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BOUNDARY BEHAVIOUR OF DIFFERENTIABLE FUNCTIONS AND RELATED TOPICS

Sergej K. Vodop’yanov
Novosibirsk, USSR

A description of restrictions of differentiable functions to sets FeR® is

a classica} topic in the function theory arising from papers by Lebesgue [1]
and Whitney [2]. There is a numerous bibliography concerning the Sobolev
spaces w;(na“), %N, the Nikol’skii spaces H:;(nz“), the Besov spaces B:.q(n")
and the spaces of Bessel potentials or the Liouville spaces L;(Rn), &eR+.
(Note, that w;(lk") = Lé(an), fN, and H;(Rn) = B;’w(lkn), &R, .)

In this paper we study the boundary behaviour of differentiable functions
from the Sobolev classes Wﬁ(Rn) and the Nikol’'skii classes H;(Rn) for p = «.
The domain of definition of the function classes in question is an arbitrary
connected open set in the Euclidean space Rn. nx2. Without considering
regularity properties of the boundary of the domain we need to introduce new
concepts and a language for the description of the boundary behaviour. We
establish that boundary values exist always but we shall understand them in
a special sense.

Our method is based on a new equivalent normalization of the Sobolev and
Nikol’skii spaces in domains which include geometrical characteristics of the
domain in an explicit way. The geometry of the domain is determined by the
modulus of continuity defining the function space. The inner geometry of the
domain reflects the substance of the studied problem and represents suitable
tools to its resolution.

The first application deals with traces (boundary values) of functions on
the boundary of the domain of definition. The boundary can be obtained by
means of the completion of the domain with respect to the corresponding

metric. The elements of the function space are extended by continuity to the

boundary and these traces belong to some function space. It is proved that
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such a characterization of traces is reversible.

The second application concerns some necessary and sufficient
extendibility conditions for differentiable functions across the boundary of
the domain of definition. They are formulated in terms of the ‘equivalence of
the corresponding me'grics in the domain and in the surrounding space for p = o

and involve some conditions on the measure in spaces with integral metrics.

v

1. Geometric normalizations in spaces of differentiable functions

1.1. Sobolev and Nikol’skii spaces
For an arbitrary «e€(0,1] we define the inner a-metric dlx G(x,y) on
a domain GeR™ as follows

o

m
da’G(x,y) = inf J} Ix.l—xi_ll ,

y i=1

where the infimum is taken over all broken lines ¥ consisting of segments

[xi_l,xich, X, = X, X It is evident that the 1-metric coincides with

0 m =Y
the infimum of the lengths of rectifiable curves connecting the points x,yeG,
and therefore it is the inner metric of the domain in the commonly accepted

sense (see [3]). We denote by Ga the metric space (G’da ).

,G

The elements of the function ﬁpace Lip(ll,Ga), llelR+ = {x: x>0}, ¢fe(k,k+11,
k=0,1,2,...,. are Lw-functions f:G—>R, whose weak partial derivatives,
denoted by D‘jf, also belong to Lw for |jlsk. The norm in Lip(Z,Ga) is defined
by

3 e-1J1

3 IRJ(x.y)l
IE|Lip(e,G )l = T {un £IL_(G)Il + sup ———_}
[+ o o
1=kt d, (%)

- 1/a
where da,G(x,y) = da’G(x,y) , a = £~k and

. J+s
proo = 3 T IG5 4 R k), 0s)glsk.
| j+s|=k : J
We use the usual multi-index notation, j = (JI,JZ,A..,Jn), s = (51’52""’Sn)’
S S‘L SZ Sn
| = ] ] ] j = 3 j j =
s! sy!syt. s !, 1J) Jyrdy*e .ty an@x Xq Xy X

Two function spaces coincide if the operator of embedding of one of the

spaces into the other is a bounded isomorphism.
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THEOREM 1.1. Let G be an arbitrary domain in R". The following function spaces
coincide:

'] L
Lip(t.Ga) = WN(G) for ¢eN and Lip(t.Ga) = Hw(G) for &N.

Here the space H:(G) and H:(G) is a member of the scale of the Sobolev
spaces H;(G) [4] and the Nikol’skii spaces H;(G) [5, 6], respectively. Let us
recall that the elements of H;(G), eN, pell,=] and H;(G). &R, te(k, k+1),
k=0,1,2,..., pell,o] are Lp-f'unctions f whose weak partial derivatives,
denoted by D‘jf’, also belong to Lp for |Jj|st and | j|sk, respectively. The norm
in H;(G) and in H;(G) is defined by

ur|w;(c)|| = 1L+ 19| (O]

or

18,9, L (1
s

respectively, where V, = (¢ {Jl = & and a = &k,

)
= G
llfIHp(G)ll ||f|Lp( )| + sup

g(x+h) - g(x) if the segment [x,x+hlcG,

Ahg(x) = {

The Nikol’skii spaces H;(G) belong to the scale of the Besov spaces B; q(G),

(o] otherwise.

qeli,»=], as well, namely,

¢

p,m((}) [see 5, 6].

L
Hp(G) B

Proof of Theorem 1.1. If feLip({,G), &N, then any point xeG is the
center of some ball B in which all the derivatives of the function f of the
order ¢-1 are bounded and satisfy the Lipschitz condition. This implies that
the function f has bounded generalized derivatives of order ¢ Thus the
boundedness of the embedding Lip(¢, ca)—ew:(c), teN, is proved. The continuity
of the embedding
Lip(£,6 )—>H(G), ten,

is evident.

Now we shall prove the continuity of the converse embedding. Let us
consider any function from of the Sobolev or the Nikol’skii space with the

norm equal to 1. The estimates lD‘jf(x)ISC, 1jl=st, xeG, are proved in [5].
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Therefore it remains to establish the .inequa!lties

(1.1) IR ()| = cjaa,c(x,y)t_ldl,

where o = f-k, keN, k<tsk+1, |Jj|=k and CJ = n(k-l‘”)/z.

We shall prove the
estimate (1.1) by induction. If |Jj| = k, then RJ(x,y) = D‘jf(x) - DJ(y). We

have the following estimate for the difference of the derivative D‘jf‘, 13! =k,

along a broken line consisting of segments [xi_l,xllcc, 1=1,...,m Xy = X,
X =y
. J J » 1pd J " «
(1.2) |Df(x) - Df(y)| = % IDVF(x,) - DVF(x,_. )| = JXIx, - x, .|,
2 1 1-1 N B T

where a = 1 if few:(G). and a = &~k if feH:’(G). Now minimizing the right hand

side of (1.2), we obtain the estimate

= 1pJ S | - (&-1J31) /e
(1.3) !RJ(x,y)I = |DYf(x) - Df(y)| = da’c(x,y) = da,G(x.y) ,

where |j| = k and a depends on the choice of the function space made in the
above mentioned way.

The inequalities (1.3) constitute the basis for the induction. Let us

n(k-IJI )/2

suppose that the estimate (1.1) with cJ = is proved for all j such

that Osp<|jl=k, p =0,1,...,k-1. For any multi-index Jj, |Jj| = p, we shall

estimate RJ(x,y), where the points x,yeG are fixed. Since the value R (y,y) in

J
question is equal to O, it is

(1.4) lRJ(x.y)l s sup {IVRJ(E,y)I %lailz £eG, da'c(s,y) = da’G(x,y) + c},

where the segments a, form a broken line with endpoints x ahd y, for which

J
Zlalla = da,c(’"y) + €.

Since

2 2
IR (&%= L IR, (&)
J [g+kl=p+1 J*K

and

?Iaii < [imai'a]l/a < [da,clx'y) . c]l/a

by the reverse Minkowski inequality (see [7]), we obtain from (1.4) that

&~(p+1) =

da’c(x,y)

LRCROEE G S S e

y)

_ . (k-p)/2 = 2-p
=n da'G(x,y) .
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This proves the inequality (1.1) for every j, |j| = p. D

Another application concerns some necessary and sufficient condition for
an extension of differentiable .functions beyond the boundary. They are
formulated in terms of equivalence of the corresponding metric in the domain
and in the surrounding space for p = » and they involve certain conditions on

the measure in spaces with integral metrics.

1.2. Zygmund spaces
The case of Sobolev and Nikol’skii spaces studied in Section 1.1 differs
essentially from the case of the spaces Hi, £eN, considered here. If ¢ =1

then a function f belongs to Hl(Rn) if and only if it has finite norm

- 1828 ()]
fIH (R = f .
£ JH_(®RD) ] supnl (x)| + supn —TR—
xeR xeR n
0#heR

As usual, Aif‘(x) = £f(x-h) - 2f(x) + f(x+h). For an arbitrary feN, we -

define
2-J
_ B |ATDVF|
@™ = e et @™, IepiE™ = et ®R I s F sup —R < w
) © © © | hi
| Jl=¢-1 noo-
XeR n
O#heR

Here we discuss the natural definition of the Zygmund spaces in domains.
Our definition is in fact a successive realization of the concept that the
norm of a function in a domain has to take into account the inner‘geometry of
the domain.

Let g be an open set in R™ and k be a natural number. We say that a jet
(fj: | jlsk-1} of functions defined on G belongs to the class Ak(G) if there
exist Eollections {f, : |jl=sk}, veN, of functions defined on G, and a

Jov’

constant M>0 such that for all points x,yeG the following conditions hold:

(1.5) I£,60 - £ G0l = e VI ey sk,
(1.6) £, 00 - £, (1= WMV, pet, g1 =k,
£ (y) -
. le. - ¢ AT eS| s wla, ) sk, vet,
J,v | j+s =k s! 1,G
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(1.8) ,If‘j,l(x)l =M, |JjI=k.

The norm I£|AK(G)|| of the jet £ = try;

all M satisfying conditions (1.5) - (1.8) with some {f

| jI=k-1} is equal to infimum of

jopt 1J1sK, veN. .

THEOREM 1.2 [8]. For all keN the spaces H-(R") and A“(R®) coincide.

2. Boundary values of differentiable functions

2:1. Trace operator
Recall that k = 0,1,2,... and fe(k,k+1]. Let us consider the metric space

Gy = (G’da a€(0,1]. Let Ea be the completion of G, with respect to the

)

metric da It is easy to verify that any function of vLip(e,Ga) extends by

G’
the continuity to the completion 50‘4 Indeed, if 13l = k, then
(J)

I£797(x) - f(‘j)(y)l = RJ(X,y) s Md G(x,y), where i‘(‘)](x) = D‘jf(x). Hence we

have an extension by continuity to G of the functions f‘(‘j)(x). |jl = k. Let us
now suppose that the functions f‘(‘j)(x) = D‘jf‘(x), pslJisk, p=1,2,...,k, are
already extended to Ea‘ The extension to Ea of the functions f(‘j)(x) = D‘jf‘[x),

13l = p-1, follows from the expansion
f(J"’S)(y)
s!

£ - Wy =

(x-y)% + R,(x,y)
131<1 J+s =k J

(&-(p-1))/a

o
and the inequalities |R,(x,y)| = Mda,G(x.y) |x=yl = = qa’c(x.y).

J
hold. As there exists a unique extension of the functions from Lip(l,Ga) to Ea
it is natural to introduce the function class Lip(l,ﬁa), consisting of the

Jets (f(‘j)

(x): |Jjl=sk} defined on ﬁa as the extension by continuity of
collections from Lip(E,Ga) with respect to the metric da,c(x,y)‘

In order to describe the class Llp(l,aa) in an invariant way, let us
define the mapping 1a:§a-—>G as the extension by continuity of the identical
mapping on G. This extension exists by the inequality
lia(x) - ia(y)la = da.c(x,y). The elements of the class Lip(l,Ea) are the Jjets
e,

| jI=k}, consisting of th= continuous functions defined on Ea. The norm

in the space Lip(t,aa) is
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. ) le(x,y)!
(2.1) I!fILlp(t,Ga)II = T {sup |f Y (x)| + sup :—'FITI'}'
FIEY 3 gxy)

where the supremum is taken over all points x,yeGa, o = &k, and

f(J+s)(

) s
1, (01, ()% + R (xy).

Re)

(x) =
| J+s|=k

(J)(x) = D"f(x) for xeG, |Jj|=k.

It is easy to verify that f
Thus we have proved the following assertion.

PROPOSITION 2.1. Let G be an arbitrary domain in R". Then there exists a

natural isometry of the spaces Lip(t,Ga) and Lip(t,aa): any element of

Lip(t,Ga) possesses a unique extension to Ea with respect to the inner

a~metric da G(x,y) which is an element of Lip(l.ﬁa).

Further, the set aca = Ea\Ga will be called the a-boundary of the domain
G. It is natural to consider the restrictions of the elements of Llp(t,Ea) to
EG« as boundary values or traces of the functions from Lip(t,Ga) to the
a-boundary of the domain G. "To give a rigorous definition of the concept of
the trace we denote by Lip(t,aGa) the function space whose elements are Jets
(f(‘j): |jl=k}, consisting of continuous functions defined on (aGa,d“.G) with
the finite norm (2.1), where the supremum is taken over all points x,yeaca.
The trace operator tr‘t: Lip(t,Ga)——aLip(l,aGu) is defined as the superposition
of the isometry 1:L1p(£,G“)——>L1p(t,5a) given in Proposition 2.1 and the
restriction of the elements of Lip(t,ﬁa) to BGa, which are contained in the
class Lip(t.aGa).

Let us formulate the above as the following theorem.

THEOREM 2.1 [8]. Let G be an arbitrary domain in R". Then there exist the

bounded trace operators

L
trt:wm((‘.)—)Lip(t,aGl), o 1, &N,
trgHﬁ(G)—)Lip(L,aGa), a = &k, Le(k,k+1), k =0,1,...,

defined by the continuity with respect to the metric da



2.2. Extension operator
The characterization of the trace of the functions from the Sobolev and

Nikol’'skii classes given by Theorem 2.1, are reversible.

THEOREM 2.2 [S9]. Let G be an arbitrary domain in R". Then there exist the
linear bounded extension operators

ext, :Lip(4,80)—>W (), k = &1, ten,

éanMLMJ—ﬁﬁm,&RJHLk=0Jp“.a=bh
such that treeextk is the identical mapping.
Pr oo f. The mapping ia: (Ga'da. G)—-—)(G, Ix-yla)‘ has the following property:

If UG 1is a convex set, then Ila(x) - 1“(y)la = dac c(x,y) for every x,yeU.
Hence, we have the equality
_ - «
(2.2) da'G(x,ac) = lia(x) 8G| ", xeG,
where

[1,(x) = 86|% = inf {|x-y]“: yeac}

da’G(x.BGa) = inf {da'c(x.y): yeGa}.

This relation implies that the space Ga = (G’da,G) can be decomposed into the
"Whitney cubes" in the same way as it is done for the domain G with respect to
the Euclidean metric in the Whitney extension theorem (see [10]).

Let G be an open set in R™. Then there exists a collection of closed
cubes Qk with sides parallel to the axes and with the following properties:
(a) G = UQk.

(b) The interiors of the cubes Qk are mutually disjoint.
(c) The distance d(Qk,F) of @ to F satisfies

dia.kak = d(Qk,F) = 4diam Qk' keN.
(d) If anov # @, then

1

z diam Qk < diam Qu < 4 diam Qk.
(e) Let £ be a fixed number satisfying 0<e<1/4, and let Q; denote the cube
which has the same center as Qk but is expanded by the factor 1+e. Then each

point in G is contained in at most N0 cubes Q;, where NO is a fixed number.
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*
Furthermore, anQu # @ if and only if anQv # 0.
In connection with the decomposition, we shall use the following
notation:

%, is the center of Qk

k

lk is the diameter of Qk,

a, is the length of the side of Qk (thus,’ Lk = \/rTaI).

Now, consider a partition of unity: Let ¥ be a C®-function satisfying
O=y=1, ¢Y(x) = 1 for xeQ and yY(x) = 0 for x#(1+£)Q, where Q demﬁ:es the cube
centered at the origin with sides of leng/th 1 parallel to the axes. f)efine \bk

by wk(x) = n/l((x—xk)/ak), and P, by q:k(x) =‘wk(x)/)y1k(x), x€G. Then <pk(x) =0
: k

for xeo;, M <pk(x) =1 on G, and it is easy to show that for any multi-index J
k

J =13l

(2.3) |D wk(x)l = AJ(diam Qk) .

Using the equality (2.1) we can rewrite the property (c) in the following
way
(c’) diam Qk = doc,G(Q ,8G) = 4 diam Qk.

Note that if er;, then
(2.4) da,G(x’aG(x) ~ ‘diam Qk
and

: — #*

(2.5) da,G(Qk’aGtx) ~ diam Qk'

As usual, the symbol ~ denotes equivalent quantities. Furthermore, if yeaGa
and eri:, then

da’G(y.pk) H da'G(y,x) + da,G(x,pk),

where pkeaGa is a point ‘f‘or which da,G(Qk’BGa) = da,G(Q ). Hence, according

K’ Pk
to (2.4) and (2.5), for yeBGa and er; we have
(2.86) da’G(y,pk) = Cd(x,G(y'X)'

where ¢ is a constant.

Let {f(‘J): | jl=k} be a collection of functions defined on BGa. We define

the value of an extension operator extk on the collection (f(‘J)} as follows:

(5 f(O)(x), x€dG_,
(2.7 ext, ({£ 7)) =
Z'P(x,pi)tpi(x), xeG,
i
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where P(x,y) is the polynomial giving the "Taylor expansion” of the function f

with respect to the point yeaGa, i.e.

(s)
Pooy) = T o Wies (v0)°, xet, yest,

T

Isl=k '
and pieBGa is the closest point to the cube Qi' The symbol }’ indicates that
the summation is taken over all cubes whose distance to aGa does not exceed 1.

It is easy to see that the value of the extension operator ext, on the

k
J)

(J)) }) extending -the function

collection {f
- f(0)

is a function f = extk((f

£ onto G .
o

Assuming

f.(j+s)(y)

— (ia(x)—i“(y))s, %, yeG,,

we have f‘(‘j)(x) - Pj(x,y) = RJ.(x,y), x,yeaca. We denote Po(x,y) = P(x,y) and

Ro(x. y) = R(x,y).

LEMMA 2.1. Let a, beé)Gcc and xeG. Then

R_(b,a)
P(x,b) - P(x,a) = T ———(x-1 (b))%
|sTsk S a
or, in the general case,
RJ+S(b,a) <
P.(x,b) - P .(x,a) = '} ; (k-1 (b))~
. J lgesisk o *

Using properties (a) - (e) for the points xeQ., we have
= fw _ Ve | 1/ | * 1/a
(2.8) &(x) = [x-8G| = da‘G(x,acaJ da,G(Qk,aGa) da’G(Qk,aGa) .
As in the Whitney type extension theorem [10] it is enough to consider
points xeG such that 8(x)=c where c is a positive constant. Further, we assume
that |If |[Lip(¢,8G )l = 1.

Now, we shall prove the following inequalities:

(1) |f(x) - P(x,2)| = Ad (x,a)e, xeC , aedG ;

«, G o o
) . PRI .
(i1) £ - P xa)l s A3, o(x.2) 131, xeB_, acoc,, |31sk;
(1i1) 129601 = A 1)k '
(iv) e 601 = a0 P, xeq, 1] = kel

~ _ 1/a
We recall that da,c(x,y) = da,G(x'y) .

Inequality (i) is valid for points xeaGa with the constant A = 1 because
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feLlp(t,aGa). Supposing xeG, 3(x)sc, we have

f(x) - P(x,a) = (P(x,pl) - P(x,a))«al(x).
i

Applying Lemma 2.1 we obtain

£ - Plxoa)l = T A 8 81E )l
Islsk 1 “

where the inner sum is taken over all cubes Q1 such that xéQ;. According to
(2.5) we have do:,G(Pi’a) s cda'c(x,a). Hence the inequality (i) holds.
To prove (ii) we write

f(‘j)(x] =7 (a/ax)‘j(P(x,pl))vi(x) + other summands.
i

Since (a/ax)JP(x,pi) = PJ(x,pi), in the above mentioned way we obtain the
result for the first summand.

As Z(a/ax)Jvi(x) = 0, the summands of the type
i

(2.9) PJ_s(x,pi)(a/ax)svi(x),
|s|>0 and slsji, i=1,2,...,n, are equal to

s
(2.10) )1_‘, (PJ_s(x.pi) - PJ_s(x,a))(alax) 9y (x).

Using (2.3) and (2.8), we prove the inequality (i1).

The estimate (1ii) for points xeG, 8(x)sc, follows from (ii).

If we differentiate the function.f(x) in {xeG: 6(x)501), we obtain that
f(‘j)(x) is equal to a sum of expressions of type (2.9). As |Jj]| = k+1, then

necessarily |s|>0 because P, (x,p,) = 0. Therefore, f(‘j)(x), 1Jl = k+1, is the
i

J
sum of type (2.10), where aEaGa is the closest point to x. By Lemma 2.1
(2.3), (2.8) and (2.8), we obtain an upper bound for the sum of type (2.10):
3 & Jl+isl| -Isl , k-1
Ada'c(pi,a) 8(x) s A’3(x) .
The inequality (iv) follows.
From (i) and (ii) we obtain

LRI

(2.11) IRJ(x,y)l = Aaa,c(x,y)
at points xeG and yeBGa. Let us prove now that inequalities (2.11) are valid
at x,yeG. The main case is when the segment L connecting the points x and y,
is contained in the domain G. First we suppose that the length of the segment
L is less than the distancg from the segment L to the boundary 8G. By the

Taylor formula and the use of (iv) we obtain the bound
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|IR,(x,y)| s C sup |V, i‘(z)llx-ylkﬂ—l‘jI sC Ix-ylkﬂ-l“” sup cs(z)z—k_l.
3 k+1
zel z€eL

Hence in this case 8(z)>|x-y|, zel,” and the result immediately follows:

IRj(x,y)| = clx-y| 191 < caa'c(X.y)t'ldl.

Now we consider the case when at some point zeL we have &(x)s|y-x|. Then’

there exist points z‘el and y’eaGa such that da G(z’,y’) = da G(x,y). Hence
’ . ’
da,G(y ,X) S Zda,G(y'X) and da'G(y ,y) s Zdu’c(x.y). According to Lemma 2.1

and the lnequality (2.11) we have

P )) _ - " ,
IRJ(x,y)I 1£Y7(x) PJ(x,y) PJ(x.y ) + PJ(x,y )
R, _(y',y)
s |R,(x,y) + (et (v S
J ly+slsk «
~ - ~ -1 3l-1s]~
< Adu,c(x’yl)e '\“ + E da'G(y’y') 'JI lSIda,G(x'yI)ISI

| J+s|=k

~ 2~
E Ada,c(x,y) I‘”.

The last case concerns the situation when the points x and y cannot be
connected by a segment contained in the domain G. The proof in this c;se is
fully analogous to the previous one as long as there exist two points z‘’eG and
yeaca for which we have

da’G(z’,y') s da’c(x.y) and max{da'G(z’.x),da'c(z’,y)) = da'G(x,y).
Therefore, da,G(y"X) < Zda’G(x,y) and da'G(y’,y) < Zdu'G(x,y) what coincides

with the above situation. Thus we have proved the theorem. []

2.3. Above mentioned questions in Zygmund spaces
Here we prove analogues of theorems 2.1 and 2.2 for the Zygmund spaces

Ak(G). keN, G is an arbitrary domain in R". Let (f“j: |jl=k}, be an element of
the space Ak(G) and {fJ v | jI=k}, veN, collections of functions corresponding
(f‘J) according to the definition of the space Ak(G). From (1.5) and (1.8) for

| JIsk-1 we have

If‘j'"(x)l = If‘J,v(x) - fJ(X),I + lf‘J(x) - fJ'l(x)I + lfj,l“‘” < 2M,

and for |Jj|=k,
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|£ l'(x)l = Ifj,v(X) - f 1(x)l + 'fJ,l(X)I

Js J»

v
= iEjzlf“j.i(x) - fj,i—l(x” + Ifj,l(x” = (v-1)2M + M = 2Mp.

Hence the following relations are valid for all xeG and veN:

(2.12) | (x)] = 2M, |J| = k-1,

fJ,v
(2.13) lfj,y(x)l = 2Mv, |Jl = k.

In the same way as in Section 2.1 we show that eleméents of the collection

| jl=k} for every fixed velN possess extensions onto G by continuity

{fj,ll: 1

1,G)‘

It 1is natural to consider restrictions of extensions of the jets

with respect to the metric space (Gl'd

{f,j o | jl=k}, veN, to the 1-boundary ::iG1

values of the element {f‘J: | jI=k} from the space Ak(G) on the l-boundary of

domain G. To give an exact sense to the concept of the trace let us define the

of the domain G as the boundary

function class Ak(aGl). Jets (fd:

are called elements of the class Ak(aGl) if there exist

|‘j|sk»1) of functions defined on the

1-boundary aG1

collections (fj o 1 jl=k}, veN, of functions defined also on 8G, such that the

1
following conditions hold for x,ysaclz

(2.18) £, - £ G0l = e VI ey s,
(2.15) 15,00 = £, GOl = MM 21, ) = Kk,
(2.16) IR];,v(x,y)l = szdl.c(x,y)k+1—|‘j’, v=1, |jlsk,
.17 £, 1001 = M, |J]sk.

Here RIE v(x,y) are defined by

£, (
J+s,v

v)
(1,01, () 4 Rl‘;'v(x,y).

£, (x) = T
v | j+s]=k

The norm lIflAk(acl)ﬂ of the jet £ = {f 1 jl=sk-1} is defined as éhe infimum of

¥
all constants M such that the conditions (2.14) - (2.17) hold for some
collection {fj,v: 1 jl=k}, veN.

Let G be an arbitrary domain in IRn. We define a trace operator by the
following way: Elements of a jet {fj,v: 1Jl=k}, veN, corresponding to a
function f = {fJ)EAk(G), extend to G by the continuity and then restrict to
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651. As a result we have jets satisfying conditions (2.14) - (2.17) which form

an element of the space Ak(aGl) because, according to (1.5) and (2.14),

lim fj’v(x) = f.(x), |Jjl=k-1,

J

for any x€d8G,. Hence we obtain the following result:

1
THEOREM 2.3. Let G be an arbitrary domain in R®. The trace ka of fGAk(G) is
an element of the space Ak(acl), and the trace operator

T, A(G)—>AK(86,), ken,
is bounded with the norm not exceeding 1.

The characterization of traces of the Zygmund classes given by Theorem

2.3 is reversible.

THEOREM 2.4. Let G be an arbitrary domain in R™. Then there exists the bounded
extension operator

EA%(86,)—>ANG), keN,
in the sense that 'I'kol-:k is the identical mapping.

Theorems 2.3 and 2.4 have been proved jointly with Yu. Bojarskii and

formulated in [11].

Proof. Let {Qk} be the above mentioned decomposition of the domain G into
cubes and {(ok) be a corresponding partition of wunity. Here it is more
convenient for us to use a double numeration for the Whitney cubes. For veN,

cubes Qvi are the cubes from the collection {Qk} such that

2701 ¢ Gian Q ;= 277, Further, let {, ;} be the partition of unity

corresponding to the cubes (Qu 1} and let P, 15361 be the closest point to the

cube Qu.,i'

Let us consider an element {f‘j: | jlsk-1}, of the space Ak(acl) and,
according to the definition, a sequence of jets (f‘j o | jl=k}, veN,
corresponding to it. We set

£, s
Pv(x,y) = ¥ -—’—S—,——(x—il(y)) for xeG, y€dG, .
|s|=k )
The extension operator Ek is defined on the jet (fj)eAk(aGI) in the

following way:
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o«

T Yo ,(X)P (x,p ,), xeG,
E () (x) = { =1 T IR

f(x), xea? ,

where for fixed peN the summation 1is taken over all i such that

2-(p+1)

< diam Qu i = 2M. Let F(x) denote the function Ek((f }). We define

J
the approximating sequence {Fp: velN}, corresponding to f, by

p=r+1 i

[ v
Y e (XP(xp, ,)+ T Yo .(XIP(x,p .), x€G,
FV(X) = { i v M, i p=1 1 M, M M, i
f (x), xedG,,
v 1

where the summation over i is the same as above.

Let PJ v(x,y). 1 Jl=k, yeacl, x€G, denote the polynomial Pv(x,y) if =0

and the polynomial DiPu(x.y) if 0<|Jl=k, respectively, where Dx denotes the
differentiation with respect to x. In this notation, we have

f (y)
Py,uy) = T Y T et (90)°.

I J+si=sk

Further, we consider a function {f } whose norm is equal to 1.

J

LEMMA 2.2. Let a,bedG xeG and let the conditions d1 G(a‘b) s c,Ps

1

p hold with some constants c c Then there exists a constant

dl,G(x,a) s c, 1" Sar
c>Q such that
IPJ,”(x,ai - PJ'v(x.b)I = czvpk+1—|3|. | Jl=k.
Pr oo f. According to Lemma 2.1 and the inequality (2.18) we have
P, ,(xa) - By (bl = | RJ*S'::a'b)(xa;l(a))s

| j+s|=k

’ v k+1-] J+s| Is| Kk+1-] | v
= clczz dl,G(a’b) dl,G(X'a) =< cp 2

0

LEMMA 2. 3. Let the points a,bedG X€G, satisfy the conditions

1’
d1 G(a,b) = 2-", d1 G(x,b) = 27" with pzv. Then the inequality

-v(k-1jl)

|P I)(x,at) - P ’“(x.b)l = c2

J»
holds for every j, |Jjlsk-1.

J

Proof. Let us estimate the difference
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(b) (®)]

~ Tyesu
s

IfJ-ts,u

(b) - Py (xb)| 5§ PEENOILL

J | J+s]sk

Using the assumption of the lemma and (2.14) we estimate the summands on the

'PJ.D

right hand side with | j|sk-1 from above by

2V r I 3ss) sl v k-191)
To estimate summands with |[j+s| = k we use (2.15) and
caHISlghy o pvIsl o pvlk-lID)
Applying Lemma 2.2 we obtain the result
IPJ,v(x,a) - PJ.“(x,b)l < IPJ'v(x,a) - PJ.v(x,bH + IPJ.'v(x.b) - PJ'“(x,b)I
< cz—u(k‘ldl). 0
In the folowing lemmas, we shall show that the functions FJ(X) = DJF(x).
|JIsk-1, and the approximating sequence {F, (x): |Jjlsk}, veN, of functions

\j’v

FJ v(X) = DJFV(X), possess the properties (1.5) - (1.8).

LEMMA 2.4. If xe&Gl, then

lim F, (y) =f, (x), |Jjlsk, veN.
Jrv J.v
dl’c(x,y)—)o
yeG1
If xe&l, then
(2.18) IF 00 = Fy 001 = 2V jisicet, e,

Proof. If xeG, t:l1 G(x.n‘)(‘,l) > 277, then F(x) = Fv(x) by the construction.

~(T+1) <

Let xeG be a point such that 2 d1 c'(x,aGl) = Z—T, where t2v. Then the

values F (x) and F v(X) are equal to a finite sum whose summands have the

J Js
3 (2N
form D c)“, i(x)Pml“(x,p“’ 1) and D qo“' l(x)Pm’v(x.p“' i)' m+¢ = j, respectively,

and also the cubes participating in the sum satisfy

c12-(t+1) s diam Q'1 1 s c22_1, where the constants <y and c, do not depend

on X. The number of the summands is bounded by a constant which is independent

of x. Now, using Lemma 2.3 and the fact that ¥} (pn i(x) =1 in the domain G,
[THS S

we obtain the estimate

13
IFJ(x) - FJ’v(x)l s Y ¥ ID wuil(x)lle'“(x,p .1) - Pm‘v(x.p '1)|

m+é=J p, 1 s B
> 2vlelz—u(k—lml) < Cz-u(k-ljl).
m+8=j

s c
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If xeacl and |j| = 0, then the estimate (2.18) reduces to (2.14). To show

(2.18) for |j|>0 we prove that F l)(y)—>f' V(x) as d1 G(y,x)—-)O. Let us write

J» J»

the difference F, u(y) - f u(X) in the form’ _

J» Js

Ziwu,i(y)(fj,v(pu,i) - fJ,v(X)) + other summands.
K,

The estimate (2.6) yields dl,G(x’pu.l) = Cdl,G(x'y)' The function fJ,v is

continuous on BGl and so the explicitly expressed summands tend to zero as

d1 G(x,y)—-)O. Since J Dawn 1(y) = 0 for yeG the other summands can be written
, m i ,

in the form

D fm+s,v(pp,i)

o
D%, s (E, (o, ) = £ G0) + 2

) ty -1, 0%
M1 17,1

where &m = j, |£]>0. Using the estimates

0<|m+s | =k

ly - 11(p"'i)1 = dl’G(y.g“") = Cdl,G(x'y)

and an analogue of (2.12) for functions of Ak(acl) we obtain that in this case

the summands tend to 0 as d; G(x,y)—>o, as well. 0

LEMMA 2.5. Let |j| = k and xeG. Then

(2.189) [y ) = Fy Gl 2tV pvmt.

J»
The proof is completely analogous to that of Lemma 2.4. The difference
Fj ”(x) - Fj l)(x) is estimated by a finite sum of terms among which there are
expressions of the form wu,i(fj,u(pp,i) - fj,v(pv,i))' We can estimate them by

(2.15). In the proof of (2.19) for xe€dG, we use an analogue of (2.13) for

1
fun;t;ons from Ak(BGIJA 0
LEMMA 2.6. There exists a constant A>O such that the inequality

le'l(x)I = A
holds for every xeG and 1 Jjl=k.
Pr oo f. Since the number v in the expression for Fl(X) is equal to 1 we can

write the functions F 1(x) in the form

Js

Faad = Lo 00 00py )
(2.20) .
+ ¥ Dp . (x)P_ _(x,p .)-P . (x,b)).
L+m=j 1 m, 1 Ml m, 1
—~ |2]>0
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The first sum is estimated by
£ (p, I (e
J+s.;‘ w, i e+ atELID

S
! Ix-1,(p, ;)1

£, (p )|+ T
J 11 0<| jrs] =k
where we used 2.17. To evaluate the second sum we use Lemma 2.2. Note that

cotlelomplk=Iml) _ o-ulk=131) _ 0

LEMMA 2.7. Let xeC and |Jj| = k+1. Then

|F v(X)I s c2¥, veN.

J»

Pr oo f. Since Pm I)(x.pu 1) = 0 for |m|>k we can write (cf. (2.20))

) e
Fj.v(X) = ¥ % ¥ DY i(X)(Pm,v(x’pu,i) - Pm‘v(x.b))

wr i L+m=]j s
|1 2]>0
v e
+ Y LT Y D .(xX)P_ (x,p ,)-P  (xb))
p=1 1 +m=] M, 1 m, M, 1 m, p
|121>0 .

where beaGt is the closest point to x. Estimating the summands on the right
hand side by Lemma 2.2 we obtain the upper bound cp |tl2Vpk*17Iml _ oV on
the first summand and cp_ICIZ“pk+1_|m| = c2¥ for the second one. D

LEMMA 2.8. Let xeG and ae€dG,. Then

»
Foar(x) - v Kk+1-] 4] -
IFJ,V(X] PJ,v(x,aH s c2 dl'G(x,a) » 1dl=k.

Pr oo f. Using the definition of functions Fv and Lemma 2.2 we obtain

IFJ,v(X) - PJ’"(x,a)I = “Ziwu,i(X)(PJ,u(x’pp,i) - Pj’v(x.a))

14
+ ¥ rD pp,i(x)(Pm’v(x,p“’i) - Pm'"(x,b))

Lam=j p, 1
| ¢]>0
v k+1-]j|
= c2 dl,G(x,a) ,
where beéGl is the closest point to x. ]
LEMMA 2.9. Let x,yeG and let_Rs V(x,y) be the remainders in the expansion of
F!+s u(y) s -k
the function F (x) = T >~ (i,(x)-i,(y))” + R, (x,y). Then
J.v : s! 1 1 J,v
| j+s|=k
k < oY k+1-1]j| "
IRJ,y(x,y)l = c2 dl’G(X.y) ., 1dl=k.

Pr o o f. The case when xedG, yedG,, reduces to (2.16) as Fj l'(y) =f., (y)

1 J»v

(see Lemma 2.4). The“case xe€G, yeBG1 is considered in Lemma 2.8.

16 Krbec, Analysis 4 engl.
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It remains the case Xx,ye€G. As in Theorem 2.2 we need to study three cases
of the mutual disposition of points x,y with respect to the boundary 8G. The
main situation is when the segment L connecting the points x and y is
contained in the domain G. First let the length |x-y| of L be less than the
Euclidean distance from L to the boundary 8G. By the Taylor formula and
Lemma 2.7 we obtain

IR k+1-] j|

k+1-]J|

v(x ¥ sc sup 1V, ., F (2)] |x-yl
zel

v
k+1Fy s c2 dl'c(x.y)

3,

Now, let us consider the second case when dl'G(z,acl) s |x-y| for some
point zeL. Then there exist points z’elL and y’eacl such that for any veN we
have d1 G(z',y’) E d1 G(x.y). According to Lemmas 2.2 and 2.8 we obtain the

following bound for the remainders RJ (x,y):
- - ’ .
IR 3, l,(x vl = IF x) PJ'v(x,y) PJ'v(x,y )+ PJ.v(x,y )

k+1-1J| k+1-1 ]I

s c2¥ d (x y) + czvdl.c(x,y')

v k+1-]J|
s ¢c2 dl'G(x.y) .

When it is not possible to connect the points x, y by a segment LcG we

can find points z’eG and y‘e:SG1 such that
P i .

dl,G(z V') s dl.G(x.y), max (dl,G(z 'X)'dl,G(z y)} = dl'G(x.y).

Therefore,
’ ‘
v x) s 2d; o(xy),  dy oy',y) S 2d; ((x,y),

which coincides with the above considered situation. Thus, for the Jet
{F

: |JIsk-1} and for the approximating sequence of the Jjets {(F 1 1=k},
J

3o
veN, the conditions (1.5) - (1.8) hold. Note, that (1.5) is Lemma 2.4, (1.6)

is Lemma 2.5, (1.7) is Lemma 2.9. It means that the Jet (FJ:
to the space Ak(G). From Lemma 2.4 we have also that TkoEk is the identical

| JIsk-1} belongs

operator. Theorem 2.4 is proved. 0

3. Extension of differentiable functions

An inner a-metric dm G(x,y), 2€(0,1], in a domain GeR™ is called locally

equivalent to the a-metric da(x.y) = Ix-yla if there exist numbers r>0 and M>0
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such that for all points x,yeG with |x-y|<r the inequality
(3.1) da‘c(x.y) = Mix-yl
is valid. Let us indicate by

loc d“(x,y)

4, gx¥) _

that the metrics da G(x,y) and da(x,y) are locally equivalent in the domain G,
il

and let Ma(r) be the least constant for which the inequality (3.1) holds under

the condition |x-y|<r, x,yeG. Let us also set

(3.2) M“ = lim Ma(r).
r->0
(3.3) r, = sup {r: Ma(r)<w).

It follows at once from the definition that the inner a-metric da’c(x,y) is
locally equivalent to the a-metric da(x.y) in the domain G if and only if the
value Ma is finite,

Let us consider two seminormed spaces F(G) and N(R®) of functions defined
on a domain GeR™ and on the Euclidean space Rn, respectively. The mapping
ext:F(G)—>N(R™) is called the extension operator if ext(f)|G= f for all
functions feF(G) and

lext] = sup {Ilext(f‘) ING™M I IEfFee) 7 m(c)} <
feF(G)

THEOREM 3.1. Let G be a domain in R™ and let IEIR+ and k=0,1,... be such that
k<&sk+1. Put a = &-k. If the inner a-metric da G(x.y) is locally equivalent to
the a-metric da(x,y) = lx—yla in G, then there exist linear bounded extension
operators
ext,: Wi —wARD for teN
ki » ©
and
1 & N,
extk:H (G)—H (R") for &N.
© «©
The norm of the extension operator satisfies the estimate
e
IIextkll = 7[ma.x{Ma,1/r'a)] B
where the constant y does not depend on the domain G and the numbers

Ma’ r, are defined by (3.2) - (3.3).

Proof. Let ¢ k and a satisfy the assumptions of the lemma. According to

Theorem 1.1 and Proposition 2.1 we have the coincidence of spaces
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' ~ L ~
W .(G) = Lip(t,Ga) for teN and H (G) = Llp(l,Ga) for £N.

Therefore, assuming that da G(x,y) (x,y) in the domain G, it suffices to

loc da
prove the existence of a bounded extension operator

ext, :Lip(¢,E )—Lip(L, rRD)

such that extk(f)lG = flc for an arbitrary function fELip(Z,ﬁa).

To prove this we have to introduce .the space Lip({,F), where F is a
J),

closed set in R (see [10]). The elements of Lip({,F) are Jets {f 1 J1=k}
consisting of bounded functions such that f(O) = f and
(J+s)
(3.4) £ x) = W 0en® + Ry
| j+sl=k ’
where
(3.5) £ s M, IR (x,y) = Mix-y1 519 % yer, 151k

The norm of an element of Lip({,F) is equal to the smallest value M for which

(D) = DIe(x) 1n

the inequalities (3.5) hold. It is easy to verify that f
G = IntF.

According to a Whitney type extension theorem (see [10]) there exists a
linear bounded extension operator

ext, :Lip(¢, F)—Lip(&R"),

whose norm does not depend on the closed set F<R". To prove Theorem 3.1, it is
sufficient to establish the embedding
(3.8) i:Lip(l,Ea)——)Lip(E,G—)
such that for each function fELip(e,Ea) the relation (if)(x) = f(x), st,.ls

valid. The desired extension operator will be the superposition of mappings in

the diagram
i ext.
up(e,c”;a)—"—nip(e.c')———n.ip(e,a 5.
Thus, ext, = (e'ﬂkn):Lip(e.ﬁa)—al_ip(e,m").
To find an upper estimate for the norm of the operator extk it is
sufficient to find the contribution of the geometry of the space Ga to the
norm of the operator i, since

(3.7 llext, oill = Nill llext,|I

and the norm of operator ext

X does not depend on the domain G.
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Now let us prove the boundedness of the embedding (3.6). Let
||f|L1p(C,EaH| be equal to 1. Since |£9(x)| = |DIE(x)] = 1, xeG, |JjIsk, it
remains to prove the inequalities

(3.8) IR, (x, V)1 = clx=y1 1!, x, yec.

(&)

Indeed, it follows from (3.8) that the functions f extend by continuity to

G, thé extended functions satisfy the inequalities (3.5) for all points x,yeG,
and the embedding (3.6) is bounded.

To prove (3.8) we denote by ro the largest number such that for points
X, y€G, 0<lx—yl<rm, we have the inequality

(3.9) da,c(’"y) s mM |x-yl|, meN,

(J)

Since |f Y'(x)|=1, the estimate

(3.10) IR;(x, )] = [c(n,k)/rrff'lji)llx—ylHJ'
for |jl=k, in x,yeG, Ix-ylzrm, follows from the expansion (3.4). If x,yeG,

lx—y|<rm, then we use (3.8) to obtain the estimate

=130 131

(3.11) IRy, = 3, () = (mMa)‘|x-y|

J
The inequalities (3.10) and (3.11) together yield the estimate (3.8).

It follows that the embedding (3.6) is continuous. If |j| = 0, the upper
bound of-the embedding is obtained from (3.10) and (3.11). As to the norm of

the operator ext, = extkoi, we have the following estimate:

k
13
(3.12) HextkH =y max(mMa,l/rm),

where the constant ¥y depends only on n and ¢ To finish the proof of
Theorem 3.1 it remains to minimize the inequality (3.12) over all ro such that
aa’G(x.y) = mMulx-yI, meN, x, yeG, 0<[x-y|a<rm.

In the case of the Sobolev spaces (a=1) Theorem 3.1 was proved by another
method in [12].

There exists a relation between the a-metrics resulting from the
reverse Minkowski inequality (see [7]): Given any numbers a and B, O=sasBsl,
the inequalities

1/ 1/
(3.13) dl.G(x,y) =d, .(x,y) B < da’c(x,y) a,

B,G

hold for every x,yeG. It follows that the relation da G(x,y) da(x,y) is

loc
stronger than the relation dB G(x,y) 8¢ dB(x,y). For given numbers « and B,
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2

O<a<Bsl, we can construct an example of a domain GcR such that

dB’G(x,y) 1oc dB(x,y). but da’c(x,y) 16 da(x,y) does not hold.

The method of the extension of differentiable functions explained above
can also be applied to other spaces. First, we consider the Z2ygmund space
Ak(G). keN. Before formulation of an exact result we adopt the extension
method for the spaces Ak(G). The first step is to exfend the functions feAk(G)

onto G, so that they belong to the space Ak(El). The class I.k(al) consists of

1
the Jets {f

|JIsk-1} and their approximating sequences {f 1 31=k}, veN,

J 30

such that the conditions (1.5) - (1.8) hold at all points X, yet Indeed in

1
Section 2.2 we have proved the following

PROPOSITION 3.1. Let (fJ), |JIsk-1 be a collection of functions from the class
Ak(G). Then every fJ can be extended in a unique way onto El‘ the extended

functions belong to the space Ak(al) and preserve the norms.

Now we shall find conditions for the existence of an extension operator
(3.14) Ext, : A& )— A RD)

such that the equality Extk((f Nx) = fo(x), x€G, holds for each function

J

from the jet {f 1 JI=k-1}.

5
To prove (3.14) we need the space Ak(F), keN, where F is a closed set

in R™. Jets (fJ: | jIsk-1} of functions defined on the set F are called

elements of the class Ak(F) if there exist collections {f | JI=k}, veN, of

3o
functions defined on F, such that the conditions
(3.15) 1.0 - £, ()] s PRI ey sk,
J J.v
- M=V =
(3.186) |fJ’”(x) fJ,“(x)I = M2" 7, pzvzi, |jli=k,
f (y) (e _
@an e, - 5 5 eS| s e TR0 ey <a27T, ba,
PV sl S
1 jIsk, Tzvzl;
(3.18) (x)] =M, |JlI=k

15,1
hold for every x,yeF. The norm IlflAk(F)lI of the Jjet (fJ: 1jlsk-1} is equal to

the smallest constant M such that the conditions (3.15) - (3.18) hold.
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THEOREM 3.2. Let F be a closed subset of R". Then every element
f = (va: |JIsk-1} of the -space Ak(F) can be extended to a function
Bctk(f)el\k(kn). The function 'Extk(f‘) is an extension of the jet
£f = {f.: |j|sk-1} such that for every |Jj|sk-1 the restriction of the partial

J

derivative DJExtk(f) to the set F is equal to f Moreover, the extension

¥
operator Extk:Ak(F)—>Ak(Rn) is bounded and it may be chosen in such way that

the function Extk(f') is smooth outside of F.
Proof of the Theorem 3.2 is completely analogous to that of Theorem 2.4.[]

REMARK 3.1. In [8] the authors define the space Ak(F) in a different way
setting T = v in the formula corresponding to (3.17). Nevertheless, both
classes, if considered on Euclidean space Rn, coincide with the Zygmund space
H:(Rn). Our proof of Theorem 3.2 is based on the Whitney method, as well, but
we use another construction of the extension operator ext:Ak(F)—>H:(Rn).

To prove the existence of the operator (3.14) it is sufficient to
establish the embedding
(3.19) 1: A48, ) —ANE
such that the relation (if)(x) = f(x), xeG, holds for every function !‘eAk(El).
Then the desired operator is obtained as the superposition of operators in the
following diagram

1 Ext,
M@ )—srO—n tr 3.
Indeed, Ext, = (Ext,o1): (G )—>A"RD).

To find an upper bound for the norm of the operator Extk it 'suffices to
know how the norm of the operator i1 depends on the geometry of the domain G.
The boundedness of the operator (3.18) may be obtained by the geometric
restriction to theb domain G. To See its character it suffices to compare
conditions (1.5) - (1.8) and (3.15) - (3.18), in particular, (1.7) and (3.17).
We claim that

(3.20) 1im sup {dl G(x,y)/lx-yl: X, yeG, 0<|x~y|sz_"} = MO < .
v>® ’

Let voeN be a number such that the condition
(3.21) dl'G(x,y) = 2M0|x-y|

holds for |x-y|=2 7, vav.
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Let a Jjet {f |jl=k-1} from the class Ak(al) have the norm equal to 1

J:

and let {f |jIsk}, veN, be the corresponding sequence of Jjets such that

3.
the conditions (1.5) - (1.8) hold with the constant M = 2. The condition
(3.21) implies that
-T
dl'G(x,y) = 2M0|x-yl = 2M02
for every x,yeG, |x-y| = Z_T. and tzvzuo. We take the least natural number N
* N+

such that 2 Oa = 2MO where a is the number from (3.17). Let us consider the

sequence of jJets (gJ v |jl=k}, velN, of functions defined on the domain G such

that gJ,v = for V>N+v0 and gj,v =f for v = 1,2,...,N+v_. Then

f‘j,v—N—vo J.1 o]

for the Jet {fj: 1Jl=k-1} and the corresponding sequence of Jets
{gJ v 1JIsk},” veN, conditions (3.15) - (3.18) hold with a constant M

depending on k, n, M, and v, only. The validity of the conditions

0 4]
(3.15) - (3.18) at the inner points of the domain G implies that there exist
extensions by the continuity to thé'closure G of both the functions from the
Jet (fJ: |jl=sk-1} and of the functions from the sequence of the Jets

(fJ v 1 J1=k}, veN. Therefore, the extended Jets belong to the space Ak(G),
Thus, we proved the following assertion which is due to Yu. Bojarskii and

the author.

@

THEOREM 3.3. Let G be a domain in R™ and let the condition (3.20) hold. Then
for any kel there exists a bounded extension operator ‘

Ext : AS(G)—>HXRD).
K o

The idea of the geometric approach to the spaces of Holder functions
defined on a domain G can be also applied to spaces with the integral metric.

Let £ be a reai number, &e(k,k+1), k =0,1,..., a =48k and 1 s p,q = =,
We say that a function f belongs to Aﬁ,q(c) if f has generalized derivatives

of the order k and the finite norm

L J
Ie]A” (Gl = ¥ IDF|L_(G) I
| P, d | 5T=k P

. /py1/9
© ) IR.(x,y)|P a
. g Ratelana ” huldl dxdy] ,
131=k{p=0 da(x’y)

x, yeG v
da,G(x,y)SZ

(3.22)
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where the remainders RJ(x,y) are defined in Section 1.1. For q = « the norm is
modified in the usual way. We note that Ai m(G) = Llp(e,Ga). If G is an
(e,8)-domain [13] then the space Aé q[G) coincides with the Besov space
[

Bp q(G) (see the theorem below).

THEOREM 3.4. Let G be a domain in R" such that the following conditions hold:
(1) da,G(x,y) 16¢ ¥yl
(i11) there exist numbers c,p0>0 such that

|B(x,p)nG| = ¢ |B(x,p)], xeG, 0<p<p0.
Then there exists a bounded linear extension operator
(3.23) ext,: AL (c)—>s (R“).

¢7p.q

In particular, if G is an (e,8)-domain, then the spaces A (G) and B: (G)

coincide.

Pr oo f. We indicate the main steps of the proof. The condition (i) of the
theorem permits to pass from the norm (3.22) to a similar one with [x-y| in
place of d—a G(x,y). The condition (ii) implies that the measure of the

boundary 8G is equal to O and so at the end we pass to the space Aﬁ q(5). In

[14] the Whitney type extension theorem is proved establishing the existence

A (G)———)Be

I p q([Rn). The corresponding diagram

of the extension operator ext,

has the form o
ext
14

Y o—sat G—sB t ® Y.
P.q P.q P.q

The superposition of the operators in the diagram is the desired extension
operator.
To prove the last assertion we note that én (e,8)-domain satisfies both

conditions (i) [15] and (ii) [16]. THerefore there exists not " only the

extension operator (3.23) but also the extension operator

ext:B: q(G)——)Bé q(fRn) [16]. Thus, if - both the restriction operators

rest: B (IR )——)Ae (G) and r-est:Be (Rn)——>Be (G) are béunded then the
p.q P.q P.q !

spaces AP (G) and B (G) coincide. a
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4. Necessary extepsion conditions for differentisble functions
4.1. Metric extension conditions

THEOREM 4.1 [9]. If there exists an extension operator
1 1,0, _
extl.wp(G)—awp(IR ), p>n (a = 1)
or
ext, H(G)—H RD), tpon (@ =< 1),
p p
then the inner a-metric da G(x.y) is locally equivalent to the a-metric
du(x,y) = Ix—yla in the domain G and
Jext || = kP
[ «

where K does not depend on the domain G.

In the case p = @, the related topics can be found in (12, 15].
In the same way we prove the following

PROPOSITION 4.1. Let G be a domain in IRn.

If there exists an extension
operator

ext:H;(G)-—aH;(Rn). n<psw,
then the inner metric dl'G(x,y) is locally equivalent to the Euclidean metric

|x-y| in G. -

4.2. Regularity condition

It is well known that the space W:;(Rn) is embedded not only into the
sﬁace of continuous functions but also into the Holder space. In what follows
we ﬁeed only two embeddings:

P, q
With the help of the embeddings (4.1) we prove

(a.1) 1:w§(m")—>ni’“"’m"). 1:8¢ —>Hi‘“/"tm‘5.

PROPOSITION 4.2. Let x,yeR"™ and let fp>n. Let few;(lkn) be a function such that
f(x) =1, f(y) = 0. Moreover, if &n/p > 1, let f be equal to 1 in some

neighbourhood of the point x. Then the estimate

1 £, n
———— = 7l W R
-1/
fx-y| “VP P
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is valid, where the constant y is independent of x and f. The analogous result

holds for functions feB; q(R“).

P r o o f. The boundedness of the embeddings (4.1) yields the estimate

2.2) i EEPPEY | s uf|w:(n“)m
If &n/p is a fractional number, then
IRy (x, )|
1 0 L-n/p, .0
s s Ie[EE™PERM ),
- &-n/|
Ix-yl 5P 7 ey VP ©
since |‘Ro(x,y)| = |f(y) - f(x)] = 1 by the assumption.

If &n/p = m+l is an integer then the left hand side of (4.2) 1is

estimated from below by

2
1a°V g(z)]
1 h ' m +1 . .n
< sup E uflﬂm (RO,
Ix-ylmi N n ThT ©
, 2€R
h»0
where g(z) = f((x-z)/|x-z|). Let us note that
1829 g(2)|
inf supn—ml-—z:B)O.
€ h,zeR
h=0

where the infimum is taken over all functions equal to 1 in some neighbourhood
of the origin and vanishing at some point of the unif sphere S(0,1). The proof

is finished. []

A domain' G in R" is said to be regular at a point xeG if there exist
positive constants 8 = 8(x) and 7 = y(x) such that for any ball B(x,r),
0<r<8(x), the inequality
(4.3) |B(x,r)nG| = 7|B(x,r)|

holds. The domain G is said to be regular if it is regular at every point xeG.

THEOREM 4.2, Let G be a domain in R" and let p>n. If the inequality

Af(u)-f(v)] 1
(4.4) sup '——————_—— = clifjw_(G)|l
u, veG, Iu-vl‘l n/p P
uzv

holds for every function fEW:)(G), then the domain G is regular.
Proof. Let w:R——NRn be a smooth function supported in the unit ball, and
such that Osp(x)=1 for every xeR™ and ¢ is equal to 1 in some neighbourhood of

the origin. Let us fix points xeG, yeG and put r = |x-y| and
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f(z) = p({z-x)/r). Then f(z) =1 in a neighbourhood of x, f(y) =0 and
|Vf| = a/r. The inequality (4.4) yields

1BGx,r) |17 _ 7
r 1-n/p

-1,
- = cUIF|L (@ + ar Cliag, 1y [L (@D

s c(1B(x,r)nGI VP + ar ! |B(x,r)nGI /P).
Comparing the first and the last term we obtain
|B(x,r)nG| = c_p(a+r)_p|B(x,r)|.
Thus for the domain G the inequality (4.3) is satisfied with the constants

7 = ¢ P(a*1)"P and 8=1 independent of x. 0

The last theorem has a generalization for the space w:;. The formulation

and the method of the proof is obvious from the following assertion.

THEOREM 4.3. Let G be a domain in R" and let n/8 < p < w. If there exists the

bounded extension operator ext:Nﬁ(G)——)Wé(Rn), then the domain G is regular.

Proof. Let xeG, yeG and let f be the function from the previous proof
corresponding to points x and y. Then f(z) = 1 in some neighbourhood of x,
f(y) = 0 and IVefI = b/r‘l. Using the inequality

ﬂext(f)[Wé(Rn)H < flext]] "flwﬁ(G)H
and Proposition 4.2, we obtain

IB(x,r)Il/p - 7
¢-n/p

X = cllext (£) [WERM) |
P
r Ix-yl
= cllextll[1B(x, )61 P + br ¢ |B(x, r)nG| 17P1.
It follows that
IB(x,r)nGl = ¢ P(berd) PIB(x,r)].
Thus, we have proved the regularity of the domain G, namely (4.3) holds with

the constants 7 = ¢ P(b+1) P and & = 1 independent of the point xeG. 0
An analogous result is valid for the Nikol’skii-Besov spaces.

THEOREM 4.4, Let G be a domain in R™. Suppose that fp>n if 1sp<w, 1<6=w, and
pzn if 1sp<w, 6 = 1. If there exists a bounded extension operator

ext:Bé e(G)——>B£ 9(D?n), then the domain G is regular.
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