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The weak Dirichlet and Neumann problem for the Laplacian in L4

for bounded and exterior domains. Applications.

Christian G. Simader

The purpose of these lectures is to present a rather elementary and selfcon-
tained approach to the weak first and second boundary value problem for the
Laplacian in L9 where 1 < q < =, These problems are basic for a lot of
applications in mathematical physics, like as e.g. Stokes’ probiem. From the
viewpoint of applications it is necessary to consider as well bounded as
exterior domains. Our approach rests on two variational inequalities in L9 and
a type of regularity argument. The results presented here are part of a joint
work with H. Sohr (Paderborn/FRG) [ 9 ].

1. Notations. Throughout this paper G ¢ R* (n > 2) denotes a domain, i.e. G is
open and connected. G is called an exterior domain if G is a domain and if
there exists a bounded open set ¢ # K c R such that G = R*\K. Without loss of
generality we may assume 0 € K. If G ¢ R is a domain we write dG € C! if the

boundary is of class C1. If A,B are subsets of R we write A cc B if A and B
are open, A is compact and A c B. For x e R and r > 0 by B,(x) we denote the
open ball with radius r centered a x. If x = 0 we use the abbreviation

B. := B.(0). TFMcR is a Lebesgue measurable subset of R by |M| we denote
its Lebesgue measure. Let 1 < q < » and let q’ be defined by Ly é, = 1, that

is @' = L. Observe (q’)’ = q. For a domain G c R* by LI(G) we denote the

-1
usual (real) Lebesgue space equipped with norm ||ul|Lq(G) := II""qe :=

(f|u(x)|<Idx)Vq. For f € L3(G) and g € LT’ (G) we write

G

<f,g> := ff(x)g(x)dx. If f € (L9(G))», g (L3’ (G))» are vector fields we use
6

a

n
the same notation <f,g> := 2 <f,,g,>. Beside the usual space
t=1

L‘LC(G) := {f : 6 - R : f measurable in G and f|; € L3(K) for each K cc G}
we use the convenient abbreviation
L? (G) := {f: 6 >R : f measurable in G and f[wae La(GnBg) for each R > 0}.

Toc

We write in the sequel Gi:= G n By. Observe that for G bounded L‘;DC(G)= L1(G).
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So the notation L" (G) is interesting only in connection with unbounded
domains. In the same sense we use the notation C (G) i= ('”s pec® (IR“))

Observe again for G bounded that C (G) C°(G). Fori=1,..,nbyd := a‘;’—
we denote the partial derivates, V := (8;,..,d,) denotes the gradient
and A := A, := a, .o+ af, the Laplacian. If X is a Banach space by X* we
denote the dual space equipped with norm

Ix*lye := sup ] gop xv e xo.

0¥x€EX "x X

2. Sobolev spaces. For:1 < q < » and a domain G c R® by H1:9(G) := {p € LI(G):
d,p € L1(G), i = 1,..,n} we denote the usual Sobolev space equipped with norm

Ipli,a == Clol§ + fvpf)r/s where {vpfq := (Ellf’mllq)“q Observe that this
norm is equivalent to the norm (f|Vp(x)|qu)Vq where |Vp| = (;(a,p)z)if2

Here d,p denotes the weak (= distnbutwnal) derivative of p. For the well
known properties of these spaces we rﬁfﬁr e.g. to Ne as [ 6 ] or Kufner, John,

Fu ik [ 5 ]. As usual H1 9e) : C (G) . Considering for G bounded the
space H '9(6), because of the e'lementary Poincaré-inequality

2.1)  Ipls s (&) [vplla  for p e C7(6)

a norm being equivalent to [pf,,q is defined by [Vplq. If 6 is a bounded
domain say with boundary 3G € C! (or if G is convex, see e.g. [ 4 ] ) then the
general Poincaré-inequality

(2.2)  |plla < c(6)|vplly  for p € H(E) with {pdy =0

holds true. Considering the quotient space Hl"'(G)/IR (identifying elements
whose difference is constant) then again by |[Vp|; an equivalent norm on
Hl"‘(G)/IR is defined. This procedure is no longer possible for G unbounded.
But from the viewpoint of applications we have to use Sobolev spaces equipped
with the (order homogeneous) norm [Vplq. For this purpose we define for a
domain G c R™ with boundary 3G € C! and for 1 < q < @

(2.3) E9(6) := (Vp : p € L] (B), Vp € LI(G)™).

Toc
This space is equipped with norm |[Vp|l;. Observe that for G bounded we have
Ea(G) = {Vp : p € H"9(G)}. For technical reasons we need the following lemma
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(compare [ 8 ], Lemma 2.2) admitting an elementary proof using solely the
Poincaré-inequality (2.2) for balls:

Lemma 2.1. Let n > 2 and let G c R* be a domain. Let 1 < q < » and let a
sequence (p;) C Hﬁ;:(s) be given such that (Vp,) is a Cauchy sequence in
L‘:M(G)“. Then there exists a sequence (c,) c R and some p € Hi;:(G) such that
(p,-c,) converges in Hi;‘c‘(a) to p. The sequence (c;) may be chosen
independently of q.

Using this lemma and the fact that for 4G € C! we may conclude from

p € Liuc(G) with Vp € LI(G) that p € L‘;OG(G) (see e.g. Necas [ 6 ], p. 114),
it is not too hard to see that Ea(G) is complete. Since E9(G) for 1 < q < »
may be regarded as a closed subspace of the reflexive space LI(G)" it is
reflexive too. So we end with

Theorem 2.2. Let G c R* be a domain with boundary 3G € C! and let 1 < q < o,
Then EI(G) is a reflexive Banach space. For q = 2 E2(G) is a Hilbert space
with inner product <Vp,V¢> for Vp,V¢ € E2(G).

Next we s'tu&y approximation properties. If G is bounded with G € C! from the
fact E9(G) = {(Vp : p € Hl"‘(G)) and the classical density result for Sobolev

-1,
spaces HI"q(G) = C”(G) b (compare e.g. Ne as [ 6 ], p. 67) we immediately

derive

Theorem 2.3. Let G c R® be a bounded domain with boundary 4G € C! and let
1<q<wo. Then

(2.4) ES(G) = (Vp : p € C°(E)) Il

For exterior domains we get

Theorem 2.4. Let G c R* be an exterior domain with boundary 4G € C! and let
1<q<w, Then
I-la

(2.5) E3(6) = (Vp : p € C7(B))

Proof. i) For k e N let R, := {x €R™ : k < |X] < 2k}. Then there is k, € N
such that R, cc G for k » k,. For k = 1, R, is a Cl-domain and the Poincaré-



inequality (2.2) holds for q with 1 < q < » and for R, with a certain constant

; =C(q) >0. If keNand ue H“‘(Rk) with fudy = 0 then with
R
p(x) := u(kx) for x € R, we have p € H"I(R,). Further

J p(x)dx = k= [ u(y)dy = 0, ||p[|q.R1- k'“"'""“q,ak’

Ry Ry

Vp = ki-n/q|Vy . From (2.2) valid for p and R, we derive
q.Ry q.Ry

(2.6) llu“quk < k-G ||Vu||q'Rk for u e H"Y(R,) with [ udy =

Ry

ii) Choose p € C:(IR“), 0 <p<1with p(x) =1 for |x| <1 and p(x) = 0 for
|x| > 2. For k € N put p,(x) := p(k-1x). Then supp Vpk c R, and [Vpk(x)l <
M-k-! where M = max |Vp(z)|. Take now some p :'G » R such that Vp € Ea(G).
z€R®

k > k, put h(x) := p(x)(p(x)-c,) where ¢, := |R|™? fpdy By the properties

of p and p, we see h | € H"(6,) where Gy := G N B2R

Further Vh, = p¥p + Vp,(p-c,). Clearly [Vp-ppllq > 0. Since supp Vp, c R, we

derive from (2.6)

Iactp-col, o < Witlo-cl, < Mclwl,, >0
for k > . Therefore |Vp-Vh,|lq,c » 0. Since

(e

pl. € H"(Gy) = C° (Gz,() there exists ¢, € C°(&,) such that

G2k

198l o < Ip - &l o, < K2
Put p. := p(@,-d) where d, := |R|- [ ddy.

Ry
Then p, € C:’(G) is vanishing outside G, and again by (2.6)
Ivn-Ioulle < lo(vp-v00)l, o+ M-k-*ll(p-ck)-m-dk)llq,nk
< Ivo-vaul, o + MelVo-val, < (1hCy)

Altogether we get ||Vp-Vpk||q,G >0. =

As an interesting corollary we derive

Corollary 2.5. Let G c R be an exterior domain with boundary 4G € C! and let

1<q=<o.
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Then
(2.7) E3(G) = (Vp : p € H"(G))

Il

Proof. Clearly (Vp : p € C:(G)) c{VWp:pe HL“(G)) c E9(G) and (2.7) follows
from (2.5). =

As we will see later for exterior domains we have {Vp : p € HLq(G)} § Ea(G).
In connection with the Dirichlet problem with homogeneous boundary data we
consider for 1 < g < » and G c R* an open set the spaces

— |l
(2.8) EXG) := (V8 : ¢ € C7(G))
Clearly E:(G) c E9(G). If G is bounded we immediately see by means of (2.1)
that E:(G) ={Wp:pe H:“(G)). This representation no longer holds for

exterior domains. A useful partial substitutg for (2.1) is given by

Theorem 2.6. Let G c R" be an exterior domain, G = R"\K where ¢ # K cc R".
Suppose 0 € K. Let 1 < q < ». Then there is a constant C = C(q,G,n) > 0 such
that for each R > 0 with K cc B,

29 Il s cRe = 272 [¥ploc

holds for p € C’(G), where q' = E%I'

Proof, Since 0 € K and K is open there is § > 0 such that B& cc K. Let
pe C:(G). Then p vanishes in a neighborhood of 36‘ Let
S :={¢ €eRr : |¢] = 1} denote the unit sphere. For 0 # x € R write
x=rf r=|x|, ;=T§res. Then
T n
p(x) = p(re) = p(rg)-p(0) = [ = (2,p)(£5)g,dt

o i=1

and by Holder’s inequality

p(re)[a < ret [ |Vp(te)|adt

o

Since p vanishes in BS we get after integrating with respect to ¢ € S for
0<8§<rg<R
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) n ¢n-1 -npRa- q
R e L R

Multiplying by ro! and integrating with respect to r € [0,R] yields (2.9). m

As an immediate consequence we get

Theorem 2.7. Let G c R® be an exterior domain and let 1 < q < ». Then

(2.10) E:(G) = {Vp € E3(G): there exists a sequence (p,) c C:’(G)
such that [|[Vp-Vp,[l; » 0 and ||p-p‘]|q o >0 for each R - 0)

q ©
Proof. i) If Vp € EO(G) then by (2.8) there is a sequence (p,) ¢ CO(G) such
that |[Vp,-Vp;[ly > 0. By (2.9) (p,) is a Cauchy sequence in G, for each fixed
k € N. Denote the L3(G,)-1imit of (p,) by pt®>. Then after eventually changing
ptk*1) on a subset N, c G, of measure zero we may assume ptx*1)| = p(x), So
we &et a measurable p : G » R such that p|_ e L9(G;) for R > 0 and for

@ 6g

¢ e CO(G) we conclude

<p,dy¢> = 1im<p,,d,6> = - 1im<a,p, ,¢>
>0 i->o

telling us that the distributional gradient of p is given by the Li-limit of
the sequence (Vp,). That is Vp e E9(G) and the above approximation property
holds.

ii) If conversely Vp belongs to the set at the right hand side of (2.10), by
(2.8) we see Vp € Eg(G). .

By the Sobolev embedding theorem ([ 6 ], p.69; [ 5], p.282) we see that for
any domain G c R* (bounded or unbounded) and 1 < q < n holds

(2.11) Vp € E:(G) » p € L9*(6) where q* = :—‘_‘q

To §tudy conversely the case q > n we first consider the Morrey-estimate
(compare e.g. [ 1 ], p.242): Let G c R™ be an-open set and 0 < @ < 1 and let
P € C:(G) with the property that there is a constant M > 0 such that

(2.12) [ |Vp|dx ¢ "
6MB. (x,)

holds for all S(,, € G and r > 0. Then there is a constant C = C(n‘,a) >0
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independent of p such that for x,,x, € G
(2.13)  [p(x)-P(xz)]| < C-M |x;-x,]%.

For last estimate compare in addition e.g. [6], p. 73 or [5], p. 289.
If now Vp € E:(G) with q > n then

ol < 19l 18,0015 ol v

where C, = C,(n,q) > 0. Since ;—’, =n —3 =n-1+ (1-3)

(2.12) holds with 0 < @ :=1 - - < 1. By definition there is a sequence

(py) € C7(6) such that [Vp- \7p,||q 5 0. By (2.9) [p-p,ll as, > O for each k e n.

So we may select a subsequence again denoted by (p,) such that p, » p a.e. in

G. With M := C, sup |Vp,]lq < ® (2.13) holds for the p, and at the end for p
eN

and almost all x,,:x2 € G. After changing p on a set of measure zero (2.13)
holds for all x € G. So p is Holder-continuous with Holder exponent a=1 -:—;.
Suppose now that G c R® is an exterior domain, G = R*\K where 0 € K cc R®.
Given Vp € E:(G) we may extend p by zero to the whole R® leading to

Vp € E3(R"). (2.13) holds for this extension too and because of p(0) = 0

we get

(2.18) |p(x)| < CM |x|1-va,

By no means p need to vanish near x = o, neither pointwise nor in any Ls-mean.
Conversely let ¢ € C°(Rr), 0 < ¢ < 1, ¢(x) = 0 for |x] <R and p(x) =1 for
|x] > 2R where R > 0 is such that K c B. Letq>nand0<k<l-;—‘ and put
p(x) := w(x)|x|)‘ Then p vanishes in a neighborhood of 8G. Let p € C:(R"),
0<pc<l, p(x) 1 for |x| <1, p(x) = 0 for |x| > 2 and for k e N Tet

b, (x) := p(k” x) and put P i=h P Then p, € C:’(R“).

Since |Vp(x)] < clx[ for |x| > 2R we see |Vp| € L1(G) for q > n and

Ivp(1-p) I » O(k > ®). Since |Va(x)| < for k < |x| < 2k we
see [|p-Vo [l > 0 and therefore |[Vp-Vp[q > l—rthat is p € EX(6).

3. Some auxiliary tools. First we need some facts on harmonic functions. If
G c R® is an open set and u € C°(G), Au = 0, then we have the two mean value
properties: If x € G, R 5 0 such that Bz(x) cc G, then
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(3.1) u(x) = ulf fu(x+r(')dm‘. for 0 <r <R where S= (¢ eR : |{| =1} and
n g

(3.2) u(x) .= |B.(x)|~ [ u(y)dy for 0 < r <R
B (x)
We consider Friedrichs’ mollifier witha r adi al depending kernel:
je C:(IR"), J(z) = 3(|z]), 0 < J(z), i(z) =0 for |z| > 1 and [iz2)dz =1
Rn
(with suitable c > 0 choose e.g. j(z) := c exp[(1-|z|2)-1~ for |z| <1 and
J(z) =0 for |z| > 1). For € > 0 put je(z) 1= e-nj(g) and for f e L1(G) put

(3.3) £ (x) := [ J (x-y) F(y)dy = (3,* F)(x).
6
As is well known (see e.g. [ 6 ], p.58 or [ 5 1,p.72)
f, € C°(r") and ||f-f€||L1(G) 50

Suppose now that u is harmonic in G and let x € G,¢, > 0 such that Be(x) cc G.
Then introducing polar coordinates y = x+r{, ¢ € S, we get for 0 < € °s €

u (x) = [ 3 (x-y)u(y)dy = jf"" dglr) fu(X+r§)dw§dr
4] S
By (3.1) fu(x+r;)dws. = wu(x) and

jr‘"‘ije(r)dmn = [ i (2)dz = 1. Therefore
o

(3.4) ue(x) = u(x) for harmonic u, Be(x) cc G.

Last observation admits a rather simple proof of

Theorem 3.1 (Weyl’s lemma). Let G c R be open and u € Lioc(G) such that
(3.5) [ u(x)Ag(x)dx =0 for ¢ € c(6)
G

Then u coincides a. e. in G with a harmonic C®-function.

Proof. Because there exists a sequence (G,) with G, cc G, G, cc G,,,
©

G=U G it suffices to proof the theorem for any G’cc G. Choose a set G"
k=1

such that G’'cc G" cc G. Let ¢, := 4 min(dist(G’,dG"), dist(G",dG)) > 0. Then

for y € G" and 0 < € < ¢, with ¢(x) := je(y-x) we see ¢ € C:’(G) and therefore

by (3.5)
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0 = Ju(x)a j, (x-y)dx = fu(x)ije(x-y)dx = Au(y).

Therefore u, is harmonic in G". Let 0 < § < ¢, and x € G'. Then by (3.4)

ue(x) = uge(x) = ug (x) = ug(x)
since the convolutions commute. But then for x € G’ ue(x) does not depend on
€. Since u € L1(6’) and ||u-u£||L,(G,) > 0 we conclude u = u, a.e. in G,
proving the theorem since u € C”(G') and Aue =0. m

An easy consequence is now

Theorem 3.2. Let 1 < q < . Then

I-le

(3.6)  L3(r") = (A : ¢ € CU(R"))

Proof. Denote by M; the right hand side of (3.6) and suppose M, ¢ La(rr). By
the Hahn-Banach theorem there exists F* € L%(R")* with IF*ll. > 0 and

F*l,, = 0. Since LYR")* =« L9 (R") isometrically isomorphic (q’= —%I)
there is f € LY (R"), [fllq, = |Flx > 0 such that F(g) = <f,g> for g € LI(R").
Since F|Mq = 0 we conclude <f,A¢> = 0 for ¢ € C:(R"). By Theorem 3.1 f is

harmonic (eventually after change on a set of measure zero) and for x € R® and
arbitrary r > 0 by (3.2)
[F00| < B ()| [ [F(y)]dy < [B ()|l s gn > 0
By (x) '

for r 5 . Therefore f = 0 contradicting |f] , - 0. =

With the fundamental solution

2 2-n
z forn>3
S(z) := | ("2 )2l

1
-77 Infz| forn =2

we have for u € C:(R") the representation
(3.7 u(x) = - [ S(x-y)Au(y)dy

This formula is basic to derive Li-estimates for second derivatives of u via

188



Theorem 3.3 (Calderon-Zygmund estimate). Let n > 2,
S, i={zeR : |z|] =1) and Tet K : S, > R be a continuous function with the
property f K(z)dw, = 0. Let 1 <q <o, feLYR") and define for ¢ > 0

s

n

=
(TH)(x) == | Fly)dy
x-y
{yer : |y-x| 2 €}

Then Tf := 1lim T f exists in L%R") and there is a constant C = C(n,q,K) > 0
€0

such that
3.8)  |7lq < cfflq-
For a proof see e.g. [ 1], p.277, [ 10 ], p.39

Theorem 3.4. Let 1 < q < ». Then there exists a constant C = C(n,q) > 0 such
that for u € C”:((Rn)

(3.9) ( 3
k=

; "ajak“":)l/q < C"Au"q

1

Proof. By partial integration we derive from (3.7)
3;u(x) = - [ S(x-y) Ad;u(y)dy and therefore
ddu(x) = - [ 3, S(x-y) d;hu(y)dy =
=-lim [ 3 _S(x-y) a;Au(y)dy
€50
{y:|y-x|>€)

€>0

Let € > 0 be fixed. Integrating by parts leads to

I(x) := -f 3, S(x-y) 8 Auly)dy = J 8 s(x-y) ﬁ—*lr Bu(y)dw,

{y:|y-x|>€} {y:]y-x[-€)
+ ]88 S(x-y) bu(y)dy =: D (x) + T,(x)
(y: ‘y-x[>€)

1 Yk~ Xk
For n > 2 and x # y we have 6ka(x-y) = o e

and therefore writing y = x + €, ¢ € S,
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De(x) = G | 6t (bu) (xeeg)da

n

Since u € C:(R"), De has compact support too and is bounded. §ince

Tim De(x) = é&%ﬂ 85, we conclude by Lebesgue’s theorem
€0

(3.10)  Jau-fx - p | 5 0.

§ (=) (y5-x3)
1 Ik | 30a'2A0S IS |
Further 3 8 S(x-y) = & [ I I i ]

Writing K(z) := .- (8- nz;z,) for z € S, we get
n
K(1=Lr)
Tx= au(y)dy
{yeRP:|y-x]|>€)}
If k = j, then w, [ K(z)dw, = [do, - n [ z;2dw, = 0
Sn Sn Sn

If k # j, then w, [ K(z)dw, = -n [ z;z,dw, = 0
S S

n n

By Theorem 3.3 we then derive the existence of the Li-Timit T of Te and
by (3.8) ||Tllq < Cllujlq. Combining this with (3.10) we are finished. m

4. Main Theorems. A consequence of the following theorems is the weak
solvability of the Dirichlet and of the Neumann problem in La for the
LapTlacian under the assumptions given there.

Theorem 4.1 ("Neumann probleni”). Let n > 2 and let G c R» be either a bounded

or an exterior domain with boundary 3G € C! and let 1 < g < », g’:= a%;. Then:
a) There exists a constant C = C(G,q) > 0 such that
@.1)  |vplle <« ¢ sup LSTRY2L gor 11 vp € Ea(e)

osvgeza’ (g) IV4la’

b) For F* € (B9 (6))*, [Pl qrpe := sup  1ELO
osvgeta’ (6) 1%l

there exists a unique Vp € EI(G) such that
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an

a)

b)

(4.2) F*(V¢) = <Vp,V¢> for all V¢ e E9’(G)
o
and

0.3 [l < ¢ Il e < € 1ol

with the same constant C > 0 as in (4.1).

Theorem 4.2 ("Dirichlet problem"). Let n > 2 and G c R® be either bounded or

exterior domain and assume 3G € C!.

If G is bounded, let 1 < q < o.

If G is an exterior domain and if n >3 let 1 < q<n and if n =2 let
1 <q < 2. Then there exists a constant C = C(G,q) > 0 such Laat

(4.4) Vel ¢ ¢ sup [Te V2|
0#VgeEa’ (G) Ivéla.

holds for all Vp € E:(G).

If G is bounded, let 1 < q < =,

If G is an exterior domain and if n > 3, let FQT <q<nand if n =2 let
¢

q = 2. Then for F* € (EZQG))‘, q'= E%T’ HF'"“q,). = sup |0

osvgec?(c) 171,/
there exists a unique Vp € E:(G) such that

(4.5) F*(V4) = <Vp,¥> for all V4 € EX(6)
and

(4.6) [plla < clF* car e < Clvpll
o

with the constant C > 0 from (4.4).

In case n = q = 2 for the exterior domain too a) and b) are trivially
satisfied by the Frechet-Riesz theorem. If e.g. n > 3 and g > n in case of
an exterior domain there is a one-dimensional exceptional space such that
(4.4) don’t hold. This case has to be treated separately and demands a more
detailed analysis.
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5. A priori estimates. Roughly spoken the pro.of of (4.1) resp. (4.4) is based
on local estimates of the same type and at the end is performed by a
partition of unity. The local estimates are derived from estimates in the
whole space (interior estimates) and in the half-space (estimates up to the
boundary). The case of the half-space is reduced in both cases to that of the
whole space by means of reflection arguments. It turns out that the uniqueﬁess
results of Theorem 5.18 are decisive. These in turn are based on certain
“regularity" properties, that is, e.g. under the assumptions of Theorem 4.1 we
may conclude if Vp € E%(G) for a q with 1 < q < @ and <Vp,V¢> = 0 for all

V¢ € ET(G), then Vp e L2(G), analogously for the Dirichlet problem. For
this reason we proof in Lemma 5.2 the estimates as well as the regularity
property. The idea how part b) in Theorems 4.1 and 4.2 is derived from part a)
by purely functional analytic considerations may be read off from Lemma 5.1.

In the following let G c R" be a domain and 1 < s < . For i = 0 we write
E:(G) (compare 2.8) and for i = 1 let E:(G) 1= E5(6G).

i 2
We say that G has property P,ﬁl for i =0or1l

if there exists a constant C;, = C(s,G) > 0 such that

(5.1.s.i)  [vp] <cC sup <Vp,V¢> ,
* % osVgeEs’(6)  |vall,,

s ’ S
holds for all Vp € Ei(G), w here s’= T -

We say that G has the property P;ﬂ for i =0orl if
the map o' : EX(6) > (E* (G)* defined by 0! : Vp > <¥p,.> (that is
(a;(Vp))(W) = <Vp,V¢> for Vp € E’:(G) and V¢ € Ef'(G)) is a bijection
and there is a constant Cs = T(S,G) > 0 such that for Vp € Ej(G)

(5.2.s.1)  T_[vel, < LD Y LN
Lemma 5.1 Let G c R" be a domain, 1 < q < » and q':= E%I .Fori=0o0r1l

holds: G has the property P;(s) for s = qand s = q if and only if G has
the property P;(s) for s = qand s = q'.
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Proof. We abbreviate Es = ES(G) Observe (s’)’=s. _
i) Suppose G has the property p! (s) for s =qand s =q’. .

By (5.2.s.i) we conclude for Vp € E}

(5.3.s.4) ¢! [lvp]l < sup 1<Vp, V82| _ 15 (yp) <rys < |VP
el e’ vl (LA e |

Therefore o:(Ef) is a closed linear subspace of (Esl)*. Suppose
o:(Ej) § (E:’)*. By the Hahn-Banach theorem there exists F** e (Ef )** such

that F** # 0 but F**Ig‘(gs) = 0. Since E:, may be .regarded as a closed

st i
subspace of the reflexive space LSI(G)", it is reflexive too and we may
identify (E:’)** with Ej'. Then there exists a unique Vg € Ef' such that

Fa* (F*) = F*(V) for all F* e (E¥)* and |vg], = [F++|

But for each Vp € E: we then have 0 = (a;(Vp))(qu) = <Vp,V¢> and
therefore by (5.1.s’.i) we conclude ||V¢||s, = 0 what is a contradiction.

i1) Suppose conversely that P;(s) holds for s = g and s = q’. Then because
of o' (E° ) = (E°)* and (5.2.s'.1)

(v ) < lo;l(v¢))(vp)| - ‘1 su <Vp v¢>
“osree (Es)‘ IIF*II(Es)* 0+V¢eE= ¢ lvel,. ! osvgets{ Vol .

Ivel, =

Therefore (5.1.s.i) holds with Cs = C;}. ]

In the terminology used above e.g. Theorem 4.1 tells that if G is bounded or
an exterior domain with dG € C! then G has property Pz(q) and Pz(q) for all
l1<q«<o, Analogous'ly we may understand Theorem 4. 2 The proof of Theorems
4.1 and 4.2 is given via a number of steps. In fact we will prove more than
section 4 says. First we show that the whole space and the half-space have
property P:(q) for 1 <gq<wand i =0 and i = 1 (and by Lemma 5.1 they have

property P;(q) too). Then we will prove by a perturbation argument that a
sufficiently small "bended" half-space (the "smalness" depends on q) has still
property P;(q) for i = 0, 1. The following lemma constitutes the basis for

13 Krbec, Analysis 4 engl.
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all subsequent estimates. Solely in the proof of Lemma 5.2 we need estimate
(3.9), a consequence of the Calderon-Zygmund-Theorem. Conversely, Remark 5.3
tells us that (3.9) is equivalent to the assertion of Lemma 5.2. According to
(2.3) we have for 1 < s < © that Es(R°) = (Vp : p € L:W(IR"), Vp € Ls(Rn)}.

Lemma 5.2. let 1<q<w, 1<r«<oandsuppose Vp € E'(R") and

(5.4) s W

up,
0#veC? (R") “whq,

Then Vp € E%(R") and there is a constant (:1 = Cl(n,q) > 0 such that

P |<VE,VV>|

(5.5) Vplq s C, su .
Ivels “opveC®(") vl

Proof. For i = 1,...,n we conclude with C; := C{n,q’)"? and C(n,q’) via
Theorem 3.4 by means of (3.9)

(5.6) o> u [<¥p,Vv>| s su |<¥p, V3, u>|

S

0#veCo (R") "Vv||q, 0#ueC” (R") ||va,u|[q,
- su [<8;p,Au>| sup |<8,E,Au>|.
0fueC” (R") llva,ullq, ' OfueC?(R") "Au"q,

From this we conclude that the linear functional F*(f) := <d,p,f> for
feM:= Au:ue C:(R“) c L“’(R") is well defined and continuous. By
Theorem 3.2 M is dense in L3’ (R") with respect to Li’-norm. Therefore this
functional may be uniquely and norm-preserving extended to a continuous
Tinear functional on the whole space Lq’(R"). Therefore there is a unique

g € LYR") such that <aip,Au> = <g,Au> for all u € C:(Rﬂ). From Weyl’s lemma
(Theorem 3.1) follows that W := aip - g is harmonic on R". For fixed x € R"
and R > 0 by (3.2)

W(x) = IBR(X)I"s { apuIdy - { g(y)dy)

x)

and by Hélder’s inequality
1 1

Mea| < (8,01 " lapl+ 18,001 @ lal, » 0 (R 5 «).

Therefore ap=ge L%R") and again by Theorem 3.4
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d, p,Au> <d,p,f>
(5.7) sup, 1Sipodwr] g = Japl.
0ueC (%) [au] . 0#fel?’ (rn) Il a

Combining (5.6) and (5.7) yields (5.5).

It remains to show p € L‘:oc(Rn). Since p € L';OC(R'*) c Lioc(lR") and given any

ball By c R» we see for the mollified functions

ce i |BR|'1pr€(y)dy - ¢ := |Bn|"8fp(y)dy. Put B, := p-c,. By (2.2)
R R

with a constant v = y(R,q) > 0
IBe:Pel s, < MNIBe el g < P -Tpel, — 0
Since (ce) converges in R we conclude that (pe,) forms a Cauchy-sequence in

L9(By) and has the limit p, € L3(By) c L*(By) and therefore ||p,-p| 0.
Sop=p, €liB). m

L(eg)”

Remark 5.3: Suppose 1 < g < » and (5.5) holds for all p € C:(Rn). Then (3.9)
holds for all p € c‘:(mn) too: Let 1 < i < n. Then by (5.5)

Hvalpnﬁ <C sup, M =C su ° J._<_A_L_8_Lv~>_|. < "Ap"q
OsveCT(r) W] s 0¢vec°(nn) (A

immediately leading to (3.9). =
An immediate consequence is the following density property.

Corollary 5.4. Let 1< q<w. Then E'(R") := (W : v € C:(IR")) is dense in
E3(Rn) with respect to ||V.[q-norm.

Em_o_f_ Suppose E"(IR ) is not dense in EI(R"). Then there exists .
F e (E%(®" )) with F° | =0, ||F*|| « > 0. By Theorem 5.2 we conclude that

R" has property P‘(s) for s =q and q Therefore by Lemma 5.1 there exists a
unique Vu € Ea’ (lR“) with "Vu" , > 0 such that F'(Vp) = <Vu,Vp> for all

Vp € E'(R"). But since F (W) = 0 for Vv € E°(R") by Lemma 5.2 we would
conclude Yu = 0 contradicting [Vuly, > 0.

Next we consider the half-space
(5.8) H:= {x=(x',x,) eR* : x'€ R™1, x, < 0}.

For 1 < q<o and for i = 0 let E:(H) be defined by (2.8) and let
E‘I’(H) := EI(H).
Further we put
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E“:(H) = (Vp : p e CJ(H)

(5.10) ° 0 o
EY(H) = (%p : p e CO(M) = (Tp|_ : p € CORY).
H

Given Vp € EJ(H) (i = 0 or 1) we put
p(x) for xeH

(5.11) pi(x) := ,i=00r1l
(-1)*p(x’,-x,) for x, 20

and for ¢ € C:(IR") we put for x e H and i=0o0rl
(5.12) (T,8)(x) := 8(x) + (-1)*** $(x',-%,).

Lemma 5.5. Llet 1< q«< =,
i) If Vp € EJ(H) then Vp! € E3(R") and

a,pt(x) = {8,p(x) for x € H for i = 0 or 1
(5.13) (-1)t+1ayp(x’,-x,) for x, 20 and j = 1,..,n-1
a0t (x) = { (0,p)(x) for x € H i=0orl

(-1)*(3,p)(x",-%,) for x, 2 0
ii) For ¢ e C:(R") we have
a) V(T9) e ET(H), (T,#)(x",0). = 0 and therefore V(T,¢) € EZ(H),
b) V(T,4) € E](H)
iii) Let Vp € E‘:(H) (i =0o0r1). Then for ¢ € C':(IR“)
(5.14) <VP“”V¢>R.. = <Vp,\7(T,¢)‘>H (i=00r1l)
(5.15) Vel , < VPO gn < 2valWp], for Wp € EXH) (i = 1 or2)

(5.16) [9(T9)], , < 2096],_go> 1 = 0,1, 6 € C(w)

Proof i) (5.13) and the integrability properties follow by elementary
calculations. For Vp € E:(H) observe definition (2.8).

ii) Let ¥ := T ¢ then clearly ¥(x’,0) = 0. Let p € C”(R), p(t)
[t] <1, p(t) =1 for |t] 22, 0<p< 1. For k€N put p(t) :
Define ¥ (x) := o, (x;)¥(x). Then ¥, € c‘:(H).

If for some R > 0 supp ¥, C Zz:= {x € R*:|x’| < R,-R < x,< 0}, because of
[9(x",x,) - ¥(x',0)| < C(VY)|x,| we see |P(x) d,m(X,)]| < const(Vy) and since

0 for
p(kt).

186



¥ 3.0, is vanishing outside Z, n {x = (x',x,) € R* : - E < Xy < - i}vwe get
[¥-8.0.lla > 0 (k > ®). Therefore we immediately see [[V¥-Vy,|q » 0, therefore
Vp € EJ(H). The remaining statements follow immediately by elementary
calculations. =

We need a further lemma seeming not to be obvious.

Lemma 5.6. let 1<q,r<o, let Vp e E;(H) and suppose Vp € La(H). Then
Vp e E:(H).

Proof. i) Let p € C1(A), p(x’,0) = 0 for x’e R*! and let Vp € La(H). For

R > 0 define Zz := {x = (x’,X,) € R* : -R <. x, < 0}. Then for x € Z; we get

p(x’',x,) = - }(Bnp)(x’,t)dt. Applying Holder’s inequality and integrating
Xn

with respect to x € Z; we get
5.17) ol , < Rlowpl, , -

Since (5.17) holds especially for p € C:(H) we derive from the definition of
E:(H) that (5.17) is true for Vp € E:(H) too.

ii) Let now p € C;(FI), p(x’,0) = 0. Consider p, 1like as in ‘part ii) of the
proof of Lemma 5.5 and put p.(x) = p(x,)p(x). Then p, € Ci(H), P = MIiP
for i = 1,...,n-1 and 3,p, = £ 3P + P-3.p. Clearly |pd,p-8;plq,n » O-

Since |d,p| < c-k and vanishes outside Z,-1 we get from (5.17)

"anpk-pﬂq'H = Han,ok-p||q.22k_1 < c«lek"HaHpIIQ'sz_1 > 0 and therefore
13.px-8pla, s > O
For 0 < € < k' we have p,, € C*(H), ||Vpk-V’pk’€||q 5 0.
Therefore Vp € E:(H).
iii) Let now p € Ct(H), p(x’,0) = 0, Vp € La(H).
Let n e C‘:(Rn), 0<n<l, n(x) =1for |x| <1, n(x) = 0 for |x| > 2 and put
Me(x) := n(k*x) for k € N. By 1) V(n,-p) € EX(H). Clearly Imp-vpllq & - 0.
Again by (5.17) because of |Vn(x)| < Ck?

(5-18) lo-val, , = lovml, , < ckr2klwpl . < clvpl

Therefore |[V(np)]q < C for all k. Clearly Vp € E(H) > EZ(H). We show now
V(n.p)> Vp weakly in E%(H). Since E:(H) is weakly closed too this implies then
Vp e E:(H). Let F* € E%(H)*. We may consider E%H) as a closed subspace of
La(H)» and we may F* extend normpreserving to an F* € (La(H)")*. Then there
is f = (f,,..,f,) € LY (H) such that F*(g) = <f,g>, = % f f,g, for g € La(H)=n.

H
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Then F*(Vp-V(n,p)) = [ 3 fi(1-n)ap - [ 3 fid,mp

H H
Clearly the first integral tends to zero. By the properties of n, the second
integral reduces to an integral taken over R, nH = {x e H : k < |x| < 2k}
and therefore by (5.18) N£ﬂ%m¢IS$Wﬂw&m£Wﬂw+0-

iv) Let now Vp € E:(H) with Vp € La(H). By Lemma 5.5 the extended function
satisfies Vp° € E;(R“). Consider the mollified (p°)£ with radial depending
mollifier kernel je' Since V(p°), = (Vp")e we see moreover V(p°)6 € LI(rRr) and

1vp-¥(°) (o, = 199 [s-¥(P*) ¢ lula,n < IV0°-9(p°) ]| g > O-
Observe by the properties of the mollifier and (5.11) for i = 0 that
V(p°)€(x”,0) = 0 for x’e R*, By iii) we conclude V(p°)€[ﬂ € E:(H) and
therefore Vp € E!(H) too. =
Remark 5.7 The linear space

E:(H) := (Vp : p € C2(H), p(x',0) = 0 for x’e R~ and Vp € L3(H))
satisfies E:(H) c ES(H) c E:(H) and is therefore dense in E:(H).

Lemma 5.8 let 1<q<w, 1<r<m,

i) let Ve E;(H) and
0#veC’ (H) ||v\,||q,’H
Then Vp € E:(H) and

(5.19) “vP"q.H < C sup 1<¥p,Vv>|

s
0#veC’ (H) ||w||a,'H
Here C, = 2C, with C, by Lemma 5.2.

ii) Let Vp € Er(H) and
[<Vp,Vv> ‘o

d, :=
1 O#VEC:(FI)’ "W"q’.ﬂ
Then Vp € Ea(H) and

(5.20) |Vpllayw s €, sup, 1S¥RVV2L
0#veC” () Hanq,.H

Proof. In both cases we have with pt!> (i = 0 or 1) by (5.11)and by Lemma 5.5
that Vp‘¥) € Ea(Rn). For ¢ € C:’(Rn) we have by (5.14) for i =0 or 1

<Vp(“,V¢>|Rn = <Vp,V(Ti¢)>H
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For i = 0 by Lemma 5.5 part ii) we get (T,¢)(x’,0) = 0 . Then with v :="T ¢ we
have v € C:(FI), v(x’,0) = 0. Like as in part ii) of the proof of Lemma 5.6
consider v (x) := p.(x,)-v(x). Then v, € c:(u) and clearly Vee € C:(H) for

1<e <kt since |, -V |, >0 and Jw,-Fv ||/ > 0 we see

<Vp.Vvk€>-||VvkE|];} > <Vp,Vvk>[|Vka;f since Vp € L7(G). Analogously
(compare part 1i) of proof of Lemma 5.6) we see [Vv-Vv ., > 0, [Wv-Yv,[lq, » 0
and_therefore <Vp,Vvk>||Vvkﬂ;} > <Vp,Vv>||Vv||;}. From assumption i) we therefore
conclude

|<vD(°)’v¢>Rn! < '<VP’V(T6¢)>| < doHVTo¢"q"H < Zdonv¢||qlan‘
For i = 1 analogously we get

|<7p(l),v¢>Rn| < Zd,"V¢“q;Rn

By Lemma 5.2 we conclude Vp! € LI(R").

Since Vp!)|, = Vp we see for i = 0 by Lemma 5.6 that Vp € E:(H). For i =1,
from Vp € Er(H) and Vp € LI(H) we conclude Tike at the end of the proof of
Lemma 5.2 that Vp € E9(H). Estimates (5.19) and (5.20) then are trivial.
Observe that in (5.19) the sup may be taken for 0 # Vv € E:’(H) and in (5.20)
for 0 # Wwe E(H). m

In the next step we consider a "bended" half-space. Let w € C!(R"1) and
x’e R*1, We suppose that there is some R = R(w) > 0 such that w(x’) = 0 for
|x’] 2 R. Then we define

(5.21) Hw = {x = (x',x,) €R : xX'€ R, x; < (X))

We want now to extend the results of Lemma 5.8 to Hw' This will be done by a
perturbation argument. For technical reasons we need a density result similar
to Corollary 5.4.

Lemma 5.9. Llet 1 <q <= and let @ denote either Hw or a bounded domain or an
exterior domain G with boundary 8G € C'. Then E”(Q) := (Vv : v € C°(1)) is
dense in Ea(R). )

Sketch of proof. By well known techniques (see [5], [6]) given Vv e Ei(0)
there exists Vv e E4(R") such that Vi|g = Vv and ||V¥]y < |[Wv]q. Apply now
Corollary 5.4. =

199



Lemma 5.10. let 1 < q<wo, 1 <r <o, Then there exists a constant
K = K(g,r,n) > 0 with the following property. If Vo] := sup |Vo(x’)| <K
x’@n-i

then
i) a) there are constants C(s) = C(s,K,n) such that

(5.22) |vpll, <c(s) sup TRVl
M osveC (H,) Wl . ,
W

holds for Vp € Ez(Hw) and s = q,q’,r,r’ (here s’= gér)j
b) If Vp e E:(Hw) and D := sup_ W,
0#veC” (H,) "VV“q, "
then Vp € Eg(Hw) and (5.22) holds for s = gq.

ii) The assertions of i) hold true if E:(Hw) is replaced by ES(HM) and
C:(Hw) is replaced by C:(H;) (s = r,q).

Proof: i) We define y : R® - R by

{ Yi(x) :=x, fori=1,...,n-1
(5.23)
yn(x) =Xy w(xl)

then y maps R one-to-one on R?, y € C!(Rn).
Further y‘n : Hw > H is onto, y(x’,w(x’)) = (x’,0) that is y(aHm) = dH.
w

Further J[y(x)] = 1. The inverse map is given by x,(y) :=y, (i = 1,..,n-1)
and x,(y) := y, + ©(y'). For p € C'(H ) we put p(y) := p(x(y)) for y e H.

Then p € Ct(H), p(x) = p(y(x)) and

(5.20 {amx) - (BRWX) - (0,5 (Y(x)3(x') for § = 1,...,n-1
T Law = @R ) |

and conversely

(8;P) (¥) = (3;p) (x(y)) + (3,p)(x(¥))30(y’) for i = 1,...,n-1

(8,P)(y) = (8,p) (x(¥))
With the aid of Lemma 5.9 we immediately conclude for s with 1 < s < o:
Vp € ES(Hw) if and only if Vp € Es(H) and Vp € E:(Hw) if and only if
Ve E:(H). From (5.24) we derive with a constant d,(s) = d,(s,n) > 0 for
Vp € ES(H“)
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(5.25) [oell,, < &:()1 + [ol,,) ¥R, ,
Let ¢ € C:(Flm) and define (y) := @(x(y)) for y € H. Then @ € Ci(ﬂw)‘. If

Vp e EB(HU) then define

n-1
B,[VP,V4] := - 3 J(3,8(¥)3,8(y) + 8,5(y)3,8(y))d,0(y)dy
i=1 H

175 (0,0)7(9)0,5(1)8,3(y)dy
H i=1

and therefore with a constant d,(s) = d,(s,n)

(5.26) |B,[V3, V81| < dy(s)[Vul, (1+[Val M IVB]a,ul8ls

From (5.24) via the change of variables formula we immediately derive
(5.27)  <Vp,Vé>y, = <Vp,V>, + B, [V5,4]
and therefore by (5.25) for s’ and (5.26) for V¢ # O

(5.28) ';'1——3“’—' > [d,(s") (1+] Vel )]—:(JSMiL
Ivel, ., Il
- dz(X)IIVw||¢(1+||VwII.,) IIVBIIS.H).

ii) Choose now K < 1 such that 0 < K < min{(4C;(s)d,(s))* : s = q,q’,r,r’}
with C,(s) > 0 by Lemma 5.8.
If Vp € E(H,) we then get from (5.19) and (5.28) if Ivof, < K <1

1<VR.¥8>] 5 (24, (s"))t ( sup 195,78 | - 2d,(s)K|VB]_ ) »
0#¢ecg(H) [ ¢|lq,,ﬂw ' 0#geC (H) V8l S e

> (2d, (s")1(Co(s) 2 |VBlly,u - 2d,(5) KIVPlls,i)
> (4d, (s")Co(5)) | VBlls,u 2 C(s)[Ip ],

with C(s) := (8d,(s’)d,(s)Cy(s)).

iii) If Vp € EI(H) and K is chosen 1like as- in i) then the analogous
calculation using now (5,20) leads to (5.22) in that case too.

iv) In order to prove b) let Vp € E"(Hw). We consider first the case r > q.



We use a cut-off procedure in order to reduce this case to the half-space.
Let R = R(w) > 0 denotes the constant with w(x’) = 0 for |x’| > R and choose
R, > R such that max|w(x’)| < R,. Choose ¢ € C"(Rn) such that ¢(x) = 0 for

|x’LsR

|x] € Ry, 9(x) =1 for |x| 2 2R, and 0 < 9 < 1.

let L:={xeR : xeH R < |x|<2R)} C Hw' Given h € C:(ﬂ) we choose

c(h) € R such that with R := h+c(h) we have [ hdx = 0. By the properties of ¢
L

we get

(5.29) <V(pp),Vh> = <V(pp),Vh> =
= <Vp,V(ph)> - <Vp,Veh> + <pVy,Vh>

By the Poincaré-inequality (2.2) we get with a constant c, > 0
(5.30)  |fillas.e < cillVRlar,L < ciflh]as

Since r > q we have |Vp[lq,. < c5||¥p|,,. and therefore

(5:31)  |<Vp,V6R>| < c V] I¥hl..

Since p € L*(L) and r > q we have p € LI(L),

<p¥e,¥i>| < cslple..-[Vhlar

(5.32)
IveoR)lar < 1V0hlla,.o. + loVRlar < colVhlas

By definition h € C:(R) if h is the restriction of a C:(R")-function to A.
Therefore h € C:(H;). Clearly (1-¢) € C:(H;). Then p, := ph+c(h)(p-1) € C:(H;)
and since ph = g +c(h), V(ph) = Vp, and so
(5.33)  |<Wp,V(R)>| < sup,  LSVPTLygegRyl o ¢ b ]vh,,
o#veC(A) || ,
o' W q
Therefore we derive from (5.29) - (5.32)

<V Vh>

sup LSOOV ¢ jgpl s c ol + caD < o
0#heC”(R) ||Vh|lq,

Since V(pp) € Er(H) by Lemma 5.8, ii) we conclude V(yp) € E3(H) and therefore

V(ep) € EQ(HM). Because of r > q clearly V[(1-¢9)p] € Eq(Hw).

v) In order to prove b) in the case Vp € E;(Hw) for r > q we proceed similar
as in iv). We take any h € C:(H) and put h = h in (5.29). By (5.17) we get

G30) ol s Dbl < 2l
If we replace (5.30) by (5.54) we get again (5.31), (5.32). Clearly
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gh € C7(H,) and therefore again [<Vp,V(vh)>| < Deg|Vhlq,

and
sup, LSTUORLVO] o cpgpl s clpll. + oD < @
orheCT(H) [Vl .

By Lemma 5.8 i) we see V(gp) € E“(H).

If (p) c C° “(H) is a sequence such that l[Vpk-V(q:p)Hq,H > 0. Then clearly
(observe (5 17)) [IV(ep,)-¥(9p)|lq,x > 0. Since gp, € C° ~(H,) we see
V(op) € E“(H ). Clearly ¥((1-9)p) € E“(H ) € EO(H ).

vi) By part ii) and iii) of proof H has property p! (s) for i = 0 and 1 and
for s = r,r',q,q’. Then by Lemma 5.1 H has property P (s) too. Again we write
ES(H )(i=0or1) andE" (H ) :=(V¢ : ¢ec (H )}, E° (H ) :=(V¢ : ¢ec (H’)}
He consider now the case r < q in b). This case can be reduced to the previous
one. Let now Vp € E“(H ) and r < q. According to the assumption in b) by
F*(Vv) := <Vp,Vv> for Vv eE” (H ) a linear functional contmuous with respect
to [[V.]lq,-norm is defined on the dense subspace E* L(H,) of Eq (H,). By property
p! (q) the unique extension F* of F* to the whole space E" (H ) may be
represented with a uniquely determined Vf e E"(H ) in the form I?*(Vv) =<V6 v>
for Vv € Eq (H ). For W e E° (H ) we have <Vp, Vv> = F*(Vv) = F*(Vv) = <Vp,Vv>
Since Vp € Er(Hw) we see

ap, LTI Ivell.
orWveE (H,) v

Since now r < q we may apply parts w) and v) of proof (mth interchanged
meaning of r and q) and conclude Vp et (H ). Then <Vp- Vp Vv> = 0 for

W e E” (H ) and by part a) we conclude Vp = Vp For i = 1 we see immediately
because of Vp € Eq(H ) that Vp e Eq(H ). For i = 0 consider the function p

transformed 1ike as 1n part i). Then Vp e EO(H) and Vp € La(H). By Lemma 5.6
we conclude Vp € E:(H) and transforming back Vp e E:(H“). n

Lemma 5.11. Llet 1 < g < » and Tet G ¢ R be a domain with boundary 4G c Ci.
Then for every x, € 3G there exists R = R(x,,dG,q,n) > 0 and a constant C =
C(q,n,R) > 0 with the following properties (write Gy := G n Bg(x,)):

a) If Vp e E3(G) then
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|<\7(<pp),\7V>f_i |
aup
veC (Ba(x,)) Wl o
0#Vv on Gy
holds for any ¢ € C®(Bg,5(x,))

(5.35) [viep)| <cC

b) If Vp € E:(G) then (5.35) holds if the sup is taken over all 0 # v € C:(GR)

c) If Vp € Ea(G) and <Vp,Vg> = 0 for all ¢ € ET’(G), then given 1 < s < o,
there is 0 < R’ < R, R’ = R’(s), such that Vp € Es(Gg,).

d) If Vp e E:(G) and <Vp,V¢> = 0 for all ¢ € EZI(G), then given 1 < s < =,
there is 0 < R’ <R, R’ = R’{s), such that V(pp) € E:(GR,) for each:
v ecC’B ).

Proof. i) After a translation we may assume x, = 0. Since 9G € C! there
exists a p > 0 and a function ¢ € C‘(Bp) with (Vo)(0) # 0 such that
Gan=(xeBp:o(x)<0} andaﬁan={xeBp:a(x) = 0}. A local
parametrisation of G most adequate to the problem under consideration is
found by projecting 3G n Bp on the tangential hyperplane of 3G at x, = 0.
Essentially this is done in the following. Observe that |Vo(0)|-! Vo(0)

equ'a1s the exterior unit normal of G at x, = 0. This procedure enables us to
reduce the situation to that of Lemma 5.10. There exists an orthogonal matrix
S such tkat S[Vo(0)] = |Vo(0)|e,, where e, = (§ m,...,A«S,m). Definf y(x)A:= Sx
and put o(y) := o(S'ly)Afor y € Bp. Let Gp = GAn Bp, G = SG and Gp =G n Bp.
For Vv € Es(G,) we put v(y) := v(Sly) for y e G, (1 < s < »). Then

we ES(ﬁp) and the norms l]VO"sﬁs and |wv]_ are equivalent. Clearly

VW € ES(GP) if and only if vC € Ej(ép). The most important property
(reflecting the invariance of A under orthogonal transforms) is that if

A A
Vp € ES(Gp), W e EB’(Gp) then <Vp,Vv>’G‘ = <Vp,\7v>G . This is seen by a

trivial calulation. Because of these properties we may gmit in the sequel the
distinction between C and v, 3 and G, 3 and ¢ etc. and assume that the above
rotation is performed. Since now Vo(0) = |Vo(0)|e, # O by the implicit
function theorem we find 0 < p’ < p, h > 0 and a function ¥ € Ci(BTp,), where

B'p, := {y’e Rr1: |y’| < p’) with the following properties:

IfZ1= Zp, his {y er: |y’| <9’ |Ya| < h} then Z c Bp. For y'e B",, we have

(y'»¥(y’)) € Z and a(y’,¥(y’)) = 0. Further $(0) = 0, (V'¥)(0) = 0
(where V'= (8;,...,8,,)) and G nZ=(yeZ:y, =¥(y')}, 6nZ-=
{yel:y,<¥(y')}. Letne C':(R"") such that n(y’) =1 for |y’'| <1 and
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n(y’) =0 for |y'| 22, 0<n<1else, For 0 <X < p'/2 put nx(y’):= n(x-ty’)
and u)k(y’) = 17)‘(.V')$(Y’) for |y’| < p and w)‘(y') = 0 otherwise. Since ¥(0) =
= |V'P(0)| = 0 we get sup(|V’wl\(y')[ :yeR1} — 0 for A — 0. Let now
1< q <o be given. Denote by K, := K(q,n) > 0 the constant according to Lemma
5.10. We choose now 0 < X < p’/2 so small that |Vu, | < K and define wa

according to (5.21). We choose any 0 < R < A such that By cc Z.

ii) If Vp € Ea(G) then for ¢ € C:(B,,,z) clearly V(pp) € E3(Gg) where
Gz := G n Bg. By the choice of A and R we have Gy C Hw and we may extend ¢p
A

by zero to H“J . Denoting the extended function again by yp we have

Viep) € Eq(H“’,\)' By Lemma 5.10 a)

(5.36) [Vop)| = IV(P)ay, < Co osuP 1<Viep),Wv>|
’y O#VECD(Hw)‘) ]]Vv"q, y
)

A
Abbreviate the sup at the right hand side of 5.35) by d. Observe that
the Poincaré inequality applies to Ggz. Choose now ¥ € C:(B,), 0:¥9<1
such that ¥ = 1 on By Let v e CT(A, ) and Tet ¢ := [Gg[~* [ vdy.
A

6r
Then because of the Poincaré-inequality there is C’ = C’(R,¥) such that
“V(l[)(V-C))"q,'H < C’Hanq,.H . By definition of C(R, ) there is V e C*(R")
0y Wy A

with V!H = v. Then ¥(V-c) € C:(BR). Since Y = 1 on supp(yp) we get

(7

A
(5.37)  |<V(pp),Vv>| = |<V(pp),V(v-c)>| = |<V(pp),V(¥(v-c))>| <

s dv@v-enl: g < d-crfwl,

and (5.35) follows immediately from (5.36) and (5.37) with C = C,-.C’.

iii) Let Zy = {y = (¥',¥,) € R : -R < X, < u)‘(x’)}. By means of the

transform (5.23) we immediately see that (5.17) remains true for Z; and

W € E: (Hw ). The proof of part b) is analogous to part ii) with the
A

following changes: We use now (5.22). Given v € c:(Hw)’ then by means of
(5.17) we get [V(¥v)| , . < C’vv| ., , ¥v € C°(Gy) and instead of (5.37)
q .Gy q Hw 0

A
[<V(pp),Tv>| = |<V(pp),V(¥v)>| < dC’|Vv]q,.
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iv) The proof of c) and d) respectively is performed by induction using the
Sobolev embedding theorem. We may assume 1 < q <2 < n and Vp € E9(Gg).

If q > 2 then clearly Vp € Er(Gg) for 1 < r < q. Denote by k the biggest
integer smaller than N Then k < ! < k+1 and Tet qy := n_?.]c'lﬁ for j = 0,1,..,k. '
Since k + 1 » % we get q > n > 2. Let K(qy_y,q5) > 0 for j = 1,..,k denote
the constants according to Lemma 5.10 and K, := min{K(q;_;,q;):j = 1,..,k} > O.

Choose now A > 0 in addition so small that IIVwAHq < K and consider again H, .
A

Let 0 < R <X (R as above). Let Ry := R2-(J*1) for j = 0,1,..,k+l.

©
Choose ¢, € Co(BR,) such that 0 < ¢; <1 and ¢; = 1 on BRM'
0
Let Gy := G n BR, for j = 0,1,..,k,k+l. Given v € Co(ﬂwx) let vy := v-cy(v)
L ’
where c;(v) := |Gy|™? {Jvdx. Then ¢3vy € Co(ﬂw)‘) and V(g,vy) € E¥’(G).
Therefore
0 = <Vp,V(pyvy)> = <V(pyp),Vvy> - <pVo;,Vv;> + <Vp,v,Vy;>
that is

(5.38) <V(@;p),Vv;> = <pVp;,Vvy> - <Vp,v,Vp;>

We prove now by induction that V(¢,p) € E“J(Hul\) for j = 0,1,..,k. The case
J = 0 is clear. Let now 0 < j < k and suppose V(yp;_,p) € qu-l(Hwk)’ Since
@3-y = 1 on Gy we conclude Vp|GJ € LY-1(G;) and by the Sobolev embedding
theorem p € LY(G;) and

(5.39) [el,, , < d”"p"m'%-a(ej)‘

Therefore with My := ||Vg|

(5.40) | <pVoy,Wvy>| < Myfpl

ay”.6

LT R

(5.41) |<WpvyTe>| < M|pl, o vl

9)-1-63
n_ . ro_Nq_
Since g "t 1<1<J we conclude gy ng-n+ig < "

and by the Sobolev theorem v, € L“J"(G,) where

. _ nq,’ = a’ d
9 n-q; 9y, an

(5.42) "vJ"q'j_pGJS dzj "vj"Hl»qjl(Gj)

Since fv,dx = 0 we get by the Poincaré-inequality
]
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(5.43) "v,"rﬂvq,’(e,) < d:u"VVJ"qJ/.GJ < daj"VV“q’r' oy
By means of (5.40), (5.41) and (5.43) we get from (5.38) for v € C:(Hw )

NCOR IR N CORUI IR L L

A
By Lemma 5.10 we conclude V(y,p) € E“J(Hw ) and therefore \7p|Gk € LY(Gy,,).
X +1

At the end follows Vp[ek € L%(G,,,) where g, > n > 2. Let now an arbitrary
. “

n

s > n be given. Choose 0 < € < 1 such that s = 2 From the choice of k above

weconc]udeﬁ%ISQ<E. Define g "R’:‘TE‘ Then&rsa<£andk<gsk+l
q

Since we originally assumed 1 < q < 2 we have k > -2- -1 g - 12> 0 we see

~ n q

hat .
Q < T3¢ S N < G so that by the proof above we have Vp|GM € L7(6yyq)
We repeat now the induction proof starting with G, = G and ending with

-na ? = s. But observe that the constant K, = K,(Q) and therefore )
n-kq

and especially R have to be taken depending on s.

v) Part d) is proven similiarily: Let v € c°(H ) be given. We no longer need
Yy

to apply (5.42), instead we apply (5.17) for Z; and Vv € Eq (H, ) (see the

beginning of part iii) of proof). We put now v, = v and derive again (5. 38).
Since V(py.,p) € E:J'I(Hw ) ¢ E:J 1(R") we immediately get from the Sobolev
A .

estimate with a constant d,; = d;;(qy,n) > 0

(5.44) Jorapl ) < dis|V@rm)ll,

replacing now (5.39). Analogously

(5.46) |vll,, < dylwvl, . ,

i1 J

(observe q3_1 = q;‘) replacing (5.42). Then observing pVy; = (y;_,p)Ve¢; we get
©

for v € Cc(wa)

(5.47) [<oVgy, V0] s My [Ttop, IV,

(5.48)  |<Wp,vW0p>| < Mydyy [Viopip)ll,  IWVI, -
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(
and so for v € Co(HwA)

RUCORIIECN LCROT N L S

Again by Lemma 5.10 i) b) V(gsp) ¢ E:J(Hw ) and since supp(y;p) c Gy,, we have
A

V(psp) € E:J(G,H). By induction we end with V(p,p) € E:k(Gk“). Choose

R" = Rey. If p e C:(BR,) then because of ¢, = 1 on B,,, we have ¢ ¢,p = ¢p.
The remaining considerations are like as in iv). = ;

The most difficult hard work is now done. For an easier later application we
consider two further Temmas.

Lemma 5.12. Let 1 < g < ©» and let G c R* be a domain. Let x, € G and Tet R > 0
be such that Bg(x,) cc G.

a) Let Vp € Ea(G). Then for ¢ € C:(Bm(xo)),V((pp) c EZ(BR,Z(XO)) c Eg(G) and
with a constant C = C(R, C,(q)) > 0, where C, is by Lemma 5.2, we have

(5.49) [v(op)lq < € sup, ~ 1<V(eR).Vv>]
OrveCO(By) o] .

b) Let Vp € Ea(G) and <Vp,V¢> = 0 for all ¢ € C:(G). Given 1 < s < » then
there is a 0 < R’ < R with R’ = R’(s) such that V(yp) € E:(BR,(xo)) for each
v € CC(Bg/ (%))

Proof. The proof is almost identical with that of Lemma 5.12. In the sequel we
abbreviate B, := B.(x,) for r > 0. i) If x € Bg,, and 0 < € < R/2 then for
the mollified P e have Vpe(x) = (Vp)e(x) and therefore [|\7;>-Vpe||q’ﬁw2 > 0.
For ¢ € C°(Bg,,) We have gp_ € C°(By,.) and clearly ||[V(vp)-V(wp )] >0

] € -] €""q,Bg o

proving ¢p € E:(BR,Z) c E:(IR"). Now we proceed 1ike as in part ii) of the
preceeding lemma applying Lemma 5.2 instead of Lemma 5.10: Choose again

Y e CO(By) with 0 <Y <1, ¥ =1 on By IFveCO(RR) put c := |By|~ [udy
and use now the Poincaré-inequality for B;. Consider again y(v-c) € C:(GB’:) and
proceed  analogously. )

ii) The proof of b) is literally the same as part iv) of proof of Lemma 5.11,

beginning with the 9P Tine before formula (5.38). Observe that G; = BR,‘ [ ]
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Lemma 5.13. Let 1 < q < » and Tet G c R* be an exterior domain, G = RP\K with
¢ +#+ Kcc Re. Let R > 0 be such fhat K cc By, let p € C"(IR"), p(x) = 0 for

|x| < 2R, @(x) =1 for |x| > 3R.

a) If Vp € E3(G) then V(pp) € E3(G).

b) There is a constant C = C(q,n,R) > 0 such that

(5.50) |vV(vp)s < C sup, 1<V(gp),Wv>|
0#veC; (G) u‘7v]|q,'G

c) If Vp € E9(G) has the property
(5.51) <Vp,Vv> = 0 for all v e cj(c).
Then V(pp) € E5(G) for any 1 < s < o,

Proof. i) Because of the properties of ¢ clearly V(pp) € EI(G).

ii) (pp) may be extended by zero to the whole R». Then V(gp) € E3(R").
Since |le||q, g 2 ||Vv||q, , for v e CO(r") estimate (5.50) follows immediately

from (5.5).

iii) We will first show V(pp) € Es(G) for 1 < s < q. This is a priori by no

means trivial. By definition of E4(G) we clearly have Vp € L3(Gy),p € L®(Gag)

for 1 <s <q. If veC (R put V := v-c where ¢ := |Bg|™ [vdx. Then

B

WV + ¢) € C:(G) and by (5.51) we again get "
0 = <Vp,V(e(v-c) + c)> = <Vp,V(p(v-c))> =

= <V(pp)Vv> - <pVe,Vv> + <Vp,Vpv>
and therefore

<V(gp),Vv> = <V(gp),VV> = <pVp,VV> - <Vp,VVWyp>
Since by (2.2) "V"s'.am < C(s')HVV"s,'BaR < C(s”)wvll_,
we get immediately with C = C(¢,R,s,q) >0

I<(ep),7v>] < (ol o+ IVl WV,
for v e C:’(Rn) and by Lemma 5.2 V(pp) € Es(Rn).

iv) Because of iii) we may assume that 1 < g < 2 < n. Then we proceed like as
in part iv) of the proof of Lemma 5.11: Choose again k € N, k <« N < k+l. Let
Ry :=R+ §E for j = 0,1,..,k¢1. Let gy € C°(R"), 0 < ¢y < 1, @y(x) = O for
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|x] < Ry, 95(x) =1 for |x| > Ry,,. Given v € C:(R“) Tet v; = v-c;(v) where

¢s(v) = |Byg|-t Jvdx. Since (pyv; + c4(v)) € C:(G) we can now go on like as
B2Rr
in Lemma 5.11. Once we have shown V(yp) € EI(G) and V(yp) € E%(G), we see

V(ep) € E(G) for q < s < q,: Write G'= {x € 6: |V(pp)(x)| > 1} and
6" = {x € G: |V(pp)(x)| < 1}
then
[ 19tgp)jodx = [ |V(op) =dx + [ |¥(wp) dx <
] 6

< fl|‘7(wp)|°kdx + f“|va)|qu. "
G G

Lemma 5.14. Assume the same hypothesis as in Lemma 5.13.
a) If V)p e E:(G) then V(yp) € E:(G) and there is a constant C = C(q,n,R) > 0
such that

(5.52) [v(p)la s ¢ sup ITLORLIV]
0#veC_(6) ||w]|q,

b) Suppose that Vp € E:(G) satisfies
<Vp,Vv> = 0 for all v € C:(G).
Then: i) If1<q¢< ﬁgT then V(pp) € E5(G) for 1 < s < =,
ii) If q » ﬁﬂI then V(yp) € E=(6) for 'y <s < a.

Proof. i) Since Vp € E:(G) there is a sequence (p) c C:(G) such that
19p-9pils > 0. By (2.9) fp-pill, o < C(R) [¥-Tpi[ls. Therefore

V(op;) = P,V + ¢V, > V(pp) in L3(G),pp, € C (6) and therefore V(yp) € EZ(G).

i1) We first show (5.52) for 1 < q < EQT' Then ¢’ > n. Let ¥ e C°(rn),
0<y <1, ¥(x) =1 for [x]| > 2R, ¥(x) = 0 for |X| 52- R..Fgr Ve g (Rn) Tet
C, = |Bapg|™? [ vdx. We will show now that ¥V := y(v-c,) € E:(G) for ¢’ 2 n.

B

For this purpose let p € C:(Rn), 0<p<l, p(x) =1 for |x] <1, p(x) =0

for |x| > 2 and put p(x) := p(k?x) for k € N. Then

supp(Vp,) c R, := (x € R : k < [x| < 2k}. Then ¥V, := p -V € c’:(s). There is
k

k, € N, k, > 2R, such that supp v c B%. Then for k >

W, = Vo -9(v-c,) + a(TP)(v-c,) + p¥-Vv
= -Vpec, + (v-C,)VP + ¥-Vv.

. n
. . 2,41
Since |Vp,| < C-k-! and vanishes outside R, we get “Vﬂ&"qra <.c-k? < const
Tk
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for q’2 n. If F* € E“(G)* then it may be extended to a functional
F*x e (Lq (G)n)* and therefore represented with f e LI(G)» as F*(Vg) = <f,V¢>
for all V¢ € E:(G). Since |<f,Vp,>| < ]Ifuq o < const Hqu o > 0 we conclude

Rk Ry

f*(VV,) > F*(VWV). Since E:ZG) is closed it is weakly closed too and therefore
7
We E:(G). Since V§ = 0 on the support of ¢ we see
V(op) - ((v-c,)V¥ + p-Vv) = V(gp)-Vv and therefore <V(pp),VV> = <V(pp),Vv>.
By (2.2) (applied to B,) we see ||VV|| , < K|le|| , and therefore
[<V(wp),Vv>| < K 1<Wep), Wol v +0.

vl Ivvll,.

We abbrev1ate the sup at the r1ght hand side of (5.52) by D. Since 0#Vv eEq(G)
there is a sequence (v,) c C°(G) such that Jov- Vv," , » 0. Then

[<V(gp),VW>| _ lim <V((pp) Vv, > <D

A 5 1.,
Therefore <V|‘|""ﬁ""’> < KD for those v € C°(R") such that V¥ # 0. If V¥
Wi ,
q

vanishes then <V(pp),Vp> too. Therefore we derive (5.52) from Lemma 5.2.

iii) Let now q > %— and therefore 1 < ¢’ < n. Let p € C“(R“) be defined as
in ii). If ve c"(mn) then $-v € C7(6) and “V(wv)" , < ||v‘v¢|| )+ ||Vv|| ,

Let q’* := n q . Then by the Sobolev theorem and Holder’s inequality

Ivwel, < c@lvl, o < cOIvley 1Banl™

$ o |oaa] "WV,
and so ||vwv)||q, < c(R)lIVvﬂq,. Therefore
|<V(gp),Wv>| = |<V(pp),V(Pv)>| < DIIV(V:v)qu, < ¢(R)-D "»VV"q,
where D denotes the sup in (5.52) and again by Lemma 5.2 follows (5.52).
iv) We prove now b). Let 1 < q < n—n'I We first show
(5.53) <Vp,V¢> = 0 for ¢ by Lemma 5.13.

Choose p, like as in part ii). Then for k > 3R we have pp € C:(G) and by
assumption :
0 = <Vp,V(p0)> = <Vp,p Vo> + <Vp,9Vp,> = <Vp,Vp> + <Vp,Vp,>

Remember |[Vp,|lq, < const. for g’> n. Therefore

<P, Vp,>| = [<¥p,Va>, | < C "V”"qvkk >0
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v) For v € C:(Rn), v € C‘:(G) and therefore admissible in (5.52). We then get
(5.54) <V(gp),Vv> = <pVyp,Vv> - <Vp,vWp>.

Let c(v):= [Bskl'lfvdx and put V:= v-c(v). Then by (5.53) <Vp,VVep> = <Vp,vVp>.
B3r

Let now 1 < s < q< ;"—1- Then p € L5(G;z) and Vp € L5(Ggz). We therefore get

|<T,300> < ¥l 1501, ,_I¥1,. ,
and by the Poincaré-inequality

I¥1,1 5, < clval,, - clwl,,
and so we derive from (5.54) for v € C:(IR")
<v(op),Wv>| < C(llpll, o + IVl ¢ ) 19¥l.,:

and so by Lemma 5.2 we get V(pp) € E2(R»)

vi) If n = q = 2 then we are ready. If n > 2, then1<qsi'_11-<2. Now we
proceed similiarily as in parts iv) and v) of the proof of Lemma 5.11: Choose
again k e N, k < % < k+l. Let Ry =R + §E for j = 0,1,...,2(k+l). Let

vy € C°(R"), 0 < ¢y < 1, py(x) =0 for |x| <Ry, @5(x) =1 for |x| 2 Ry,q-
Given v € C:(R"), then ¢, v € c:(s) and from the assumption we again derive
(5.38) now with vy := v. Let now again 0 < j < k and assume that

V(py_,p) € EY-1(G). Since gy, = 1 for |x| > Ry, we conclude

Vp € LU-1({|x| 2 Ry}). Since supp (Vg;) c Gy := {x € R": Ry < |X| < Ry,q)
again by the Sobolev embedding theorem we get (5.39). Since gq;'< n instead of
(5.42) we use the Sobolev theorem for C':(IR“) functions

(5.55) ||v||q, < c||vv||q .
i1 )
Then we can estimate (5.41) and end with

[<V(93p),Wv>|< Cp] lvvl

W1 (gy) o'’
The remaining arguments are the same as in part iv) of the proof of Lemma 5.11
vii) Assume now q > Iy, Let ¢, € C°(R"), 0 < @, < 1, @, = 0 on By, 9,(x) = 1
for |x| 2 % R and consider (5.54) with this ¢,. If n > 3 choose any g, with
n-['r<q1<2and G <q. Put r :=%§-2—. Then1<r<%2<n (observe

1

2n

m>1fornz3). Furtherrsqandq,-ﬂr—-r* and

, __nr
nr » & ° Froner

q,’'" = n%gli =r’, Since r < q we have p, Vp € L*(Mg), that is p € H:v (M),
17/ .
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where My := (x e R°: R < |Xx]| <« % R}. The Sobolev inequality gives

||p“q1'”R = “p“r"uk < c“p“,ﬂ,r(”n)

Consider (5.54) for v € CT(R") and g,. Then with C’:= |V,
(5.56) [o%0,0v5( < ol o, IV, < €€ Dol 1991,
By the Sobolev inequality for v € C:(Rn) (see (5.55))

(5.57) |<Vp,vie>| < ¢l vl < cclvll,, v, .

By Lemma 5.2 we see from (5.54) that V(p,p) € E(R") holds. Now we may start
the iteration procedure from part iii).

If n = 2 and given s > 2, weputF=§§—s-. Then 1 < ¥ <2 =n, F*-z%=s
and with estimates analogously to (5.56), (5.57) we conclude again via Lemma

5.2 V(o,p) € E5(G). =

Remark 5.15.

If G c R™ is a bounded domain with sufficiently smooth boundary, say e.g.
GeC ad ifl<q<s<wo, ifVpe E:(G) and Vp € L=(G), then Vp € E:(G).
As we have seen in Lemma 5.6 this conclusion still holds for the half-space.
But it is no Tonger true for an exterior domain: Let K := B,,

6 :=R"\RK = (x e R": |x| > 1} and consider for x € G

1- |x|2» ifn2x3
(5.58) h(x) :=
In|x| ifn=2

Then h € C”(G), "Ias =0, Ah = 0, Vh € L3(G) for gq > ?\%I Consider again

p € C:(R"), 0<ps<l, p(x) =1 fFfor x| <1, p(x) = 0 for |x| > 2 and

PAe(x) := p(k-ix) for k € N. Since hlae = 0 it is easily seen that

hy := ph e E:(G) for q > n_r-".[ Since Vh, = hVp, + p,Vh because of (5.58) and
the properties of h one immediately verifies [lo,hlq > 0 if q > n for n > 2.
Clearly p,Vh » Vh in L9(G). If n > 3 and q = 2 like as in part iii) of the
proof of Lemma 5.6 one verifies Vh, » Vh weakly in E:(G) and therefore

Vh € EX(6) in this case too. This rests on the property |Voq < const for
q2nand keN. If qg=n=2, Vin|x| ¢ L?(G). That these are the optimal q
for Vh € E}(G) may be seen as follows: If p € C:(G) c C:(IR“) by means of the
Sobolev-inequality ||p||q, < (2|]Vp||q for Vp € EX(6) and 1 < q < n. Clearly
hels(G) vorl1 <s<w, =m
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The best possible result we can expect therefore is

Lemma 5.16. Let 1 < q < » and let G c R® be an exterior domain, G = RP\K, with
¢ + Kcc Re. Let R > 0 be such that K cc B;. Suppose there is 1 < g < n and

Vp € E:(G). Assume in addition p = 0 in Gyz := G n Byz. If there is any other
lc<r<owith Vp € L*(G). Then Vp € E:(G).

Proof. Without loss of generality we may assume p € C”(G). Otherwise we
consider the mollification Pe- Since p vanishes on Gy, V(pe) = (Vp)e in G
for 0 < € < R. Clearly VpG € ES(G) too. Consider again our standard cut-off
function p € C:’(IR"), 0<p<l, p(x) =1 for x| <1, p(x) = 0 for |x| > 2,
A (x) = p(k1x) and R, := {x € R": k < |x| < 2k}. Then supp(Vp) c R,. Since
by assumption Vp € E:(G) and 1 < q < n, by the Sobolev embedding theorem

p € La*(6) with g* = %?T and ||p||q* < CIIVp]Iq. Define C, := [R |-t [ pdx

R
By Holder’s inequality *

1 1
=2 -l
16l < IRl IPlye g 1Rl © < CHVPRalR®

. P 1 .9n, ,
Smce q*’ -1 = ng-n¥g we have i 1 971— 0 for g < n and we get
1
1
|Re|? > 0 (k > ») and therefore |C,| > 0. Observe the Poincaré-inequality
(2.6) giving ) :

(5:59) o=l < keCo W0l
(since we assumed p € C!(G) clearly p € L*(R,)). Define 9(x) = 1-pg(x)

(with p like as above) and p, := @(p(p-Cy)) € C:(G).
Then Vp, = p(p-C.)V0 + o(p-C.)Vp, + 9o ¥p. Since ¢ = 1 on supp(Vp) we see

©pVp > Vp in Lr(G). Since p vanishes on supp(Vy) c By, o, = 1 for k > R,
lec(p-Cvell. = I0ll, IC| 1Ba| > 0. By (5.59) and |Vp,| < C-k2,
supp(Vp,) c R, we see [lo(p-C.)Val. < Ck"‘"p-ckﬂrlﬂks C-C'"Vpllr'kk» 0 (k » o).

Therefore |[Vp-Vp, |, > 0. =

Remark 5.17. Let the assumption of Lemma 5.14 be satisfied, expecially (5.52)
with Vp € E}(G). If 1 < q < —:—_land n > 3 (then %ﬁ n) we conclude via Lemma
5.15 that V(gp) € ES(G) for 1 <s < o. If n = 2 and 1 < q < 2 then
V(pp) € ES(G) for 1 < s <o, If n >3 and ﬁ < g < n then V(pp) € E:(G) for
n_r-‘l' < s < o, These properties perfectly fits togehter with the observations

made in Remark 5.15. =
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The proof of estimates (5.35), (5.49), (5.50) was completely elementary (e.g.
we needed only Sobolev’s embedding theorem and H&lder’s inequality) but
demanding lengthy hard work. It was done to prove in addition that solutions
Vp € Ea(G) resp. Vp € EJ(G) of the homogeneous functional equations have
integrability properties with respect to "other" exponents 1 < s < » and
(compare Remark 5.17) belong under certain circumstances to EJ(G) too. A1l
this work we need to conclude via the trivial L2(G)-uniqueness of the
Dirichlet and Neumann problem the Li-uniqueness. By means of a partition of
unity the desired main theorems are then an easy consequence of the following
uniqueness result. Concerning the Dirichlet problem we read off from Remark
5.15 that the uniqueness result is best possible. I’m very much indepted to
my colleque Professor Dr. Michael Wiegner, who gave me the example of the
"exceptional functions" h in (5.58) and drew my attention in a very early
stage of the consideration of exterior problems in the appropriate direction.

Theorem 5.18. (Uniqueness) Let G c R» be either a bounded or an exterior
domain with boundary 3G € C! and let 1 < q < ». Then:

a) Uniqueness of the weak Neumann problem:
1f Vp € E9(G) satisies <Vp,V¢> = 0 for all V¢ € E9’(G), then Vp =

b) Uniqueness of the weak Dirichlet problem:
If Vp € EJ(G) satisfies <Vp,V¢> = 0 for all Vp € E:’(G). Then:
i) If G is bounded, then Vp = 0 (and therefore p = 0)
ii) If G is an exterior domain, and
ifn>3 and 1<q=<n, then Vp = 0
ifn=2 and 1<q<2=n, thenVp =0
(and p = 0 too).

Proof. i) By Lemma 5.11 for each x, € 8G there is R’= R’(x,) > 0 such that
for 6 n By, (x,) the properties c) respectively d) hold. By compactness of aG
we find finitely many x, € dG and R, := R’(x;) >0, i=1,.. M such that

4G c U B,, where B, := B (x,). If 6 is bounded, G, := G N n R*\B, c G and is

compact By means of Lemma 5.12 we see that G, can be covered by finitely many
balls B; = BR (x;) cc G, i = M+1,...,N. Then the B,,i = 1,...,N form an open
1

covering of G. If G is an exerior domain, G = R°\K, where ¢ # K cc R®, then we
choose R > 0 such that K cc By and put now G, := G, n By c G,. Again G, is
compact and may be covered by B, cc G, i = M+1,...,N
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Define B, := {x € R*: |x| > 2R} ¢ G. Then again the system B,,i = 0,1,..,N
forms an open covering of G. Construct a partion of unity {g, : i = =,1,..,N}
such that 0 < ¢,, ¢, € C“’(B,) fori=1,..,Nand ¢, € C°°(B°), 9, =1 for

|x| 2 3R, p, vanishing in a neighborhood of |x| = 2R, Zw, (x) =1 for x € G.

ii) In case a) we immediately conclude from the hypothesis and Lemmas 5.11 -
5.13 that V(e,p) c E2(G) (continue ¢,p by zero for x € G, x ¢ G n B,) and

therefore Vp = 2 V(p,p) € E2(G). Since E° (G) = (V¢ : ¢ € (g ((‘z)) is dense in

E5(G) for 1 < s <o from Vp € E2(G) and 0 = <Vp,V$> for V§ € E=(G) we see now
0 = <Vp,Vp> and therefore Vp = 0.

iii) In case b) and G bounded we similiarly conclude by Lemmas 5.11 and

5.12 d) V(e,p) € EJ(G) and therefore Vp € Ef-(G) and again Vp = 0.

Clearly, we conclude p = 0-too.

iv) If G is an exterior domain we consider Lemma 5.14 and 5.16: If n > 3 and
1<qc¢g n—“f < n, then V(g,p) € ES(G) for 1 < s < o, If n—"l- < q < n, then again

V(p,p) € EZ(G) for 1 < s <. In any case V(g,p) € ES(G). If n = 2 and
1<q <2, then by Lemma 5.15 and 5.16 V(p,p) € ES(G). The case q=2is

trivial. Since V(p,p) € ES(G) for i = 0,..,N at the end Vp = ZV(q’,p) € E (G)
and again 0 = <Vp,V¢> for all ¢ € c® (G) and by density of {V¢ ¢ e (o (G)) in
134 o(G) we again have Vp = 0 that is p =0. m

6. Proof of the main theorems.

Proof of Theorem 4.1. First we prove part i). Like as in part i) of the proof
of Theorem 5.18 we construct a covering B,,i = 0,1,..,N of G (B, := ¢ if G is
bounded) and a partition of unity (¢,) with respect to this covering such that

(5.35) holds for i = 1,..,M, (5.49) for i = M+1,..,N and (5.50) for i = 0.
Suppose that the statement a) of Theorem 4.1 is not true. Then there exists a
sequence (Vp,) c E9(G) such that |[Vp|lq,c = 1 and with

(6.1) ¢ := sup %M 50 (k » »).
0#VveEa’ (G)

Without loss of generality we may assume f pedx = 0 if G is bounded and

6
f pdx = 0 if G is an exterior domain. Then by the Poincaré- inequality we get
3R
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HpkH",,q(G) < const. if G is bounded, [p.| < const if G is an

Hl'q(Q,R)

exterior domain. Since E9(G) is reflexive there is Vp € E4(G) and a

subsequence (again denoted by p,) such that Vp, converges weakly to Vp. for

Vv € £’ (G) we derive from (6.1) <Vp,Vv> = lim <Vp,,Vv> = 0. By Lemma 5.18 a)
: k>0

we get Vp = 0. By the H':9-boundedness we see by means of Rellich’s theorem
that p, > p strongly in L3(G) resp. L9(Gsg). Then fpdx =0 (Jpdx = 0) too and
3R
therefore p = 0, that is p > 0 strongly in L9 on G resp. Gzz. Fix now any
ie(0,1,.,N}. If i =0 let @ :=R", if i =1,...,NTet @ :=B, (x,). With a
1
constant C; > 0 we have by (5.35), (5.49) and (5.50)

6:2)  CIV@pIle < sup TORLTR g
o osvect(@) vl e

For each k € N there is v, € C7(D), llekﬂq, =1 and

(6.3) 0<d, - <V(gp).Ty> <

Let ¥, := v,-c,, where ¢, := |Q]-! évkdx if i =1,..,N and ¢, := |G|t [Jy.dx
G3r

for 1 = 0. Then by the Poincaré-inequality we conclude Ilvkllﬂi,.,,(m < const.

for i = 1,....N and le||,,1.«'(%) < const for i = 0. Again we select a sub-

sequence (V,) and find Vv, » Vv weakly in Ea’(G) and v, > v strongly in LI(D)
resp. 19(Gs). By (6.3)

+ V(D) V>

1

Gt g | |

= L Ve ¢ T T - <P, Te>
1
k

< + eki[V(q;,\'rk)llq, + |<p Vo, VN> | + <Py, v V>

Since at the support of Vo, we have p, » 0 strongly in L3 and W, > Vv weakly
we see <p, Vg, ,V%,> > 0. Analogously <Vp,,V,V¢> > 0. Further "V(anx)" ;<
const and €, » 0. So we conc]ude by (6.2) [V(¢,p,)]la » 0 (k > ®) and for

i = 0,1,..,N. since Vp, = 3 V(pp,) we get [Vpfly = 1 forming -a
contradiction. Part b): By part a) G has property P‘(s) for s = q and q’,
therefore by Lemma 5.1 G has property P* (s) for s = q and q’, that is b). =

Proof of Theorem 4.2. Part a): Like as in the proof of Theorem 4.1 we
construct a covering B, = !iR (x,),i =0,1,..,N of G and a partition of unity
. 1
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such that for i = 0,..,N e.g. (5.35) holds for ¢ € C* (B,) and the sup is taken
over v € C°(G n Bz&(x‘))’ analogously for (5.49). For (5.52) the sup is taken
over v € CD(G) If G is bounded, let 1 < q < . If G is an exterior domain and
nx3,letl<q<nandifn=2, Tet1<q < 2. Suppose again that (4.4) is
not true. Then there is a sequence (Vp,) c EJ(G) such that el = 1 and

(6.4) € := sup , <oy, Vv> >0
0#VveE?(6) "VV"q,

For G bounded, by (2.1)

(6.5)  |pella < C(G) |I¥p.llq and for & an exterior domain by (2.9)

(6:6)  Ipul o < CR) I¥pilasc.

Again by reflexivity we find a subsequence (again denoted p,) such that

Vp, » Vp € EJ(G) weakly. Since by (6.2) <Vp,Vv> = 0 for all Vv e E“(G) by
Theorem 5.18 Vp = 0. By (6.5), (6.6) we conclude p = 0. Then by Re]lich’
theorem p, » 0 strongly in Li(G) resp. L9(6zz). Now we proceed like as in the
proof of Theorem 4.1: Consider (6.2). Observe that if x, € 3G then the sup has
to be taken over v € C (6 n BZR (%)) in (6.2). Again we find v, with

HVvkﬂq =1 and (6.3). “The use of the Poincaré inequality is replaced by (6.5)
and (6.6) for v, instead of p, and q’ instead of q. The remaining arguments
are the same. Part b): If G is bounded, by part a) G has property P:(s) for
s=qand q’ if 1l <q<wo IfG is an exterior domain and n > 3 G has property
P:(s) for s = q and q’ if R%I < q<n. If n =2 the exterior domain G has
property P:(s) for s = q and q’ if and only if g = n = 2. Via Lemma 5.1

part b) follows. =

7. The exceptional spaces for the Dirichlet problem in exterior domains.

By Theorem 5.18 b) from Yp € EJ(6), G c R*(n > 3) exterior domain, and
<Vp,V¢> = 0 for V¢ € EJ(G) we can conclude Vp = 0 only if 1 < g < n and
the functional representation (Theorem 4.2) holds only for K%T <q<n. In
the case G := {x e R* : |x| > 1) the reason is clear by Remark 5.15. For. an
arbitrary exterior domain G with dG € C! we see that the situation in Remark
5.15 is typical:

Theorem 7.1. Let G c R* (n > 2) be an exterior domain with boundary
36 € Ct, G = RP\K, ¢ # K cc Rn. Without loss of generality assume 0 € K. Then



there exists h € C°(6) n C°(8) such that Ah = 0 in G, h‘ac = 0 and Vh € EJ(G)
for all qwithn<q<owifn23andq>2ifn=2. Let 0 <r <1 such that
B. cc G. Then further there is a harmonic function u in B, with u(0) = 0 and
constants a,b € R, a # 0, b # 0 such that for |x| 2 i

a+ Tng_z + T%T“'a u(TéTz) forn >3

a+blinjx| + u(TéTz) forn=2

(7.1) h(x) =

Conversely if VR € Eg(G), where q is subordinate to the restrictions above,
and <VR,V¢> = 0 for all ¢ € C:(G), then there exists @ € R sucht that h = eh.m

The proof (see [9]) is not difficult but somehow Tlengthy. The main tools are
the mean value properties (3.1), (3.2), Weyl’s Lemma ( = Theorem 3.1), the
Kelvin-transform etc.

This theorem has a lot of consequences. To avoid the cumbersome distinction

n >3 and n = 2 we restrict ourselfes in the following considerations to the
case n > 3.

Let H(G) := {aVh : @ € R}. For q > n let Vhq :=

€ E3(6).
ll Ilq

Then H(G) := (aVhy : @ € R). Define F: : H(G) » R by
(7.2) F*(Vg) =a for g = ah,.

"F |- S Fo(q) 1. Extend F norm- preserving by the Hahn-Banach
#geh Vg4

theorem to a continuous linear functional defined on the whole space EJ(G)
and denote if again by F' Define

(7.3)  Py(Vp) := F (Vp)th for Vp e Eﬂ(G).

Then Pg : EJ(G) » H(G) is a projection, that is Pé = Pq, with the additional
property ||Pq] = 1.

Define

(7.4) P, q :=1-Pg

and

(7.5)  EG,c(6) := P, q(EJ(G)).

Then we have in the sense of a direct sum

(7.6) EJ(6) = E5,(6) @ H(G)
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and there is a constant K > 0 such that

(7.7) “Vp“q 2 K(“Pc,q(VP)“q + “Pq(vP)IIq)

for all Vp € EJ(6). Clearly Eﬂ,c(G) is topologically equivalent to the
quotient space EJ(G)/H(G).

Concerning the estimates from Theorem 4.2, we have the following extension of
Theorem 4.2:

Theorem 7.2. For G assume the same as in Theorem 7.1 and let n > 3. Then for

‘1 < q < o there exists a constant C = C(G,q) > 0 such that

a) for 1 < q < 7y (then q’> n) and all Vp € E3(G)

(7.8) ) 1<Vp,V9>|
I7Pke < S o5’ (o) Twal,.

b) for n—'_'r < q < n estimate (4.4) holds

c) for q.> n (then q’'< —1-) and all Vp € E] .(6)
(7.9) "Vp"q < sup Mﬂ =
0¢v¢esq'(s) l|v¢nq,

Observe that (7.8) is sharper then (4.4), because the variational class is
smaller. (7.9) is an extension of (4.4) to the case q > n but for the narrower
class E (6) ¢ EX(6).

Concerning the functional representation we get:
Theorem 7.3. For G c R® assume the same as in Theorem 7.1 and let n > 3. Then
for 1 < q < o with the constants C = C(G,q) > 0 by Theorem 7.2 holds:

a) Ifl<qg ﬁ and given F* € (E,‘," (6))*,

llF*II = sup, L8 pen
o.c)' O*V¢EE§.C uv¢uq

there is a unique Vp € EJ(6) such that
(7.10)  F*(V$) = <Vp,V¢> for all Vp € EX._(6)
Further

(7.11)  |vells < clF*l . <clve
Ivella < | ||(Eq o Ivelle

0, C
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b) If BQT < q < n then Theorem 4.2 b) holds.

c) If g 2 n and given F* € (EjZG))*, then there is a unique Vp € EJ _(G) such
that ,
(7.12) F*(V¢) = <Vp,V¢> for all V¢ e EJ(G)

Further ||Vp|lq < C|iF* + < ClVpllq-
Ivella < cl II(E(,) Ivplle

For case a) we have in addition

Theorem 7.4. Let the same assumptions as in Theorem 7.1 hold and let
1<qsg ;%I (n 2 3). Given F* € (EJ(G))*, then there exists Vp € EJ(G) with
F*(Vg) = <Vp,V¢> for all V¢ € Eg(G) if and only if F*(Vh) = 0 (h by Theorem

7.1). Then in addition [Vpllq < C|F*| (€ < Cfvpllq-

8. Applications, concluding remarks. We are now able to prove existence of
weak solutions for the Neumann-- and Dirichlet problem in bounded as well as in
exterior domains. E.g. let G be an exterior domain and let f € C:(G) be given.
Let F(¢) := <f,¢> for ¢ € C:(G). Suppose supp(f) c By for some R >.0. By (2.9)
we get [F(9)] < [fl , Iol,. o < clel, vl

Then for ;@T < q < o there exists Vp € EJ(G) with

(7.13)  <Vp,Vé> = F(g) = <F,¢> for ¢ € E"EG).

If in addition f fhdx = 0, then for 1 < g S there is again Vp € EJ(G) with

(7.13). c1ear1y p is a weak solution of the Dirich]et problem “-Ap =finG
and plge = 0". It is not difficult to see that for |x| 2 R,, R, > R suffici-
ently big, a representation like as in (7.1) holds (since Ap = 0 for |x| > R).
Incase 1 < q S - —- follows a = b = 0. That means |p(x)| < Too-1 -

In case ——— < q < n follows a = 0 and |p(x)| < 1—1- Analogous results hold
for the Neumann problem.

Most important applications are in connection with the Stokes problem in
bounded as well as in exterior domains. With ideas similar to that one used
here, Galdi and Simader [3] proved existence, uniqueness and LQ-estimates for
the Stokes problem in exterior domains G c R3.

A most convincing application of Theorem 4.1 is given in Simader and Sohr [8]
in their proof of the Helmholtz decomposition. Moreover, in turn the Helmholtz
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decomposition is equivalent (see [8]) to Theorem 4.1. The results in [8]
extend those given by Fujiwara and Morimoto [2] to unbounded domains too.
It is well known (see e.g. [5], p. 337 and p. 341 or [6], p. 99 and p. 103)
that for bounded domains G with 4G € C! and 1 < s < » there is a well defined
continuous Tinear trace operator V, : H!»s(G) » W!-1/5:5(3G) such that for

" p € C(G) we have Vp = plaG. If W1/8/,87(3G) := (W-1/8,5(3G))* equipped
with the "dual space norm", then in [8] is shown that for the subspace
Fs’(G) := {Vp € E’(G) : Ap € Ls’(G)} of Es’(G) equipped with norm
"Vp“F,, := (ﬂVpH:i + "Apuzf)"" there is a continuous linear trace operator
Ss, : Fs/(G) » W1/8’,8/(3G) such that for p € C°(G) we have Ss,(Vp) = 8“p|as,

. n .
where 8“p|aG(x) =‘§1~N,(x)a‘p(x)|aﬁ and N(x) denotes the outward unit normal

vector in x, at d6.

Via difference quotient methods, using (4.1) and (4.4) respectively, like as
in the case q = 2 higher differentiability properties of weak solutions of
e.g. equation (7.13) can be proved (compare e.g. [7].

The case of arbitrary elliptic operators of second order for G bounded, and
under additional asymptotic assumptioné for the coefficients for exterior
domains, is reduced to A by elementary coordinate transform and standard
localization procedures.
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