restrict ourselfes in the following considerations to the case $n \geq 3$.
Let $H(G):=\{\alpha \nabla h: \alpha \in \mathbb{R}\}$. For $q \geq n$ let $\nabla h_{q}:=\frac{\nabla h}{\|\nabla h\|_{q}} \in E_{o}^{q}(G)$.
Then $H(G):=\left(\alpha \nabla h_{q}: \alpha \in \mathbb{R}\right\}$. Define $F_{q}^{*}: H(G) \rightarrow \mathbb{R}$ by
(7.2) $\quad F_{q}^{*}(\nabla g)=\alpha$ for $g=\alpha h_{q}$.

Then $\left\|F_{q}^{*}\right\|=\sup _{0 \neq \mathrm{g} \in \mathrm{H}} \frac{\mathrm{F}_{0}^{*}(\nabla \mathrm{~g})}{\|\nabla \mathrm{g}\|_{\mathrm{q}}}=1$. Extend $\mathrm{F}_{\mathrm{q}}^{*}$ norm-preserving by the Hahn-Banach theorem to a continuous linear functional defined on the whole space $E_{o}^{q}(G)$ and denote if again by F_{q}^{*}, Define

$$
\begin{equation*}
P_{q}(\nabla p):=F_{q}^{*}(\nabla p) \nabla h_{q} \text { for } \nabla p \in E_{o}^{q}(G) \tag{7.3}
\end{equation*}
$$

Then $P_{q}: E_{0}^{q}(G) \rightarrow H(G)$ is a projection, that is $P_{q}^{2}=P_{q}$, with the additional property $\left\|\mathrm{P}_{\mathrm{q}}\right\|=1$.
Define
(7.4) $\quad P_{c, q}:=I-P_{q}$
and
(7.5) $\quad E_{o, c}^{q}(G):=P_{c, q}\left(E_{o}^{q}(G)\right)$.

Then we have in the sense of a direct sum

$$
\begin{equation*}
E_{o}^{q}(G)=E_{o, c}^{q}(G) \oplus H(G) \tag{7.6}
\end{equation*}
$$

and there is a constant $K>0$ such that

$$
\begin{equation*}
\|\nabla p\|_{q} \geq K\left(\left\|P_{c, q}(\nabla p)\right\|_{q}+\left\|P_{q}(\nabla p)\right\|_{q}\right) \tag{7.7}
\end{equation*}
$$

for all $\nabla p \in E_{o}^{q}(G)$. Clearly $E_{o, c}^{q}(G)$ is topologically equivalent to the quotient space $E_{o}^{q}(G) / H(G)$.

Concerning the estimates from Theorem 4.2, we have the following extension of Theorem 4.2:

Theorem 7.2. For G assume the same as in Theorem 7.1 and let $n \geq 3$. Then for $1<q<\infty$ there exists a constant $C=C(G, q)>0$ such that
a) for $1<q \leq \frac{n}{n-1}$ (then $q^{\prime} \geq n$) and all $\nabla p \in E_{o}^{q}(G)$
b) for $\frac{n}{n-1}<q<n$ estimate (4.4) holds
c) for $q \geq n$ (then $q^{\prime} \leq \frac{n}{n-1}$) and all $\nabla p \in E_{o, c}^{q}(G)$
(7.9) $\quad\|\nabla p\|_{q} \leq C \sup _{0 \neq \nabla \phi \in \mathcal{E}^{\prime}} \frac{|\langle\nabla p, \nabla \phi\rangle|}{}\left(G \nabla \phi \|_{q^{\prime}}\right.$.

Observe that (7.8) is sharper then (4.4), because the variational class is smaller. (7.9) is an extension of (4.4) to the case $q>n$ but for the narrower class $E_{o, c}^{q}(G) \subsetneq E_{o}^{q}(G)$.

Concerning the functional representation we get:
Theorem 7.3. For $G \subset \mathbb{R}^{n}$ assume the same as in Theorem 7.1 and let $n \geq 3$. Then for $1<q<\infty$ with the constants $C=C(G, q)>0$ by Theorem 7.2 holds:
a) If $1<q \leq \frac{n}{n-I}$ and given $F^{*} \in\left(E_{0, c}^{q^{\prime}}(G)\right) *$, $\|F *\|_{\left(E_{0, c}^{q^{\prime}}\right)^{*}}:=\sup _{0 \neq \nabla \phi \in E_{0, c}^{q^{\prime}}} \frac{\|F *(\nabla \phi)\|}{\|\nabla\|_{q}}$, then
there is a unique $\nabla p \in E_{o}^{q}(G)$ such that

$$
\begin{equation*}
F *(\nabla \phi)=\langle\nabla p, \nabla \phi\rangle \text { for all } \nabla \phi \in E_{o, c}^{q^{\prime}}(G) \tag{7.10}
\end{equation*}
$$

Further

$$
\begin{equation*}
\|\nabla P\|_{q} \leq C\|F *\|_{\left(E_{o, c}^{q^{\prime}}\right) *} \leq C\|\nabla p\|_{q} \tag{7.11}
\end{equation*}
$$

b) If $\frac{n}{n-1}<q<n$ then Theorem 4.2 b) holds.
c) If $q \geq n$ and given $F^{*} \in\left(E_{0}^{q_{0}^{\prime}}(G)\right)^{*}$, then there is a unique $\nabla p \in E_{0, c}^{q}(G)$ such that

$$
\begin{equation*}
F *(\nabla \phi)=\langle\nabla p, \nabla \phi\rangle \text { for all } \nabla \phi \in E_{o}^{q^{\prime}}(G) \tag{7.12}
\end{equation*}
$$

Further $\|\nabla p\|_{q} \leq C\|F\|_{\left(E_{0}^{q^{\prime}}\right)} \leq C\|\nabla p\|_{q}$.
For case a) we have in addition
Theorem 7.4. Let the same assumptions as in Theorem 7.1 hold and let
$1<q \leq \frac{n}{n-1}(n \geq 3)$. Given $F^{*} \in\left(E_{0}^{q^{\prime}}(G)\right)^{*}$, then there exists $\nabla p \in E_{0}^{q}(G)$ with $F *(\nabla \phi)=\langle\nabla p, \nabla \phi\rangle$ for all $\nabla \phi \in E_{0}^{q}(G)$ if and only if $F *(\nabla h)=0$ (h by Theorem 7.1). Then in addition $\|\nabla p\|_{q} \leq C\|F *\|_{\left(E_{o}^{q}(G)\right)^{*}} \leq C\|\nabla p\|_{q}$.
8. Applications, concluding remarks. We are now able to prove existence of weak solutions for the Neumann- and Dirichlet problem in bounded as well as in exterior domains. E.g. let G be an exterior domain and let $f \in C_{0}^{0}(G)$ be given. Let $F(\phi):=\langle f, \phi\rangle$ for $\phi \in C_{o}^{\infty}(G)$. Suppose supp $(f) \subset B_{R}$ for some $R>0$. By (2.9) we get $|F(\phi)| \leq\|f\|_{q, G_{R}}\|\phi\|_{q^{\prime}, G_{R}} \leq C(R)\|f\|_{q}\|\nabla \phi\|_{q^{\prime}}$.
Then for $\frac{n}{n-1}<q<\infty$ there exists $\nabla p \in E_{0}^{q}(G)$ with

$$
\begin{equation*}
\langle\nabla p, \nabla \phi\rangle=F(\phi)=\langle f, \phi\rangle \text { for } \phi \in E_{0}^{q^{\prime}}(G) \tag{7.13}
\end{equation*}
$$

If in addition \int_{G} fhdx $=0$, then for $1<q \leq \frac{n}{n-1}$ there is again $\nabla p \in E_{0}^{q}(G)$ with (7.13). Clearly p is a weak solution of the Dirichlet problem " $-\Delta p=f$ in G and $\left.P\right|_{\partial G}=0^{\prime \prime}$. It is not difficult to see that for $|x| \geq R_{0}, R_{0}>R$ sufficiently big, a representation like as in (7.1) holds (since $\Delta p=0$ for $|x|>R$). In case $1<q \leq \frac{n}{n-1}$ follows $a=b=0$. That means $|p(x)| \leq \frac{c}{|x|^{n-1}}$.
In case $\frac{n}{n-1}<q<n$ follows $a=0$ and $|p(x)| \leq \frac{c}{|x|^{n-2}}$. Analogous results hold for the Neumann problem.
Most important applications are in connection with the Stokes problem in bounded as well as in exterior domains. With ideas similar to that one used here, Galdi and Simader [3] proved existence, uniqueness and Lq-estimates for the Stokes problem in exterior domains $G \subset \mathbb{R}^{3}$.
A most convincing application of Theorem 4.1 is given in Simader and Sohr [8] in their proof of the Helmholtz decomposition. Moreover, in turn the Helmholtz
decomposition is equivalent (see [8]) to Theorem 4.1. The results in [8] extend those given by Fujiwara and Morimoto [2] to unbounded domains too. It is well known (see e.g. [5], p. 337 and p. 341 or [6], p. 99 and p. 103) that for bounded domains G with $\partial G \in C^{1}$ and $1<S<\infty$ there is a well defined continuous linear trace operator $V_{s}: H^{1, s}(G) \rightarrow W^{1-1 / s, s}(\partial G)$ such that for $p \in C^{1}(\tilde{G})$ we have $V_{s} p=\left.p\right|_{\partial G}$. If $W^{-1 / s^{\prime}, s^{\prime}}(\partial G):=\left(W^{1-1 / s, s}(\partial G)\right)^{*}$ equipped with the "dual space norm", then in [8] is shown that for the subspace $F^{\prime \prime}(G):=\left\{\nabla p \in E^{\prime \prime}(G): \Delta p \in L^{\prime \prime}(G)\right\}$ of $E^{s^{\prime}}(G)$ equipped with norm $\|\nabla p\|_{F^{s}}:=\left(\|\nabla p\|_{s^{\prime}},\|\Delta p\|_{s^{\prime}}^{\prime}\right)^{1 / s^{\prime}}$ there is a continuous 1 inear trace operator $S_{s^{\prime}}: F^{s^{\prime}}(G) \rightarrow W^{-1 / s^{\prime}, s^{\prime}}(\partial G)$ such that for $p \in C^{\infty}(\mathbb{G})$ we have $S_{s^{\prime}}(\nabla p)=\left.\partial_{N} p\right|_{\partial G}$, where $\left.\partial_{N} p\right|_{\partial G}(x)=\left.\sum_{i=1}^{n} N_{1}(x) \partial_{1} p(x)\right|_{\partial G}$ and $N(x)$ denotes the outward unit normal vector in X_{o} at ∂G.

Via difference quotient methods, using (4.1) and (4.4) respectively, like as in the case $q=2$ higher differentiability properties of weak solutions of e.g. equation (7.13) can be proved (compare e.g. [7].

The case of arbitrary elliptic operators of second order for G bounded, and under additional asymptotic assumptions for the coefficients for exterior domains, is reduced to Δ by elementary coordinate transform and standard localization procedures.

References:

[1] Alt, H.W.: Lineare Funktionalanalysis. Berlin, Heidelberg, New York: Springer 1985.
[2] Fujiwara, D. and Morimoto, H.: An L_{r}-theorem of the Helmholtz decomposition of vector fields. J. Fac. Sci. Univ. Tokyo, Sec. I 24, 685-700 (1977).
[3] Galdi, G.P. and Simader, C.G.: Existence, uniqueness and Lq-estimates for the Stokes problem in an exterior domain. To appear in: Arch. Ratl. Mech. Anal.
[4] Gilbarg, D. and Trudinger, N.S.: Elliptic partial differential equations of second order. Berlin, Heidelberg, New York: Springer 1977.
[5] Kufner, A., John, O. and Fucik, S.: Function spaces. Prague: Academia 1977.
[6] Necas, J.: Les méthodes directes en théorie des équations elliptiques. Paris-Prague: Masson, Academia 1967.
[7] Simader, C.G.: On Dirichlet's boundary value problem. Lecture Notes in Math. 268, Springer-Verlag 1972.
[8] Simader, C.G. and Sohr, H.: A new approach to the Heimholtz decomposition and the Neumann problem in Lq-spaces for bounded and exterior domains. To appear.
[9] Simader, C.G. and Sohr, H.: The weak Dirichlet and Neumann problem in La for second order elliptic equations in bounded and exterior problems. To appear as a book.
[10] Stein, E.M.: Singular integrals and differentialbility properties of functions. Princeton: Princeton University Press 1970.

