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BOUNDARY BEHAVIOUR OF DIFFERENTIABLE FUNCTIONS AND RELATED TOPICS 

Sergej K. Vodop'yanov 

Novosibirsk, USSR 

A description of restrictions of differentiable functions to sets FcLRn is 

a classical topic in the function theory arising from papers by Lebesgue [11 

and Whitney [2]. There is a numerous bibliography concerning the Sobolev 

spaces W£(IRn), telN, the NikoFskii spaces H£(LRn), the Besov spaces B s (LRn) 
P P P.q 

and the spaces of Bessel potentials or the Liouville spaces L (IRn), teLR . 

(Note, that W£(LRn) = L€(IRn), £eLN, and H£(LRn) -= B£ (LRn), telR . ) 
P P P P>°° • 

In this paper we study the boundary behaviour of differentiable functions 

from the Sobolev classes W (Rn) and the Nikol'skii classes H (ff?n) for p -= n. 
P P 

The domain of definition of the function classes in question is an arbitrary 

connected open set in the Euclidean space Rn, na.2. Without considering 

regularity properties of the boundary of the domain we need to introduce new 

concepts and a language for the description of the boundary behaviour. We 

establish that boundary values exist always but we shall understand them in 

a special sense. 

Our method is based on a new equivalent normalization of the Sobolev and 

Nikol'skii spaces in domains which include geometrical characteristics of the 

domain in an explicit way. The geometry of the domain is determined by the 

modulus of continuity defining the function space. The inner geometry of the 

domain reflects the substance of the studied problem and represents suitable 

tools to its resolution. 

The first application deals with traces (boundary values) of functions on 

the boundary of the domain of definition. The boundary can be obtained by 

means of the completion of the domain with respect to the corresponding 

metric. The elements of the function space are extended by continuity to the 

boundary and these traces belong to some function space. It is proved that 
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such a characterization of traces is reversible. 

The second application concerns some necessary and sufficient 

extendibility conditions for differentiable functions across the boundary of 

the domain of definition. They are formulated in terms of the equivalence of 

the corresponding metrics in the domain and in the surrounding space for p - oo 

and involve some conditions on the measure in spaces with integral metrics. 

1. Geometric normalizations in spaces of differentiable functions 

1.1. Sobolev and Nikol'skii spaces 

For an arbitrary ae(0,l] we define the inner a-metric d p(x,y) on 

a domain GcR as follows 

da G ( x , y ) = inf £ lxi~xi-ila> 
y i=l 

where the infimum is taken over all broken lines y consisting of segments 

[x. ,,x.]cG, x_ «= x, x = y. It is evident that the 1-metric coincides with 
1-1 I u m 

the infimum of the lengths of rectifiable curves connecting the points x,y€G, 

and therefore it is the inner metric of the domain in the commonly accepted 

sense (see [3]). We denote by G the metric space (G,d _ ) . 

a . a,C 

The elements of the function space LipU, G ), &=R+ = {x: x>0>, *fc(k,k+l], 

k = 0,1,2, are L -functions f:G—>(R, whose weak partial derivatives, 
CO • r-

denoted by DJf, also belong to L for |j|--k. The norm in Lip(£,G ) is defined 

by 

r , |R (x ,y ) | , 
| |f|LipU,G )H = I hDJr\llQ)\\ * sup -1 rTJr\, 

I j l - ^k i °° d a ) G ( x , y ) ^ l j l J 

where d ^,(x,y) = d _ ( x , y ) , a = l-k and 
a, u a , Lr 

j+s 
DJf(x) = I L _ J l y l ( x - y ) s + R.(x,y) , 0slJI.sk. 

IJ+s|sk S> J 

We use the usual multi-index notation, j = ( j . , j ~ , . . . , j ), s = (s , s , . . . , s ), 
i c. n i cL n 

s s s 
s! - Sl!s2!...sn!, |j| = J , * V - + J n

 and ̂  = XlV-'V 

Two function spaces coincide if the operator of embedding of one of the 

spaces into the other is a bounded isomorphism. 
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THEOREM 1.1. Let G be an arbitrary domain in Rn. The following function spaces 

coincide: 

LipU,G ) « W£(G) for leM and LipU,G ) * H*(G) for fcW. 
(X 00 0C 00 

Here the space W (G) and H (G) is a member of the scale of the So bo lev 
r 00 00 

spaces W (G) [4] and the Nikol'skii spaces H(G) [5, 6], respectively. Let us 

recall that the elements of wf(G), teW, p*[l,oo] and H*(G), teR , te(k,k+l), 
p p + 

k -= 0,1,2 p€[l,oo] are L -functions f whose weak partial derivatives, 

denoted by D**f, also belong to L for |j|--£ and I j|--k, respectively. The norm 

in W£(G) and in H*(G) i s defined by 
P P 

| f |v£(G) | - ||f|Lp(G)|| + ||v/|Lp(G)|l 

or 
| |AVf |L(G) | | 

If |H;(G)I -- If |L (G)| • sup -JL* E , 
p p |h|a 

respectively, where 7, - {D^f: jj| « £> and a • £-k, 

v ( x ) 
* g(x+h) - g(x) if the segment [x,x+hlcG, 

0 otherwise. 

The Nikol'skii spaces H (G) belong to the scale of the Besov spaces B (G), 

q€[l,oo], as well, namely, 

H£(G) « Bl (G) [see 5, 61. 
P P»» 

P r o o f of Theorem 1.1. If f€LipU,G), teLN, then any point x€G is the 

center of some ball B in which all the derivatives of the function f of the 

order £-1 are bounded and satisfy the Lipschitz condition. This implies that 

the function f has bounded generalized derivatives of order I. Thus the 

I 
boundedness of the embedding LipU,G )—>W (G), feN, is p roved . The continuity 

tt 00 

of the embedding 

LipU.G )—->H*(G), teN, 
a co 

is evident . 

Now we shall prove the continuity of the converse embedding . Let us 

consider any function from of the Sobolev or the Nikol'skii space with the 

norm equal to 1, The estimates |DJf(x)|-sc, | j | - - £ , x€G, are proved in [51. 
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Therefore it remains to establish the inequalities 

(1.1) |RjCx.y)| -5 cJda>GCx.y)*"
,JI, 

where a = ̂ -k, k€lN, k<£sK+l, |j|-sk and c ~ n ( k ~ ' ^ . We shall prove the 

estimate (1.1) by induction. If |j| =- k, then R.(x,y) =- DJf(x) - D^(y). We 

have the following estimate for the difference of the derivative DJf, |j| « k, 

along a broken line consisting of segments [ x . , , x , ] c G , i • l , . . . , m , xQ •• x, 

, . m , , HI 

(1.2) |DJf(x) - DJf(y)| £ £ |DJf(x.) - DJf(x. . ) | s %\x. - x. J*, 
1=1 * 1'1 1=1 * x~l 

where a » 1 if f€W£(G), and a = £-k if f€H*(G). Now minimizing the right hand 
00 00 

side of (1.2), we obtain the estimate 

(1.3) |RjCx,y)| = |DJf(x) - DJf(y)| =s <*atGCx,y) - d ^ g C x . y ) ^
1 Jl )/a, 

where |j| = k and a depends on the choice of the function space made in the 

above mentioned way. 

The inequalities (1.3) constitute the basis for the induction. Let us 

suppose that the estimate (1.1) with c . =- n ,J' is proved for all j such 

that Osp<|j|sk, p a- 0,1,.. . ,k-l. For any multi-index j, |j| =- p, we shall 

estimate R.(x,y), where the points x,yeG are fixed. Since the value R.(y,y) in 

question is equal to 0, it is 

(1.4) IRjCx.yJl' * sup jlVRjU.y), Elajl: €<EG, <-a>G«;,y) * d
a>G(*>y)

 + 4 , 

where the segments a. form a broken line with endpoints x and y, for which 

£,ai,(X * da,G(x'y) + e' 

Since 

|VR.(€,y)l2= E IR1+kc*,y)l
2 

J |j+k|=p+l J K 

and 

p.. i-( i: i^f /*-[-< , c(x.y)*.] l /-
by the reverse Minkowski inequality (see [71), we obtain from (1.4) that 

m ( M ^ 1/2 (k-(p+l))/2 -~ , ,l-(p+l) -j , , 
| R j ( x , y ) | . s n n y da G(x'y) da G ( x , y ) 

(k-p)/2 -r . Л-p 
n d

a,G
( x
'

y )
 * 
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This proves the inequality (1.1) for every J, |J| = p. [] 

Another application concerns some necessary and sufficient condition for 

an extension of differentiable functions beyond the b o u n d a r y . They are 

formulated in terms of equivalence of the corresponding metric in the domain 

and in the surrounding space for p = oo and they involve certain conditions on 

the measure in spaces with integral m e t r i c s . 

1.2. Zygmund spaces 

The case of Sobolev and Nikol'skii spaces studied in Section 1.1 differs 

I 
essentially from the case of the spaces H , telN, considered here. If I - 1 

then a function f belongs to H (R ) if and only if it has finite norm 
00 

1 n l-&(x)| 
||f|Ĥ (LRn)|| = sup |f(x)| + sup —-n

TFj . 

x€lRn x€LRn 

0*h€(Rn 

2 
As usual, A, f(x) = f(x-h) - 2f(x) + f(x+h). For an arbitrary telN, we 

define 

l-V?DJf| 
H £ d R n ) = Jf: f e H ^ t l R 1 1 ) , ||f |H*(LRn) || = ||f |H£~1(IRri) || + £ sup * < col 1 - I . I • |J|=£_1 ^ n Jh| J 

0*h€LRn 

Here we discuss the natural definition of the Zygmund spaces in domains. 

Our definition is in fact a successive realization of the concept that the 

norm of a function in a domain has to take into account the inner geometry of 

the domain. 

Let g be an open set in IR and k be a natural number. We say that a Jet 

{f.: |J|-sk-l} of functions defined on G belongs to the class A (G) if there 

exist collections {f. : |J|=-k}, ueIN, of functions defined on G, and a 

constant M>0 such that for all points x,y€G the following conditions hold: 

(1.5) |f .(x) - f. v(x)\ * M2" y ( k~ I J | ), v*l, IJl-sk-1, 

(1 .6 ) | f . vU) - f. (x) |-s M2M"y, fifci/sl, | J | = k, 

(1 .7 ) If , (x) - E - ^ ~ ^ ( x - y ) S | 5 M2ud1 r ( x , y ) k + 1 " I J I , | J | s k , * - l , 
I J'V | J+s | sk S- I 



(1.8) ,|f x ( x ) | s M, I J I . s k . 

The norm ||f|Ak(G)|| of the Jet f = {f.: |J|^k-l} is equal to infimum of 

all M satisfying conditions (1.5) - (1.8) with some {f. y: | j|-sk}, v€LN. ;. 

THEOREM 1.2 [81. For aii k€(N the spaces Hk((Rn) and Ak((Rn) coincide. 

2. Boundary values of different!able functions 

2.1. Trace operator 

Recall that k = 0,1,2,... and £e(k,k+lj. Let us consider the metric space 

G =- (G,d r ) , a€(0,1]. Let G be the completion of G with respect to the 

metric d -,. It is easy to verify that any function of LipU, G ) extends by 
a, Lr a 

the continuity to the completion G . Indeed, if IJI - k, then 

|f ( J )(x) - f ( J ) ( y ) | -s R . ( x , y ) -s Md r(x,y)„ where f ( J )(x) = D J f ( x ) . Hence we 

J a, Lr 
have an extension by continuity to G of the functions f J (x), |J| - k. Let us 

now suppose that the functions f J (x) » D Jf(x), ps|J|<k, p = l,2,..,,k, are 

already extended to G . The extension to G of the functions f J (x) = D Jf(x), 
a a 

|J| -= p-1, follows from the expansion 

f(J)(x) - f(J)(y) = I f- jiZicx-y)8 + R.(x,y) 
|J|<|J+s|sk S> J 

and the inequalities |R,(x,y)| s Md r(x,y)
 (£"(p_1) )/a, |x-y|a ^ d r(x,y), j a, u a, u 

hold. As there exists a unique extension of the functions from LipU,G ) to G 

it is natural to introduce the function class LipU,G ), consisting of the 

Jets {f J (x): |J|-sk} defined on G as the extension by continuity of 

collections from LipU, G ) with respect to the metric d ,.(x,y). 
a a, Lr 

In order to describe the class LipU, G ) in an invariant way, let us 

define the mapping i :G —> G as the extension by continuity of the identical 

mapping on G. This extension exists by the inequality 

da,G ( |i (x) - i (y)| <• d r(x,y). The elements of the class LipU,G ) are the Jets 
a a a, Lr a 

{f • U l - k } , consisting of th3 continuous functions defined on G . The norm 

in the space LipU, G ) is 



r (U IR.Cx.y).- i 
(2.1) ||f|LipU,GA | | - I jsup | f U J ( x ) | + sup 1——1 

* IJ|-*k<- a a , G ( x , y ) 

where the supremum is taken over a l l points x,yeG , a • £-k, and 

f ( J ) ( x ) -- I •£ ~ - -M(i (x)-i (y ) ) S + R .(x,y) . 
|J+s|-sk s . a a J 

It is easy to verify that f ( J ) ( x ) « D^f(x) for x«=G, |J|-sk. 

Thus we have proved the following assertion. 

PROPOSITION 2.1. Let G be an arbitrary domain in Rn. Then there exists a 

natural isometry of the spaces LipU,G ) and Lip(c,G ): any element of 

LipU,G ) possesses a unique extension to G with respect to the inner 

a-metric d 0(x,y) which is an element of LipU, G ). 
tt, u a 

Further, the set SG =- G \G will be called the a-boundary of the domain 

G. It is natural to consider the restrictions of the elements of LipU,G ) to 

6G as boundary values or traces of the functions from LipU,G ) to the 

a-boundary of the domain G. To give a rigorous definition of the concept of 

the trace we denote by LipU,3G ) the function space whose elements are Jets 

if : Ul--k>, consisting of continuous functions defined on (3G ,d n) with 

cc ct, Li­

the finite norm (2.1), where the supremum is taken over all points x,y€3G . 

The trace operator tr.:Lip(c,G )—->LipU,5G ) is defined as the superposition 

of the isometry i:LipU,G )—>Lip(c,G ) given in Proposition 2.1 and the 

restriction of the elements of LipU,G ) to 3G , which are contained in the 

class LipU, dG ). 

Let us formulate the above as the following theorem. 

THEOREM 2.1 [9]. Let G be an arbitrary domain in Rn. Then there exist the 

bounded trace operators 

t r . : W £ ( G ) — » L i p U , 3 G J , a = 1, teLN, 
C 00 1 

tr0:H
£(G)--->Lip(c,aG ) , a = £-k, c<s(k,k+l), k =- 0 , 1 , . . . , 

c oo tt 

defined by the continuity with respect to the metric d ^. 

a, u 



2 . 2 . Extension operator 

The characterization of the trace of the functions from the Sobolev and 

Nikol'skii classes given by Theorem 2 . 1 , are r e v e r s i b l e . 

THEOREM 2.2 (91 . Let G be an arbitrary domain in Rn. Then there exist the 

linear bounded extension operators 

ext, :LipU,aG)—»W£(G), k * £-1, teW, 

e x t . :LipU,dG )—>H£(G), te(k,k+l), k -- 0,1 a -- £-k, 

k a a> 

such that tr.oext. is the identical mapping. 

P r o o f . The mapping i : (G ,d _)--->(G, |x~y| *)_ has the following property: 

If UcG is a convex set, then 11 (x) — I (y)|a * d .,(x,y) for every x.yeU, 

a a a, Lr 
Hence, we have the equality 
(2.2) d r(x,aG) =- \i(x) - 3G|a, x€G, 

a,u a 
where 

аnd 

ji
a
(x) - ðG|a • inf ||x-y|a; yєðGІ 

W'*̂  -
 lПf

 {
d
a,G

(x
'У

):
 У

б G
a}' 

This relation implies that the space G = (G.d _) can be decomposed into the 

a a, u 

"Whitney cubes" in the same way as it is done for the domain G with respect to 

the Euclidean metric in the Whitney extension theorem (see tAO]). 

Let G be an open set in LR . Then there exists a collection of closed 

cubes Q
k
 with sides parallel to the axes and with the following properties: 

(a) G - UQ
k
. 

(b) The interiors of the cubes Q. are mutually disjoint. 

(c) The distance d(Q
k
,F) of Q

k
 to F satisfies 

diam Q
k
 -s d(Q

k>
F) s 4diam Q

k
» k€LN. 

(d) If QknQy * 0, then 

j diam Qk -s diam Q -s 4 diam Q.. 

(e) Let e be a fixed number satisfying 0<e<l/4, and let Q. denote the cube 

which has the same center as Q, but is expanded by the factor 1+e. Then each 

point in G is contained in at most NQ cubes Q,, where NQ is a fixed number. 
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Furthermore, Q AQ * 0 if and only if Q AQ * 0. 

In connection with the decomposition, we shall use the following 

notation: 

x, is the center of Q, 
k k, 

L is the diameter of Q , 

a is the length of the side of Q (thus, L = l l i T ) . 

Now, consider a partition of unity: Let tp be a C -function satisfying 

Osifrsl, yKx) = 1 for xeQ and 0(x) -- 0 for xg(l+e)Q, where Q denotes the cube 

centered at the origin with sides of length 1 parallel to the axes. Define 0, 

by *&k(x) = tf>((x-xk)/ak), and <pk by ?k(x)
 =i 0k(x)/J>k(x), xeG. Then V>k(x) -= 0 

for xgQ, , Yi *>if(
x^ s 1 on G, and it is easy to show that for any multi-index j 

k 

(2.3) |DJyk(x)| * A (diam Q k ) ~
I J l -

Using the equality (2.1) we can rewrite the property (c) in the following 

way: 

(c' ) diam Q. as d n(Q, ,6G) £ 4 diam Q, . 
K a, Lr K K 

Note that if xeQ , then 

(2.4) d n(x,dG ) ~ diam Q. 
a,G a k 

and 

(2.5) d _(Q* 3G ) ~ diam Q, . 
a, Lr K a K 

As usual, the symbol ~ denotes equivalent quantities. Furthermore, if y€9G 

and xeQ , then 

da.G(y'Pk) S d«,G(y'x) + da,G ( X'V' 

where p. edG i s a p o i n t f o r which d CQ ,8G ) = d (Q , p ) . Hence, a c c o r d i n g 
K a a , L t K a a , L r K K 

t o ( 2 . 4 ) and ( 2 . 5 ) , f o r y<=3G and xeQ* we have 

( 2 . 6 ) d a , G ( y ' P k ) * c d a , G ( y ' x ) ' 

where c i s a c o n s t a n t . 

Let {f J : Ul=sk} be a c o l l e c t i o n of f u n c t i o n s de f ined on 3G . We d e f i n e 

t h e v a l u e of an e x t e n s i o n o p e r a t o r ext on t h e c o l l e c t i o n {f } a s f o l l o w s : 

( 2 . 7 ) e x t k ( { f ( J ) } ) = 
f f í 0 ) ( x ) , x€dG , 

a 

E ' P ( x , p )? ( x ) , X€G, 



where P(x,y) is the polynomial giving the "Taylor expansion" of the function f 

with respect to the point ye<3G , i.e. 

(s) 
p(x,y) - E f

 s [ y ) ( x - i
a (y^ s > xeG> y*d%> 

\s\sk 

and p.e3G is the closest point to the cube Q.. The symbol £' indicates that 

the summation is taken over all cubes whose distance to dG does not exceed 1. 
a 

It is easy to see that the value of the extension operator ext on the 
collection <f J > is a function f = ext ({f ^ >) extending the function 

f = f(0} onto G . 
a 

Assuming 

f(J+s)(y) s ~ ' ' ' 
P.Cx.y) - E s T^-(i (x)-i (y))S, x,y€G 
J |J+s|-sk s. a a a 

we have f J (x) - P.(x,y) = R.(x,y), x,yedG . We denote PQ(x,y) = P(x,y) and 

RQ(x,y) = R(x,y). 

LEMMA 2.1. Let a,be3G and xeG. Then 
1 a 

R (b,a) 
P(x.b) - P(x.a) = I ——j—(x-i (b))s 

|s|-sk s- a 

or , in the general case, 

R.. (b,a) 
P,(x,b) -P.(x.a)- £ -^S-i (x-i (b))S. 

3 J IJ+s|-sk S' a 

Using properties (a) - (e) for the points xeQ , we have 

(2.8) 5(x) = |x-ac| = d r(x,ac ) 1 / a ~ d r(a ,ac ) 1 / a ~ d r(Q*,ac )
1 / a 

a,G a a,G k a a,G k a 

As in the Whitney type extension theorem [10] it is enough to consider 

points xeG such that 6(x)-sc where c is a positive constant. Further, we assume 

that ||f|LipU,8G ) || = 1. 

Now, we shall prove the following inequalities: 

(i) |f(x) - P(x,a)| * Ad r(x,a)
£, xeG , aeSG ; 

a, G a a 
(ii) |f(J)(x) - P.(x,a)| s Ad r(x,a)

£~ i J I, xeG , ae3G , |j|*k; 
j a,G a a ' ° 

(iii) |f(J)(x)| £ A, | j | . s k ; 

(iv) jf(J)(x)| -s A6(x)£~k~\ xeG, |j| = k+1 . 

We recall that d r(x,y) = d ,,(x,y) 
a, G a, Lr 

Inequality (i) is valid for points xedG with the constant A = 1 because 
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f€LipU,0G ) . Supposing x€G, 6(x)-«c, we have 

f(x) - P(x,a) * J (P(x,p У - P(x,a))y (x) . 
i 

Applying Lemma 2.1 we obtain 

|f(x) - P(x,a)| s I J:d
afG
(p

i
,a)

^
•"

,s,
d

atG
(x,a)

,s,
, 

where the inner sum is taken over all cubes Q. such that xeQ.. According to 

(2.5) we have d̂  Ap. ,a) s cd „(x,a). Hence the inequality (i) holds. 
Ot, Lr 1 (X, Lr 

To prove (ii) we write 

f
(J)
(x) - £ (5/ax)J(P(x,p ))<p Ax) + other summands. 

i l l 

Since (a/9x)JP(x,p.) « P.(x,p.), in the above mentioned way we obtain the 

result for the first summand. 

As %(d/dx)^<p.(x) » 0, the summands of the type 
i l 

(2.9) P (x.p^O/axJ^U), 

|s|>0 and s.-Sj , i-sl,2,.. . ,n, are equal to 

(2.10) J (Pj.8(x,p1) - P, s(x,a))(a/ax)
s^(x). 

Using (2.3) and (2.8), we prove the inequality (ii). 

The estimate (iii) for points xeG, 5(x)--c, follows from (ii). 

If we differentiate the function f(x) in {xeG: 8(x)sc >, we obtain that 

f J (x) is equal to a sum of expressions of type (2.9). As |j| • k+1, then 

necessarily |s|>0 because P.(x,p.) « 0. Therefore, f J (x), |j| =- k+1, is the 

sum of type (2.10), where aeaG is the closest point to x. By Lemma 2.1, 

(2.3), (2.6) and (2.8), we obtain an upper bound for the sum of type (2.10): 

ri _<p,.e,>IJ" + 'B'a(*)-|»l SA'SM1-*-1. 
<X, Lr 1 

The inequality (iv) follows. 

From (i) and (ii) we obtain 

(2.11) |R,(x,y)| -« Ad ptx.y)*""10'1, |j|--k, 
J CC, Lr 

at points xeG and ye3G . Let us prove now that inequalities (2.11) are valid 

at x.yeG. The main case is when the segment L connecting the points x and y, 

is contained in the domain G. First we suppose that the length of the segment 

L is less than the distance from the segment L to the boundary 8G. By the 

Taylor formula and the use of (iv) we obtain the bound 
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|R,(x,y)| s C sup |V,+1f(z)||x-y|
k+l*~,JI s C |x-y|k+1~IJI sup 6(z)l~k~l. 

J zeL K * Z€L 

Hence in this case 5(z)>|x-y|, zeL,n and the result immediately follows: 

|Rj(x,y)| s c|x-y|Hjl s c d ^ x . y ) * " 1 Jl. 

Now we consider the case when at some point zeL we have 6(x)-s|y-x|. Then' 

there exist points z'eL and y'eSG such that d _(z',y') s d „(x,y). Hence 

a a, I* a, u 
d «(y',x) s 2d^ 0(y,x) and d^ ^(y'.y) s 2d r(x,y). According to Lemma 2.1 
a, u a, u a, u a, u 

and the Inequality (2.11) we have 

|Rj(x,y)| - |f(J)(x) - Pj(x.y) - Pj(x,y') * Pj(x,y')| 

I R i + S
( y ' , y ) si 

* R.(x.y') + I -J--S-. (x-i (y'))s 

' J lj+s|=-k s* a I 

S A 5 « , G ( x , y / ) ' H J I +
 | J i | s k V G

( y ' y / ) ^ H J , H S , a a , G ( x , y / ) , S , 

s A d a G ( x , y ) ^ , J l . 

The last case concerns the situation when the points x and y cannot be 

connected by a segment contained in the domain G. The proof in this case is 

fully analogous to the previous one as long as there exist two points z'€G and 

y€3G for which we have 

da G ( z , y ) s da G ( x , y ) a n d m a x < d
a G

( z , x ) , d a G(z ,y)* s da G(x,y)* 

Therefore, d ~(y',x) s 2d ~(x,y) and d _(y',y) s 2d ,„(x,y) what coincides 
a, u a, u a„ Lr a,u 

with the above situation. Thus we have proved the theorem. [1 

2.3. Above mentioned questions in Zygmund spaces 

Here we prove analogues of theorems 2.1 and 2.2 for the Zygmund spaces 

A (G), keLN, G is an arbitrary domain in LRn. Let {f : |J|£k}, be an element of 

k 
the space A (G) and {f : |j|--k}, i>eLN, collections of functions corresponding 

<f.} according to the definition of the space A (G). From (1.5) and (1.8) for 

| j | . s k - l we have 

|f J y(x)| s |fJy(x) - fj(x)| + |fj(x) - fJtl(x)| + |f jCx)! s 2M, 

and for Ul-k, 
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|f J y(x)| -s |fJfI,(x) - fJ>x(x)| + |fJsl(x)| 

y 

-s J] |f (x) - f (x)| + |f (x)| * (1/-D2M + M s 2Mi>. 
• _.p J»•- J» •*- •*• J > ^ 

Hence the following relations are valid for all xeG and ye!N: 

(2.12) |f v(x)| -s 2M, |J| -s k-1, 

(2.13) |f v(x)\ -s 2Mv, |J| = k. 

In the same way as in Section 2. 1 we show that elements of the collection 

{f. : |J|-sk} for every fixed veJH possess extensions onto G by continuity 

with respect to the metric space (G ,d.. _ ) . 

It is natural to consider restrictions of extensions of the Jets 

{f : |J|-sk}, veIN, to the 1-boundary dG of the domain G as the boundary 

values of the element {f.: |J|--k} from the space A (G) on the 1-boundary of 

domain G. To give an exact sense to the concept of the trace let us define the 

function class A OG ). Jets {f.: |J|-sk-l} of functions defined on the 

1-boundary 5G are called elements of the class A (3G ) if there exist 

collections {f. : |J|-sk}, i>elN, of functions defined also on dG such that the 

following conditions hold for x,ye5G : 

(2.14) |f (x) - f y(x)| * M2" y ( k" I J , ), i/fcl, |j|-sk-l, 

(2.15) |fJ,y(x) " fJ,/a(x)| " mlX~V' ll-V~1, !JI = k' 

(2.16) |R^,(x,y)| -s mVd. r(x,y)
k + 1" I J I, i/fcl, |J|*k, 

J, v i, u 

(2.17) |f xix)\ -s M, |ji-sk. 

Here R. (x,y) are defined by 
J»f 

f 1+s y(y) s k 
f i vix) = -- ~ S;? (i^xM (y))8 + Rk (x.y). 

3,v |J+s|-sk S" l l 3,v 

The norm ||f|Ak(aG ) || of the Jet f = <f .: |J|-sk-l} is defined as the infimum of 

all constants M such that the conditions (2.14) - (2.17) hold for some 

collection {f. : |J|-sk}, i>€lN. 
j,y 

Let G be an arbitrary domain in OR . We define a trace operator by the 

following way: Elements of a Jet {f. : IJl^k}, i/eIN, corresponding to a 

k 
function f = {f .}eA (G), extend to G by the continuity and then restrict to 

236 



dG.. As a result we have jets satisfying conditions (2.14) - (2.17) which form 

k 
an element of the space A (dG.) b e c a u s e , according to (1.5) and ( 2 . 1 4 ) , 

lim f v(x) -= fj(x), IJI-sk-1, 

for any X€5G1. Hence we obtain the following result: 

- n k 

THEOREM 2.3. Let G be an arbitrary domain in R . The trace T f of f€A (G) is 

an element of the space A (8G.), and the trace operator 

Tk:A
k(G)—>Ak(aG1), k€W, 

is bcfunded with the norm not exceeding 1. 

The characterization of traces of the Zygmund classes given by Theorem 

2.3 is revers ib le . 

THEOREM 2.4. Let G be an arbitrary domain in fRn. Then there exists the bounded 

extension operator 

EL
<
:Л

k
(ŐG1)--->Л

k
(G). k€(N, 

in the sense that T.oE, is the identical mapping. 

Theorems 2 . 3 and 2.4 have been proved jointly with Yu. Bojarskii and 

formulated in [11]. 

P r o o f . Let {Q } be the above mentioned decomposition of the domain G into 

cubes and {q> > be a corresponding partition of unity. Here it is more 

convenient for us to use a double numeration for the Whitney cubes. For i>€(N, 

cubes Q are the cubes from the collection {Q } such that 

2 + < diam Qy i s 2~V. Further, let { ^ } be the partition of unity 

corresponding to the cubes {Q ,} and let p ^SG be the closest point to the 

cube Q .. 
v, 1 

k 
Let us consider an element { f . : |j|sk-l}, of the space A (dG ) and, 

according to the definition, a sequence of jets {f . : |j|-sk}, veIN, 

corresponding to it. We set 

f s u{y) 

P Cx,y) « E - ~ T — C x - i A y ) ) S for x€G, yeaG,.. 
V |shk S- l l 

The extension operator E, is defined on the jet {f .}eA (dG.) in the 
k j 1 

following way: 
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E
k
«

f j
Ж 

f Z fVl
( x )

V
X , P

M.i
)
' 

X ) = < U-1 i '*' f t-» 

*• f ( x ) , xedG . 

xєG. 

a
5 

where for fixed ueIN the summation is taken over all i such that 

2
-(u+l)

 < d i a m Q
 ^ _-u

 L e t F ( x )
 denote the function E ({f }). We define 

the approximating sequence {F : uelN}, corresponding to f, by 

F„(x> J.i F vi(x)pp(x'p»«.i ) + & p,..i ( x )vx-p»..i )'x e G-
f ( x ) , xedG., 

where the summation over i is the same as above. 

Let P
 y

(x,y). |j|-sk, yeSGj, xeG, denote the polynomial P (x,y) if j =- 0 

and the polynomial D^P (x,y) if 0 < | j | . s k , r e s p e c t i v e l y , where D denotes the 

differentiation with respect to x. In this n o t a t i o n , we have 

f
}

+
s »

( y )
 s 

p
i
 y

( x
'

y )
 " E -^rr—(*-iAy))s. 

3 > v
 Jj+sl-sk

 S
'

 1 

F u r t h e r , we consider a function {f.} whose norm is equal to 1 . 

LEMMA 2.2. Let a, b€^G1, xeG and let the conditions d. _(a, b) -s c,p, 
1 1»G 1 

d. _(x,a) -s c_p hold with some constants c,, c0. Then there exists a constant 
1, b C. 1 £. 

c>0 such that 

| P J y ( x , a ) - P J y ( x , b ) | -s c 2 V C + 1 H J l . Ul-sk. 

P r o o f . According t o Lemma 2 . 1 and the i n e q u a l i t y (2 .16) we have 

K, ( x-a ) - v - H - lIJi,att
Rj*',-!a'b)(xJii(a))'l 

* c1c22"dliG(a,b)
k+l-IJ+s|d1>G(x>a)

|s| s cpk+1-lJ'-". 

LEMMA 2.3. Let the points a,b€dG., x€G, satisfy the conditions 

d, ,~(a ,b) -s 2~V, d. _(x,b) -s 2~M with u-n>. Then the inequality 
1 , Lr I , Lx 

|PJ>y(x,a) - PJffl(x.b)| * c2"""
(k""IJ,) 

hoids for every j, | j|-sk~l. 

P r o o f . Let us estimate the difference 
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I P J . U . W - P . C X . W , - E | f ^ - ' C b ) , ; V M ( b ) ' l x . l ( b ) l i - i 
J'y J,fl |J+s|-sk s' l 

Using the assumption of the lemma and (2.14) we estimate the summands on the 

right hand side with | j|--k-l from above by 

c2-y(k+|j+s|)2-*i|s| s c2-u(k-|J|) 

To estimate summands with |j+s| - k we use (2.15) and 

c2-Mls|2M-^ s c7rv\s\ m ^--'(k-IJI) 

Applying Lemma 2.2 we obtain the result 

|Pj^(x,a) - Pj ̂ (x,b)| s* |PJu(x,a) - P J y(x,b)| + | P j ; u , ( x , b ) - Pj ^ ( x , b ) | 

s c 2 - ( k - | J | ) . Q 

In the folowing lemmas, we shall show that the functions F.(x) =- DJF(x), 

Ijl-sk-l, and the approximating sequence {F. (x): | j | - - k > , veUM, of functions 

F. (x) « DJF ( x ) , possess the properties (1.5) - (1.8). 

LEMMA 2.4. If xedG^ then 

lim F (y) -- f (x), | j | - s k , uelN. 
d 1 G ( x , y ) - > 0 J'y 3tV 

y«G1 

If xeG.., then 

(2.18) |Fj(x) - F vU)\ -s c2" v ( k" , J , ). |J|-flc-l, P€lN. 

P r o o f . If xeG, d. r ( x , a G , ) > 2~V, then F(x) « F (x) by the construction. 
i,\j i v 

Let xeG be a point such that 2 < d, _(xf5G.) -s 2 ~ T , where T-U>. Then the 

1 , l* 1 

values F.(x) and F. (x) are equal to a finite sum whose summands have the 

I I 

form D<p i^^m Jx.p j) and D <p i(x)Pm y(x>PM ^* m+£ =- j , r e s p e c t i v e l y , 

and also the cubes participating in the sum satisfy 

C..2 is diam Q . -s c22 , where the constants c. and c^ do not depend 
on x. The number of the summands is bounded by a constant which is independent 
of x. Now, using Lemma 2.3 and the fact that £ <p (x) = 1 in the domain G, 

M, i **' 

we obtain the estimate 

|Fj(x) - FJt„(x)| * J S l°'Vl<->MVMl».P„,l> "
 P
m.u

(X-PM.i}| 
•J M, 

E 2 
m+£--j 

s c j, j.ulílj.-r.ík-l.l) a c 2 - P ( k - U I ) # 
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If x€5G and ij| = 0 , then the estimate ( 2 . 1 8 ) reduces to ( 2 . 1 4 ) . To show 

(2 .18) for } J J >0 we prove that F. (y)-*f . (x) as d. _(y,x)-->0. Let us write 
J» V J,V I , Lr 

the difference F. (y) - f . (x) in the form', 

3C <p .(y)(f . (p .) - f. (x)) + other summands. 
^ *-»- J>v M.i J,v 

The estimate (2.6) yields d, r,(x,p ,) -s cd, ~(x,y). The function f. is 
i,Lr H , 1 -»<Jf J,V 

continuous on 8G. and so the explicitly expressed summands tend to zero as 

d, ^ ( x . y ) - ^ . Since V D <p Ay) s 0 for y€G the other summands can be written 
l.u 11, 1 

m, i ^ 

in the form 

^ ^ ' " M 1 " f- (x , ) + o<,„£, J ^ ^ ( y - ^(P^,)S' 
where £+m = J, |£ |>0. Using t he e s t i m a t e s 

i y - I . C P , . ^ ) ! s d
1 > G ( y . P M > 1 ' s c d

1 > G <*-y> 

and an analogue of (2.12) for functions of A (5G1) we obtain that in this case 

the summands tend to 0 as d r(x,y)->0, as well. [] 

LEMMA 2.5. Let |jj = k and xeG. Then 

(2.19) iF. (x) - F. vU)\ -- c2p 

The proof is completely analogous to that of Lemma 2.4. The difference 

F. (x) - F. (x) is estimated by a finite sum of terms among which there are 
J, \i J,v 

expressions of the form <p . (f . (p . ) - f . (p ..)). We can estimate them by r ju» i J,u M, - J,i> v,i J 

(2.15). In the proof of (2.19) for xeSG. we use an analogue of (2.13) for 

functions from A (<9G ). [] 

LEMMA 2.6. There exists a constant A>0 such that the inequality 

|F (x)| =s A 
J» 

holds for every xeG and \J|^k. 

P r o o f . Since the number v in the expression for F (x) is equal to 1 we can 

write the functions F. (x) in the form 

(2.20) 

F j . i ( x ) " - . V I ( X ) P J . I Í X , P I . . I ) 

° ß , i 

+ .- . DVl ( x ) ( Pm,l Í X' PM.l ) - Pm.l ( X' b ) )-
- m>o 
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The first sum is estimated by 

' " j l ' P . i ' 1 - - ' ^ ^ ^ ' ' i x - l ^ p ^ ) ! 5 .,,cyt--'-'> * A 
J'X ^ 0<|J+s|-*k S- - M.i 

where we used 2.17. To evaluate the second sum we use Lemma 2.2. Note that 

c2nm2-fi(iH.|) = c 2-M(kHJD s c > [ 

LEMMA 2.7. Let xeG and |J| - k+1. Then 

|F. (x)| -s c2y, ueLN. 
J,f 

P r o o f . Since P (x,p .) • 0 for |m|>k we can write (cf. (2.20)) 
m, v ji , i 

ғ
J>17

(x)= E î E Л <X)(P u.p 
°* џ>v i £+m=J ^ ^ 

) - P (x,b)) 
m, v 

\t\>0 

• E E E DVi(x)(P
m.M

(X-P
tx,l

)-Pm.M(X'b)) 

H=l i £+m=J ^ r r 

m>o 

where beSG. is the closest point to x. Estimating the summands on the right 

hand side by Lemma 2.2 we obtain the upper bound cp 2 p = c2y for 

the first summand and cp 2"p ' ' < c2 for the second one. Q 

LEMMA 2.8. Let xeG and aeSG.. Then 

IF «'(x) - P. (x,a)| < c 2 % r(x,a)
k + 1" , J I, |j|sk. 

J» v J, V I, V j 

P r o o f . Using the definition of functions F and Lemma 2.2 we obtain 

| F j . » ( x ) " p j , . ( x - a ) l - | ( £ . V i ( x ) ( p j , * ( x - , V i ) " p j , P ( x - a ) ) 

• E . E^M(x)(PM(x,p )-P (x,b))| 
£+m=j fx, i ^ » r-» i 
UI>o 

s c 2 ^ G ( x . a )
k + 1 - U I . 

where b€dG.. is the closest point to x. D 

LEMMA 2.9. Let x,y€G and let R (x,y) be the remainders in the expansion of 

Fi+s i;(y) s k 
the function F. (x) = £ V s>, ( i J x M J y ) ) 8 + RK (x,y). Then 

J,v |J+s|*k S ' l l J,U 

| R k
y ( x , y ) | -̂  c 2 y d 1 G ( x , y ) k + 1 " I J I , . | J | -sk. 

P r o o f . The c a s e when x€dG, y€5G , r educes t o (2 .16) a s F . (y) = f. (y) 

( see Lemma 2 . 4 ) . The case xeG, ycSG i s cons ide red in Lemma 2 . 8 . 
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It remains the case x.ycG. As in Theorem 2.2 we need to study three cases 

of the mutual disposition of points x,y with respect to the boundary dG. The 

main situation is when the segment L connecting the points x and y is 

contained in the domain G. First let the length |x-y| of L be less than the 

Euclidean distance from L to the boundary dG. By the Taylor formula and 

Lemma 2.7 we obtain 

|RJv(x,y)| s c sup |Vk+1Fy(«)||x-y|
k+1",,JI * c2*d1>c(x.y)

k+1~l Jl. 

Now, let us consider the second case when d, _(z,dG . .) -s |x-y| for some 
1 , VI 1 

point zeL. Then there exist points z'€L and y'edG. such that for any veH we 

have d. G(z',y') -. d. _(x,y). According to Lemmas 2.2 and 2.8 we obtain the 

k 
following bound for the remainders R. (x,y): 

|RJy(x,y)| - IFJiP(x) - PJ>y(x,y) - PJu(x,y') + PJ§I,(x.y')| 

s c2PdlG(x,y')
k+1-,Jl * c2vdlfG(x,y')

k+1"'^l 

^c2vd1G(x,y)
k+1-»^. 

When it is not possible to connect the points x, y by a segment LcG we 

can find points z'eG and y'edG, such that 

dl G
( z /' y / ) a dl G(x'y)' mSLX *dl G

(2''x),dl G ( 2 y)^ S dl G(x,y** 

Therefore, 

dj G(y',x) -s 2d1 G ( x , y ) , da G(y\y) -s 2&x G(x,y), 

which coincides with the above considered situation. Thus, for the jet 

{F.: |J| =sk-1 > and for the approximating sequence of the jets {F. : |j|-sk}, 

i>€fN, the conditions (1.5) - (1.8) hold. Note, that (1.5) is Lemma 2.4, (1.6) 

is Lemma 2.5, (1.7) is Lemma 2.9. It means that the jet {F,: lj|=sk-l} belongs 

to the space A (G). From Lemma 2.4 we have also that T.oE. is the identical 

operator. Theorem 2.4 is proved. Q 

3. Extension of differentiable functions 

An inner a-metric d ,-,(x,y), a € ( 0 , l l , in a domain GcR is called locally 
a , Li 

equivalent to the a-metric d ( x ,y) = |x-y| if there exist numbers r>0 and M>0 
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such that for al l points x.yєG with |x-y |<r the inequality 

(3.1) d\ r ( x , y ) s M|x-y| 
a, u 

is v a l i d . Let us indicate by 

d
«,G

( X
'

y )
 loo V

X
'

У ) 

that the metrics d Лxty) and d (x,y) are locally equivalent ìn the domain G, 
a, Lr a 

and let M (r) be the least constant for which the inequality ( 3 . 1 ) holds under 
a 

the čondition |x-y|<r, x.yєG, Let us also set 

(3.2) M » lim M (r), 
a
 r->0

 a 

(3.3) r
a
 » sup <r: M

a
(r)<oo>. 

It follows at once from the definition that the inner a-metric d „(x,y) is 
tt, u 

locally equivalent to the a-metric d (x,y) in the domain G if and only if the 

value M is finite, 
tt 

Let us consider two seminormed spaces F(G) and N(tR ) of functìons defined 

on a domain GcR and on the EuclІdean space R , respectively. The mapping 

ext:F(G)—->N(R
П
) is called the extension operator if ext(f)| =-f for all 

functions fєF(G) and 

||ext|| -- sup (||ext(f)|N(RП)| | ЦflFЧOlf1: feF(G)l < oo. 
fєF(G) L J 

THEOREM 3.1. Let G be a domain in Rn and let £єR+ and k--0,1,... be such that 

k<*!--k+l. Put a = í-k. If the inner a-ínetric d «(x,y) is locally equivalent to 
tt, Lr 

the л-metric d(x,y) » |x-y| in Q, then there exist linear bounded extension 

operators 

ext,,:W
г
(G)—»W€(RП

) for teN 
K oo oo 

and 

ext, :H
г
(G)-—>H£(RП

) for Ш. 
k 00 00 

The norm of the extension operator satisfies the estimate 

||ext
k
l| a ylmax{M

a
, l/ra>]

£, 

where the constant y does not depend on the domain G and the numbers 

M , r are defined by (3.2) - (3.3). 

P r o o f . Let I, k and a satisfy the assumptions of the lemma. According to 

Theorem 1.1 and Proposition 2.1 we have the coincidence of spaces 
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W£(G) = LipU,G ) for £e(N and H*(G) '- LipU,G ) for &IN. 
oo <x oo a 

Therefore, assuming that d r(x,y) ~ d (x,y) in the domain G, it suffices to 
0C.> vjr XOC (X 

prove the existence of a bounded extension operator 

ext :LipU,G )—->Lip(£,LRn) 

such that ext. (f) |_ = -*L f o r a n arbitrary function f€LipU,G ). 
K 'Lr *U tX 

To prove this we have to introduce ..the space LipU, F), where F is a 

closed set in LRn (see [10]). The elements of LipU,F) are jets {f J : Ijl-sk} 

consisting of bounded functions such that f = f and 

(3.4) f(J)(x) = £ I (yl(x-y)
S + R.(x,y) 

U+s|<k S> J 

where 

(3.5) |f(J)(x)| -< M, |R.(x,y)| < M|x-y|£",JI, x,yeF, |j|<k. 

The norm of an element of LipU, F) is equal to the smallest value M for which 

the inequalities (3 .5) hold . It is easy to verify that f(J (x) = DJf(x) in 

G = IntF . 

According to a Whitney type extension theorem (see [10]) there exists a 

linear bounded extension operator 

extk: LipU, F)—->LipU, R
n), 

whose norm does not depend on the closed set FclR . To prove Theorem 3.1, it is 

sufficient to establish the embedding 

(3.6) i:LipU,G )—>LipU,G) 

such that for each function f€LipU,G ) the relation (if)(x) = f(x), xeG, is 

valid. The desired extension operator will be the superposition of mappings in 

the diagram 

i ^ixT k 

LipU,G ) >LipU,G) -»LipU,(R 7. 

Thus, ext = (ext oi): LipU, Ga)—>LipU,!Rn) . 

sufficient to find the contribution of the geometry of the space G to the 

norm of the operator i, since 

(3.7) Hextkoi|| < ||i|| ||S£tk|| 

and the norm of operator ext does not depend on the domain G. 
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Now let us prove the boundedness of the embedding (3.6). Let 

| | f | L i p U , G )|| be equal to 1. Since |f(J)(x)| = |DJf(x)| -s 1. xeG. |j|--k, it 

remains to prove the inequalities 

(3.8) |R (x,y)| s C|x-y|*~,jl, x.yeG. 

Indeed, it follows from (3.8) that the functions f J extend by continuity to 

G, the extended functions satisfy the inequalities (3.5) for all points x,yeG, 

and the embedding (3.6) is bounded. 

To prove (3.8) we denote by r the largest number such that for points 

x.yeG, 0<|x-y|<r , we have the inequality 

(3.9) d _(x,y) -. mM |x-y|, meN, 
a, (J a 

Since |f (J)(x) |:-1, the estimate 

(3.10) |R.(x,y)| -s [Ctn.kJ/r^'^llx-yl*"1^ 
j m 

for |j|-sk, in x,y€G, | x - y | . - r , follows from the expansion (3.4). If x.yeG, 

|x-y|<r , then we use (3.9) to obtain the estimate 

(3.11) | R 4 ( x , y ) | -- d r ( x , y )
U ~ I J , ) s (mMj£|x-y|£~' Jl. 

J a, u a 

The inequalities (3.10) and (3.11) together yield the estimate (3.8). 

It follows that the embedding (3.6) is continuous. If |j| = 0, the upper 

bound of the embedding is obtained from (3.10) and (3.11). As to the norm of 

the operator ext, = ext «i, we have the following estimate: 

(3.12) llext || -s ~ max{mM t\/r^l
t 

where the constant ~ depends only on n and L To finish the proof of 

Theorem 3.1 it remains to minimize the inequality (3.12) over all r such that 
d _(x,y) -s mM |x-y|, m€(N, x,yeG, 0<|x-y|a<r . 
a, Lr a m 

In the case of the Sobolev spaces (a=l) Theorem 3.1 was proved by another 

method in [121. 

There exists a relation between the a-metrics resulting from the 

reverse Minkowski inequality (see [7]): Given any numbers a and 0, 0-Sa--|3--l, 

the inequalities 

(3.13) dx G(x,y) - d_ G(x,y)
1//? * da G(x,y)

1/a, 

hold for every x,yeG. It follows that the relation d _(x,y) ~ d (x,y) is 

a,G loc a " 
stronger than the relation d G(x,y) ~ d (x,y). For given numbers a and 0, 
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o 
0<a<£-sl, we can construct an example of a domain GcR such that 

d0,G(x'y) lSc V x ' y ) > but d
a,G

(x'y) l5c da ( x» y ) does not hold-

The method of the extension of different!able functions explained above 

can also be applied to other spaces. First, we consider the Zygmund space 

A (G), k€lN. Before formulation of an exact result we adopt the extension 

k k 
method for the spaces A (G). The first step is to extend the functions feA (G) 

~ k ~ k ~ 

onto G.. so that they belong to the space A (G.). The class A (G.) consists of 

the Jets {f.: | j | . s k - l } and their approximating sequences {f. : |J|-sk}, i>€N, 

such that the conditions (1.5) - (1.8) hold at all points x,y€G . Indeed in 

Section 2.2 we have proved the following 

PROPOSITION 3.1. Let if }, |j|-sk-l be a collection of functions from the class 
k ~ 

A (G). Then every f. can be extended in a unique way onto G., the extended 
k ~ functions belong to the space A (G.) and preserve the norms. 

Now we shall find conditions for the existence of an extension operator 

(3. 14) Extk:A
k(G1)—->A

k(LRn) 

such that the equality Ext. ({f ,})(x) - fQ(x), xeG, holds for each function 

from the Jet {f : | j | . * k - l } . 

To prove (3.14) we need the space A (F), ketN, where F is a closed set 

in Rn . Jets {f : |J|-sk-l} of functions defined on the set F are called 

k 
elements of the class A (F) if there exist collections {f. : |J|--k}, velN, of 

functions defined on F, such that the conditions 

(3.15) IfjU) - f y(x)| * M2~
p ( k~ l j , ), u*l, IJI-sk-1, 

(3.16) |f y(x) - f (x)| -s M2M_,;, uiyitl, |j|-=k, 

I f (y) 
f. (x) - E J ^ (x-y)S -M2' T ( k' l j | ), |x-y|-sa2~T, v*l, 
J'y |J+s|-sk s' I 

|j|-sk, Tfcifel; 

(3.18) |f (x)| £ M, |j|-sk 

hold for every x,yeF. The norm ||f|Ak(F)|| of the jet {f : |j|-Sk-l} is equal to 

the smallest constant M such that the conditions (3.15) - (3.18) hold. 

246 



THEOREM 3.2. Let F be a closed subset of Rn. Then every element 

f • <f -: l:jl--k-l} of the space A (F) can be extended to a function 

Extk(f)€A
k(Rn). The function 'Ext^f) is an extension of the jet 

f -* if -. |J | .sk-l} such thai for every |J|*k-l the restriction of the partial 

derivative D^Extk(f) to the set F is equal to f.. Moreover, the extension 

k k n operator Ext.:A (F)-—>A (R ) is bounded and it may be chosen in such way that 

the function Extk(f) is smooth outside of F. 

P r o o f of the Theorem 3.2 is completely analogous to that of Theorem 2.4.Q 

REMARK 3.1. In [8] the authors define the space A (F) in a different way 

setting x « v in the formula corresponding to (3.17). Nevertheless, both 

classes, if considered on Euclidean space R , coincide with the Zygmund space 

H (Rn). Our proof of Theorem 3.2 is based on the Whitney method, as well, but 

k k n we use another construction of the extension operator ext:A (F)—>H (R ). 
00 

To prove the existence of the operator (3.14) it is sufficient to 

establish the embedding 

(3.19) i:Ak(G1)—>A
k(G) 

k ~ such that the relation (if)(x) » f(x), x€G, holds for every function feA (G-). 

Then the desired operator is obtained as the superposition of operators in the 

following diagram 

i Extk 

Ak(G1)-~»A
k(G") >A Ifa 7. 

Indeed, Extfc » (!xtk«>i):ANBJ)—»A
k(Rn). 

To find an upper bound for the norm of the operator Ext it 'suffices to 

know how the norm of the operator i depends on the geometry of the domain G. 

The boundedness of the operator (3.19) may be obtained by the geometric 

restriction to the domain G. To see its character it suffices to compare 

conditions (1.5) - (1.8) and (3.15) - (3.18), in p a r t i c u l a r , (1.7) and (3.17). 

We claim that 

(3.20) lim sup ldt G ( x , y ) / | x - y | : x.yeG , 0<\x-y\s2~V\ = MQ < «. 

Let i>Q€lN be a number such that the condition 

(3.21) da G ( x , y ) -s 2M0|x-y| 

holds for \x-y\*2~v, v*vQ. 
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k ~ 
Let a Jet {f.: |J|-Sk-l} fron the class A (G ) have the norm equal to 1 

and let {f : |J|=-k}, i>€lN, be the corresponding sequence of Jets such that 

the conditions (1.5) - (1.8) hold with the constant M = 2. The condition 

(3.21) implies that 

d1G(x,y) s 2M0|x-y| s 2M02
_T 

for every x,yeG, |x-y| -s 2 , and T-ty-ty . We take the least natural number N 

• N + uo 

such that 2 a -a 2Mn where a is the number from (3.17). Let us consider the 

sequence of Jets {g : |J|-8k}, yelN, of functions defined on the domain G such 

that g J y =- fJf|,„N.w for »>N+yQ and g J y = f ̂ 1 for v = 1,2 N+i>Q. Then 

for the Jet {f.: |J|sk-l} and the corresponding sequence of Jets 

{g : IJI .sk}, ' veM, conditions (3.15) - (3.18) hold with a constant M 

depending on k, n, M and v~ only. The validity of the conditions 

(3.15) - (3.18) at the inner points of the domain G implies that there exist 

extensions by the continuity to the closure G of both the functions from the 

Jet {f.: |J|-Sk-l} and of the functions from the sequence of the Jets 
k 

{f : lJI .sk>, i>€lN. Therefore, the extended Jets belong to the space A (G). 

Thus, we proved the following assertion which is due to Yu. BoJarskii and 

the author. 

THEOREM 3.3^ Let G be a domain in Rn and let the condition (3.20) hold. Then 

for any k€lN there exists a bounded extension operator 

Extk:A
k(G)—>Hk(Rn). 

The idea of the geometric approach to the spaces of Holder functions 

defined on a domain G can be also applied to spaces with the integral metric. 

Let I be a real number, &=(k.k+l), k = 0,1,..., a = £-k and 1 -s p,q < m. 

I 
We say that a function f belongs to A (G) if f has generalized derivatives 

of the order k and the finite norm A 

Hf|A^a(G)|| = E ||DJf|L (G)|| 
P* q |j!*k P 

' S 2 , u W " .H,<x.y,,p * * * -
Е • 

1Л*к v=0 

_j dxdy 

d (x,y)
n 

a,G 

x,yєG 

(x,y)-s2" 
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where the remainders R.(x,y) are defined in Section 1.1. For q = oo the norm is 

P 
modified in the usual way. We note that A (G) == LipU.G ). If G is an 

0 0 , 00 QL 

t 
(e,5)-domain [13] then the space A (G) coincides with the Besov space 

I 
B (G) (see the theorem below). 
p.q 

THEOREM 3.4^ Let G be a domain in Rn such that the following conditions hold: 

( 1 ) 5«,G(x-y> iSc i*-yi ; 

(ii) there exist numbers c,po>0 such that 

|B(x.p)nG| £ c |B(x.p)|t xeG, 0<p<p . 

Then there exists a bounded linear extension operator 

(3.23) extp:A* (G)—>B£ (Rn). 

i p.q p.q, 

t t 
In particular, if G is an (c,d)~domain, then the spaces A (G) and B (G) 

p.q p.q 

coincide. 

P r o o f . We indicate the main steps of the proof. The condition (i) of the 

theorem permits to pass from the norm (3.22) to a similar one with |x-y| in 

place of d r(x,y). The condition (ii) implies that the measure of the 
t -

boundary dG is equal to 0 and so at the end we pass to the space A (G). In 

[14] the Whitney type extension theorem is proved establishing the existence 

of the extension operator ext„:A (G)—->B (IR ). The corresponding diagram 
^ p.q p.q 

has the form 
ext£ 

A£ (G) >A* (G~) >B l (R 7. 
p.q p.q p.q 

The superposition of the operators in the diagram is the desired extension 

operator. 

To prove the last assertion we note that an (e, <5)-domain satisfies both 

conditions (i) [15] and (ii) [16]. Therefore there exists not only the 

extension operator (3.23) but also the extension operator 

t t n 
ext:B (G)—>B (IR ) [16V Thus, if both the restriction operators 

p.q p.q 
rest:Bp^(IR

n)—>Ap^(G) and rest:B (IR11)—>B^ (G) are bounded, then the 

t t 
spaces A^ (G) and B (G) coincide. {1 

P.q P,q U 
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4. Necessary exception conditions for diffluent lafrie funpUgns 

4.1. Metric extension conditions 

THEOREH 4.1 [93. If there exists an extension operator 

ext^WpfO—^WptR
11
), p>n (a - 1) 

or 

ext.:H
e
(G)—»H*(R

n
), «p>n (a - I < 1), 

I P P 

then the inner a-metric d (̂x.y) is iocaily equivalent to the ot-metric 
a, Li 

d (x,y) • |x^y| in the domain G and 
a 

Hext || * K M ^ P 
a a 

where K does not depend on the domain G. 

In the case p • «, the related topics can be found in [12, 151. 

In the same way we prove the following 

operator 

extгнҶo-^H^R
1 1
), n<p-sæ, 

P P 

then the inner metric d. _(x,y) is locally equivalent to the Euclidean metric 
1 , Ijr 

|x-y| inG. 

4.2. Regularity condition 

It is well known that the space W (R ) is embedded not only into the 

space of continuous functions but also into the Holder space. In what follows 

we need only two embeddings: 

(4.1) i : W € ( R n ) - - > H ^ n / p ( R n ) , i:B* -»H*"n/|*R,V 
p °° P»q <* 

With the help of the embeddings (4.1) we prove 

PROPOSITION 4.2. Let x,yeRn and let tp>n. Let feW*(Rn) be a function such that 

f(x) • 1, f(y) • 0. Moreover, if l-n/p > 1, let f be equal to I in some 

neighbourhood of the point x. Then the estimate 

, ,i-n/p'rlfl'fr«n>l 
|x-y| y y 
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is validt where the constant y is independent of x and f. The analogous result 

holds for functions feB* (Rn). 

P r o o f . The boundedness of the embeddings (4.1) yields the estimate 

(4.2) < «f |H^ n / p(R n)|| s lUH ||f|w£(IRn)||. 

If £-n/p is a fractional number, then 

,x.yr-n/P , x- y,^P 

since |RAx,y) | » |f(y) - f(x)| » 1 by the assumption. 

If l-xi/p • m+1 is an Integer then the left hand side of (4.2) is 

estimated from below by 

1 , sup h ľ h | s |f|^(,-)|. 
Ix-yV 

h*0 

where g(z) » f((x-z)/|x-z|). Let us note that 

lAfWz)! 
inf sup - • |h| * 0 > 0, 
g h,Z€Rn 

h*0 

where the infimum is taken over all functions equal to 1 in some neighbourhood 

of the origin and vanishing at some point of the unit sphere S(0,1). The proof 

is finished. [J 

A domain G in tR is said to be regular at a point xeG if there exist 

positive constants 3 » 5(x) and z - r(x) such that for any ball B(x,r), 

Q<r<6(x), the inequality 

(4.3) |B(x,r)oG| * y|B(x,r)| 

holds. The domain G is said to be regular if it is regular at every point xcG. 

THEOREM 4.2, Let G be a domain in Rn and let p>n. If the inequality 

(4.4) sup -lilHl^U * c|f |V*<G)| 
U,V€G, |u-vV P P 

u*v 

holds for every function feW (G), then the domain G is regular. 

P r o o f . Let ^:R--->tRn be a smooth function supported in the unit ball, and 

such that 0-ŝ (x)--l for every xeIR and <p is equal to 1 in some neighbourhood of 

the origin. Let us fix points x€G, y€G and put r «* |x-y| and 
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f(z) = ̂ >((z-x)/r). Then f(z) = 1 in a neighbourhood of x, f(y) = 0 and 

|~f| <• a/r. The inequality (4.4) yields 

I B ( X ' r ) | 1 / P " , J-n/p * = ( l f | V C ) | + a r" l l^B(x,r)IV G ,» ) 
I x y I 

s c(|B(x,r)r.G|1/p + ar"1|B(x,r)nG|1/p). 

Comparing the first and the last term we obtain 

|B(x,r)nG| -= c"P(a+r)~P| B(x, r) |. 

Thus for the domain G the inequality (4.3) is satisfied with the constants 

y = c p(a+l) p and 5=1 independent of x. [J 

t • The last theorem has a generalization for the space W . The formulation 

and the method of the proof is obvious from the following assertion. 

THEOREM 4.3. Let G be a domain in Rn and let u/l < p < ». If there exists the 

bounded extension operator ext.W (G)—>W (R ) , then the domain G is regular. 

P r o o f . Let x€G, yeG and let f be the function from the previous proof 

corresponding to points x and y. Then f(z) = 1 in some neighbourhood of x, 
I 

f(y) = 0 and |v\f | <• b/r . Using the inequality 

||ext(f)|W*(!Rn)|| < ||ext|| ||f|W*(G)|| 

and Proposition 4.2, we obtain 

' *c|ext(f)|u;(R»)| | B ( X , Г ) |
1 / P

_ ЗГ . . - l l ^ ř - H u ^ 

I t fo l lows t h a t 

I x - y Ґ 

< c | | e x t | | [ | B ( x , r ) л G | 1 / p + b r ~ г | B ( x , r ) п G | 1 / p ] . 

| B ( x , г ) л G | 2- c~ P (b+r £ ) p | B ( x , r ) | . 

Thus, we have proved the regularity of the domain G, namely (4.3) holds with 

the constants y = c p(b+l) p and 5 = 1 independent of the point xeG. Q 

An analogous result is valid for the Nikol'skii-Besov spaces. 

THEOREM 4.4, Let G be a domain in IRn. Suppose that £p>n if l<.p<co, 1<8<.CO, and 

£p-m if l<.p<co, 9 = 1 . If there exists a bounded extension operator 

I I n 
ext:B (G)—>B (R ) , then the domain G is regular. 
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