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Functions of least gradient and BV functionsWilliam P. ZiemerIn these lectures I will present work concerning applications of BV theoryto a variety of problems including the problem of least gradient. In Sections1 through 3 I will discuss the problem of least gradient whose work is basedon [SWZ1], [SWZ2], [SWZ3], [SZ] and [ISZ].1 Functions of least gradientFor a bounded Lipschitz domain 
 � Rn , and for g : @
 ! R1 continuous,we consider the probleminffkruk (
) : u 2 BV (
) \ C0(
); u = g on @
g: (1.1)Here, kruk (
) denotes the total variation of the vector-valued measure ruevaluated on 
. In (1.1), the direct method can be easily seen to providea minimizer, utilizing the compactness ensured by the constraint. How-ever, in (1.1), the compactness in L1(
) of a sequence whose BV -normsare bounded does not ensure, a priori, continuity of the limiting func-tion or that it will assume the boundary values g, thus making the ques-tion of existence more subtle. We will show (Theorem 3.6) that a solutionu 2 BV (
) \ C0(
) exists provided @
 satis�es two conditions, namely,that @
 has non-negative mean curvature (in a weak sense) and that @
 isnot locally area-minimizing. Furthermore, if either condition fails, it can beshown that there exists boundary data g for which the corresponding prob-lem (1.1) has no solution. It should be noted that the question of existencewas treated by Parks [P1], [P2] where it was shown that for a strictly con-vex domain with boundary values satisfying the bounded slope condition,a unique Lipschitz solution exists. Other authors also investigated proper-ties of least gradient, including [M], [PZ] and [BDG]. In [BDG] it was shown,among other things, that the superlevel sets of a function of least gradientare area-minimizing. This result provides the major motivation for the tech-niques employed here. Indeed, this fact, along with the co-area formula (see(2.12) below), suggests that the existence of a function of least gradient canbe established by actually constructing each of its superlevel sets in sucha way that they reect the appropriate boundary condition and that theyare area-minimizing. The main thrust of this work is to show that this is



Functions of least gradient and BV functions 271possible. Thus, we show that there exists a solution to (1.1) and we alsoshow (Theorem 3.9) that it is unique. Both existence and uniqueness aredeveloped by extensive use of BV theory and sets of �nite perimeter as wellas certain maximum principles.Finally, concerning regularity, in two dimensions, functions of the formu(x; y) = f(y=x) are functions of least gradient, thus showing that in gen-eral, functions of least gradient have regularity in the interior no better thanthat at the boundary. However, we show that for boundary data of classC0;�, the solution is of class C0;�=2. Examples are given which demonstratethat this result is optimal.2 Notation and preliminariesThe Lebesgue measure of a set E � Rn will be denoted by jEj and H�(E),� > 0; will denote �-dimensional Hausdor� measure of E. Throughout, wealmost exclusively employ Hn�1. The Euclidean distance between pointsx; y 2 Rn will be denoted by jx� yj. If 
 � Rn is an open set, the class offunctions u 2 L1(
) whose partial derivatives in the sense of distributionsare measures with �nite total variation in 
 is denoted by BV (
) and iscalled the space of functions of bounded variation in 
. The space BV (
)is endowed with the normkukBV (
) = kuk1;
 + kruk (
) (2.1)where kuk1;
 denotes the L1-norm of u on 
 and where kruk is the totalvariation of the vector-valued measure ru.The following compactness result for BV (
) will be needed later, cf.[G2] or [Z].Theorem 2.1. If 
 � Rn is a bounded Lipschitz domain, thenBV (
) \ fu : kukBV (
) � 1gis compact in L1(
). Moreover, if ui ! u in L1(
), and U � 
 is open,then lim infi!1 kruik (U) � kruk (U):A Borel set E � Rn is said to have �nite perimeter in 
 providedthe characteristic function of E, �E , is a function of bounded variation



272 William P. Ziemerin 
. Thus, the partial derivatives of �E are Radon measures on 
 and theperimeter of E in 
 is de�ned asP (E;
) = kr�Ek (
): (2.2)A set E is said to be of locally �nite perimeter if P (E;
) < 1 for everybounded open set 
 � Rn .One of the fundamental results of the theory of sets of �nite perimeteris that they possess a measure-theoretic exterior normal which is suitablygeneral to ensure the validity of the Gauss-Green theorem. A unit vector �is de�ned as the measure-theoretic exterior normal to E at x providedlimr!0 r�n jB(x; r) \ fy : (y � x) � � < 0; y =2 Egj = 0and limr!0 r�n jB(x; r) \ fy : (y � x) � � > 0; y 2 Egj = 0; (2.3)where B(x; r) denotes the open ball of radius r centered at x. The measure-theoretic normal of E at x will be denoted by �(x;E) and we de�ne@�E = fx : �(x;E) existsg: (2.4)Clearly, @�E � @E, where @E denotes the topological boundary of E. Also,the topological interior of E is denoted by Ei = (Rn � @E) \ E and thetopological exterior by Ee = (Rn �@E)\(Rn�E). We employ Ec to denoteRn�E. The notation E �� F means that the closure of E is a subset of F i.If E � Rn is a Borel set, we de�ne the measure-theoretic boundary of E as@ME = �x : 0 < lim supr!0 jE \ B(x; r)jjB(x; r)j � \ �x : lim infr!0 jE \B(x; r)jjB(x; r)j < 1� :(2.5)In other words, the measure-theoretic boundary of E is all points at whichthe metric density of E is neither 1 nor 0. Clearly, @�E � @ME � @E.Moreover, it is well known thatE is of �nite perimeter if and only if Hn�1(@ME) <1 (2.6)and thatP (E;
) = Hn�1(
 \ @ME)= Hn�1(
 \ @�E) whenever P (E;
) <1; (2.7)



Functions of least gradient and BV functions 273cf. [F2], x 4.5. From this it easily follows thatP (E [ F;
) + P (E \ F;
) � P (E;
) + P (F;
); (2.8)thus implying that sets of �nite perimeter are closed under �nite unions andintersections.The de�nition implies that sets of �nite perimeter are de�ned only upto sets of measure 0. In other words, each set determines an equivalenceclass of sets of �nite perimeter. In order to avoid this ambiguity, whenever aset of �nite perimeter, E, is considered we shall always employ the measuretheoretic closure as the set to represent E. Thus, with this convention, wehave x 2 E if and only if lim supr!0 jE \ B(x; r)jjB(x; r)j > 0: (2.9)Also, it can be shown with convention (2.9) that,@�E = @E; (2.10)cf. [G2], Theorem 4.4. Here, A denotes the topological closure of A. Thisconvention will apply, in particular, to all competitors of the variationalproblems (2.21) and (2.22) below as well as to the sets de�ned by (2.18).Of particular importance to us are sets of �nite perimeter whose bound-aries are area-minimizing. If E is a set of locally �nite perimeter and Ua bounded, open set, let (E;U) = kr�Ek (U)� inffkr�F k (U) : E�F �� Ug; (2.11)where E�F denotes the symmetric di�erence of E and F . The set @E issaid to be area-minimizing in U if  (E;U) = 0 and locally area-minimizingif  (E;U) = 0 whenever U is bounded.Another tool that will play a signi�cant role in this paper is the co-areaformula. It states that if u 2 BV (
); thenkruk (
) = Z 1�1 P (Et; 
) dt (2.12)where Et = fu � tg. In case u is Lipschitz, we haveZ
 jruj dx = Z 1�1Hn�1(u�1(t) \
) dt:



274 William P. ZiemerConversely, if u is integrable on 
 thenZ 1�1 P (Et; 
) dt <1 implies u 2 BV (
): (2.13)See [F1], [FR].The regularity of @E will play a crucial role in our development. Inparticular, we will employ the notion of tangent cone. Suppose @E is area-minimizing in U and for convenience of notation, suppose 0 2 U \ @E.For each r > 0, let Er = Rn \ fx : rx 2 Eg. It is known (cf. [S1], x 35,[MM], x 2.6) that for each sequence frig ! 0 there exists a subsequence(denoted by the full sequence) such that �Eri converges in L1loc(Rn ) to �C ,where C is a set of locally �nite perimeter. In fact, @C is area-minimizingand is called the tangent cone to E at 0. Although it is not immediate, C isa cone and therefore the union of half-lines issuing from 0. It follows from[S1], x 37.6, that if C is contained in H where H is any half-space in Rnwith 0 2 @H , then @E is regular at 0. That is, there exists r > 0 such thatB(0; r) \ @E is a real analytic hypersurface. (2.14)Furthermore, @E is regular at all points of @�E andH�((@E � @�E) \ U) = 0 for all � > n� 8; (2.15)cf. [G2], Theorem 11.8.Finally, we conclude with a result which is a direct consequence of a max-imum principle for area-minimizing hypersurfaces which was established in-dependently in [Mo] and [S2].Theorem 2.2. Let E1 � E2 and suppose @E2 and @E1 are area-minimizingin an open set U � Rn . Further, suppose x 2 (@E1)\ (@E2)\U . Then @E1and @E2 agree in some neighborhood of x.Let [a; b] = f\I : I an interval containing g(@
)g: (2.16)The boundary data g admits a continuous extension G 2 BV (Rn � 
) \C0(Rn � 
), [G2], Theorem 2.16; in fact, G 2 C1(Rn � 
), but we willonly need that G is continuous on the complement of 
. Clearly, we canrequire that the support of G is contained in B(0; R) where R is chosen sothat 
 �� B(0; R). We haveG 2 BV (Rn �
) \ C0(Rn �
) with G = g on @
: (2.17)



Functions of least gradient and BV functions 275We now introduce sets that will ensure that our constructed solution satis�esthe required Dirichlet condition u = g on @
. Thus, for each t 2 [a; b], letLt = (Rn �
) \ fx : G(x) � tg: (2.18)Note that the co-area formula (2.12) and the fact that G 2 BV (Rn � 
)imply that P (Lt;Rn � 
) < 1 for almost all t. For all such t, we remindthe reader that we employ our convention (2.9) in de�ning Lt.We let T = [a; b] \ ft : P (Lt;Rn �
) <1g: (2.19)Thus, by (2.7) and the fact that Hn�1(@
) <1, we obtainHn�1(@mLt) = P (Lt;Rn �
) +Hn�1[(@mLt) \ (@
)] <1: (2.20)For each t 2 T , the variational problemsminfP (E;Rn ) : E �
 = Lt �
g (2.21)maxfjEj : E is a solution of (2.21)g (2.22)will play a central role in our development. In light of Theorem 2.1, a solutionto both problems can be obtained from the direct method. (2.20) is also usedto obtain existence in (2.21). We will denote by Et the solution to (2.22).In this regard, note that our convention (2.9) ensures Et � 
 = Lt � 
;furthermore, because of our convention, Lt need not be a closed set.3 Construction of a function of least gradientIn this section we will construct a solution u of (1.1) by using Et\
 to de�nethe set fu � tg up to a set of measure zero for almost all t. This constructionwill be possible for bounded Lipschitz domains 
 whose boundaries satisfythe following two conditions.(i) For every x 2 @
 there exists "0 > 0 such that for every set of �niteperimeter A �� B(x; "0)P (
;Rn ) � P (
 [ A;Rn ): (3.1)(ii) For every x 2 @
, and every " > 0 there exists a set of �niteperimeter A �� B(x; ") such thatP (
;B(x; ")) > P (
 �A;B(x; ")): (3.2)



276 William P. ZiemerClearly, we may assume that x 2 A.The �rst condition states that @
 has non-negative mean curvature(in the weak sense) while the second states that @
 is not locally area-minimizing with respect to interior variations. Also, it can be easily veri�edthat if @
 is smooth, then both conditions together are equivalent to thecondition that the mean curvature of @
 is positive on a dense set of @
.Since 
 is a Lipschitz domain, for each x0 2 @
, @
 can be representedas the graph of a non-negative Lipschitz function h de�ned on some ballB0(x00; r) � Rn�1 where x00 2 Rn�1 . That is, f(x0; h(x0)) : x0 2 B0(x00; r)g �@
. Throughout we will use the notation B0(x00; r) and x0 to denote ele-ments in Rn�1 and thus they will be distinguished from their n-dimensionalcounterparts B(x0; r) and x.We assume our con�guration is oriented in such a way that f(x0; x00) :0 < x00 < h(x0)g � 
. Using the fact that 
 is a Lipschitz domain, wehave that 
 is a set of �nite perimeter and P (
;U) = Hn�1(@�
 \ U) =Hn�1(@
 \ U), whenever U � Rn is an open set, cf. [F2]. Also, withS = f(x0; h(x0)) : x0 2 B0(x00; r)g we have thatHn�1(S) = ZB0(x00;r)q1 + jrhj2 dHn�1(x0):These facts lead almost immediately to the following result.Lemma 3.1. If 
 is a Lipschitz domain with non-negative mean curvaturein the sense of (3.1), then the function h, whose graph represents @
 lo-cally, is a weak supersolution of the minimal surface equation. That is, forr su�ciently small, ZB0(x00;r) rh � r'q1 + jrhj2 dx0 � 0whenever ' 2 C1;10 (B0(x00; r)), ' � 0.Proof. For t > 0 and ' 2 C1;10 (B0(x00; r)); ' � 0 letf(t) = ZB0(x00;r)q1 + jrhj2 + 2trh � r'+ t2 jr'j2 dx0;A = f(x0; x00) : h(x0) � x00 � h(x0) + t'(x0); x0 2 B0(x00; r)g:Assuming that r has been chosen su�ciently small so that condition (3.1)can be invoked, we have P (
) � P (A [
) and hence0 � P (A [
)� P (
) = Hn�1(@(A [
)) �Hn�1(@
)= f(t)� f(0):



Functions of least gradient and BV functions 277Hence, f 0(0) � 0, which establishes our conclusion.We will also need the following result from [SWZ3], Lemma 4.2, whoseproof is an easy consequence of the weak Harnack inequality.Lemma 3.2. Suppose W is an open subset of Rn�1 . If v1; v2 2 C0;1(W )are respectively weak super and subsolutions of the minimal surface equationin W and if v1(x00) = v2(x00) for some x00 2 W while v1(x0) � v2(x0) for allx0 2W , then v1(x0) = v2(x0)for all x0 in some closed ball contained in W centered at x00.An important step in our development is the following lemma.Lemma 3.3. For almost all t 2 [a; b], @Et \ @
 � g�1(t).Proof. We will prove the lemma for all t 2 T , where T is de�ned by (2.19).The proof will proceed by contradiction and we �rst show that @Et is locallyarea-minimizing in a neighborhood of each point x0 2 @Et \ @
 � g�1(t);that is, we claim there exists " > 0 such that for every set F with theproperty that F�Et �� B(x0; "), we haveP (Et; B(x0; ")) � P (F;B(x0; ")) (3.3)or equivalently, P (Et;Rn ) � P (F;Rn ):By our assumption, either g(x0) < t or g(x0) > t. First consider the caseg(x0) < t. Since G(x0) = g(x0) < t and G is continuous on Rn �
, thereexists " > 0 such that B(x0; ")\Lt = ;. We will assume that " < "0, where"0 appears in condition (3.1). We proceed by taking a variation F satisfyingF�Et �� B(x0; "). Note that because of (3.1) and (2.8) we have for everyA �� B(x0; "0),P (A \
;Rn ) + P (A [
;Rn ) � P (A;Rn ) + P (
;Rn )� P (A;Rn ) + P (A [
;Rn ):Hence, P (A \
;Rn ) � P (A;Rn ): (3.4)



278 William P. ZiemerDe�ne F 0 = (F �B(x0; ")) [ (F \
). Clearly,F 0 �
 = (F �B(x0; "))�
= (F �
)�B(x0; ") = (Et �
)� B(x0; ")= Lt �
 �B(x0; ") = Lt �
:Thus F 0 is admissible in (2.21) and thereforeP (Et;Rn ) � P (F 0;Rn ):It remains to show P (F 0;Rn ) � P (F;Rn ). First observe from Et�F ��B(x0; ") and (Et�
)\B(x0; ") = (Lt�
)\B(x0; ") = ; that F 0\B(x0; ") =F \ B(x; ") \
 and F 0�F �� B(x0; "). Hence, we obtain by (3.4),P (F;Rn )�P (F 0;Rn ) = P (F;B(x0; "))� P (F 0; B(x0; "))= P (F \ B(x0; "); B(x0; "))� P (F \ B(x0; ") \
;B(x0; "))= P (F \ B(x0; ");Rn )� P (F \ B(x0; ") \
;Rn )� 0: (3.5)This establishes (3.3) when g(x0) < t.The argument to establish (3.3) in case g(x0) > t is analogous to the �rstcase, but we present it for the sake of completeness. Since G(x0) = g(x0) > t,the continuity of G in 
c implies that B(x0; ") � 
 � Lt, provided " issu�ciently small. We also require that " < "0. Let F be a variation suchthat F�Et �� B(x0; ") and now de�ne F 0 = F [ (B(x0; ")�
). ThenF 0 �
 = (F �
) [ (B(x0; ")�
)= [(F �B(x0; "))�
] [ (B(x0; ")�
)= [(Et �B(x0; "))�
] [ (B(x0; ")�
)= (Lt �B(x0; ")�
) [ (B(x0; ")�
)= (Lt �B(x0; ")�
) [ (Lt �
 \ B(x0; ")) = Lt �
:Thus, since F 0 is a competitor for (2.21), it follows that P (Et;Rn ) �P (F 0;Rn ). Then it remains to showP (F 0; Rn) � P (F;Rn ): (3.6)For this, note that Et�F �� B(x0; ") and B(x0; ")�
 = B(x0; ")\Lt � Etimply (F 0)c \ B(x0; ") = F c \ B(x0; ") \ 
 and (F 0)c�F c �� B(x0; "). In



Functions of least gradient and BV functions 279light of P (F;Rn )�P (F 0;Rn ) = P (F c;Rn )�P ((F 0)c;Rn ), (3.6) follows from(3.5) with F and F 0 replaced by F c and (F 0)c.We thus have demonstrated that @Et is area-minimizing in B(x0; "). Wewill show that this leads to a contradiction. Assume �rst that g(x0) < t sothat G < t on (Rn �
) \ B(x0; ") provided " has been chosen su�cientlysmall. Consequently, Et \ B(x0; ") � 
 \ B(x0; "): (3.7)We recall the notation concerning the representation of @
 as the graph ofa Lipschitz function that preceded Lemma 3.1. Thus, with x0 2 @Et\@
�g�1(t), we express @
 locally about x0 as f(x0; h(x0)) : x0 2 B0(x00; "0)gwhere x0 = (x00; x000 ) and x000 = h(x00) > 0. For simplicity of notation, we takex00 = 0. The number "0 is chosen so that "0 < " and thatf(x0; h(x0)) : jx0j � "0g � B(x0; "): (3.8)We de�ne the half-in�nite cylinder above B0(0; "0) as C = B0(0; "0) �[0;1). Because of the local nature of the argument, we may assume that
 \ C = f(x0; x00) : jx0j < "; 0 � x00 < h(x0)g.Now consider the solution to the minimal surface equation on B0(0; "0)relative to the boundary data f = hj@B0(0;"0), [MM], Chapter 3. Thus welet v be the unique solution ofdiv0@ rvq1 + jrvj21A = 0 on B0(0; "0);v = f on @B0(0; "0):Since h is a weak supersolution of the minimal surface equation byLemma 3.1, we have that h � v on B0(0; "0), cf. [GT], Theorem 10.7. In facth > v on B0(0; "0) because the set fh = vg is obviously closed in B0(0; "0)and it is also open in B0(0; "0) because of Lemma 3.2. Hence, if this set isnon-empty, h = v in B0(0; "0) which would contradict (3.2). Consequently,with � = h(0)� v(0), we have � > 0. Now consider a 1{parameter family ofgraphs v� (x0) = v(x0) + � and let�� = maxf� : there exists x0 2 B0(0; "0) such that (x0; v� (x0)) 2 @Et \
g:Note that �� � � since v(0) + � = h(0) and (0; h(0)) 2 @Et \
. LetV�� = f(x0; x00) : jx0j < "0; x00 � v(x0) + ��g



280 William P. Ziemerand, in view of our choice of "0, observe thatEt \ fx : jx0j < "0g � V�� :Observe also that if a point (x0; v��(x0)) is an element of (@Et) \ 
, thenjx0j < "0 for otherwise we would have v(x0)+ �� � h(x0), which would implythat �� � 0. Thus, the set @[Et \ fx : jx0j < "0g] \ f(x0; v��(x0)) : jx0j < "0gis non-empty and according to Theorem 2.2, it is open as well as closed inthe connected set f(x0; v��(x0)) : jx0j < "0g. This implies that@[Et \ fx : jx0j < "0g] � f(x0; v��(x0)) : jx0j < "0g: (3.9)Since �� > 0, it follows that v��(x0) > h(x0) whenever jx0j = "0. Conse-quently, using the continuity of v�� , the graph f(x0; v��(x0)) : jx0j < "0gcontains points in Rn � 
, say (y0; v��(y0)); jy0j < "0, as well as points in
 \ B(x0; "), say (z0; v��(z0)); jz0j < "0. The point (y0; v��(y0)); jy0j < "0,could possibly be an element of Rn � B(x0; "). Consider the line segment,�, in B0(x0; "0) that joins y0 and z0. Let a0 be that point on � closest to y0with the property that (a0; v��(a0)) 2 @
. Then, all points a on � that arecloser to y0 than a0 and that are su�ciently near a0 have the property that(a; v��(a)) 2 Rn �
 \B(x0; "). Here we have used (3.8) and the continuityof v�� . In view of (3.9), this implies that Et \ B(x0; ") \ Rn �
 6= ;, con-tradicting (3.7). This contradiction was reached under the assumption thatg(x0) < t and the fact that @Et is area minimizing in B(x0; "). A similarproof is employed in case g(x0) > t.In order to ultimately identify Et \
 as the set fu � tg (up to a set ofmeasure zero) for almost all t, we will need the following result.Lemma 3.4. If s; t 2 T with s < t, then Et �� Es.Proof. We �rst show Et � Es. Note that(Es \Et)�
 = (Es �
) \ (Et �
)= (Ls �
) \ (Lt �
) = Lt �
and (Es [ Et)�
 = (Es �
) [ (Et �
)= (Ls �
) [ (Lt �
) = Ls �
:



Functions of least gradient and BV functions 281Thus Es\Et is a competitor with Et, and Es[Et is a competitor with Es in(2.21). Thus P (Es\Et;Rn ) � P (Et;Rn ), and P (Es[Et;Rn ) � P (Es;Rn ).Then employing (2.8), we obtainP (Es [ Et;Rn ) = P (Es;Rn ):Reference to (2.22) yields jEs [ Etj = jEsj, which in turn impliesjEt �Esj = 0. In view of (2.9), Et � Es.It remains to show that this containment is in fact strict. This will followfrom a general maximum principle, Theorem 2.2. For this purpose, �rst notethat Et �
 = Lt �
 �� Ls �
 = Es �
: (3.10)relative to the topology on 
c. Now observe that Lemma 3.3 implies@Et \ @Es \ @
 = ;: (3.11)In view of (3.10) and (3.11), it remains to show that@Et \ @Es \
 = ; (3.12)in order to establish the Lemma. For this purpose, let S � @Es \ @Et \
.Assume by contradiction that S 6= ;. Observe that S is open relative to@Es for if x 2 S; then since Et � Es and since both @Et and @Es are areaminimizing in 
, we can apply Theorem 2.2 to conclude that @Et and @Esagree on a neighborhood in @Es containing x. Since S is obviously closedrelative to @Es, it follows from (3.11) that S consists only of componentsof @Es that do not intersect @
. We now could appeal to the proof ofTheorem 4.4 (parts 2,3, and 3) of [SWZ3] to conclude that S is empty. Thismethod uses only topological arguments along with (2.22). Alternatively, wewill use the area-minimizing property of S and proceed as in the proof ofTheorem 2.2. Thus, suppose S0 is a component of the set of regular pointsof S. We �rst show that S0 is a cycle in the sense of currents; that if, wewish to show that ZS0 d' = 0 (3.13)whenever ' is a smooth (n� 2)-form supported in B(0; R) where B(0; R) isthe ball introduced earlier having the property that 
 �� B(0; R). Since S0is area-minimizing in 
, we appeal to the monotonicity formula [S1], x 17.6,to conclude that only a �nite number of components of (@Es) can intersect



282 William P. Ziemerany given compact subset of 
, in particular, spt' \ S0. Thus, there existsa smooth function � that is 1 on spt' \ S0 and 0 in a neighborhood of@Es � S0. Then, (3.13) is established byZS0 d' = ZS0 d(�') = Z@Es d(�') = 0:Thus, S0 is an (n � 1)-recti�able cycle in the sense of currents; that is,@S0 = 0. Now appeal to [S1], 27.6, to conclude that there is a measurable setF � B(0; R) such that @F = S0. It follows from elementary considerationsthat for a given vector � 2 Rn , there is a hyperplane, P , with normal � suchthat P \ S0 6= ; and F � fx : (x� x0) � � � 0gwhere x0 2 P \ S0. Theorem 2.2 implies P \ S0 is open as well as closedin P , thus yielding P = S0, a contradiction.We now are in a position to construct the solution u to problem (1.1).For this purpose, we �rst de�ne for t 2 T ,At = Et \
:Observe that Et is closed relative to 
 since each point of @Et is eithera regular point of @Et or a point at which a tangent cone exists. Thisimplies that each point of @Et is an element of @MEt. From our convention(2.9), we therefore have At \ 
 = Et \ 
. Also, with the help of Lemma3.3, observe that for t 2 T ,fg > tg � (Et)i \ @
 � At \ @
; (3.14)fg > tg � At \ @
 � Et \ @
 = [(Et)i [ @Et] \ @
 � fg � tg: (3.15)Finally, note that (3.15) and Lemma 3.4 implyAt �� As (3.16)relative to the topology on 
 whenever s; t 2 T with s < t. We now de�neour solution u by u(x) = supft : x 2 Atg: (3.17)



Functions of least gradient and BV functions 283Theorem 3.5. The function u de�ned by (3.17) satis�es the following:(i) u = g on @
,(ii) u is continuous on 
,(iii) At � fu � tg for all t 2 T and jfu � tg �Atj = 0 for almost all t 2 T .Proof. To show that u = g on @
, let x0 2 @
 and suppose g(x0) = t. Ifs < t, then G(x) > s for all x 2 
c near x0. Hence, x0 2 (Es)i \ @
 by(3.14) and consequently, x0 2 As for all s 2 T such that s < t. By (3.17),this implies u(x) � t. To show that u(x) = t suppose by contradiction thatu(x) = � > t. Select r 2 (t; �) \ T . Then x 2 Ar. But Ar \ @
 � fg � rgby (3.15), a contradiction since g(x) = t < r.For the proof of (ii), it is easy to verify thatfu � tg = fTAs : s 2 T; s < tg and fu > tg = fSAs : s 2 T; s > tg :The �rst set is obviously closed while the second is open relative to 
 by(3.16). Hence, u is continuous on 
.For the proof of (iii), it is clear that fu � tg � At. Now, fu � tg�At �u�1(t). But ��u�1(t)�� = 0 for almost all t because j
j <1.Theorem 3.6. If 
 is a bounded Lipschitz domain that satis�es (3.1) and(3.2), then the function u de�ned by (3.17) is a solution to (1.1).Proof. Let v 2 BV (
), v = g on @
 be a competitor in problem (1.1). Werecall the extension G 2 BV (Rn �
) of g, (2.17). Now de�ne an extensionv 2 BV (Rn ) of v by v = G in Rn �
. Let Ft = fv � tg. It is su�cient toshow that P (Et; 
) � P (Ft; 
) (3.18)for almost every t 2 T (see (2.19)), because then v 2 BV (
) and (2.12)would implyZ ba P (Et; 
) dt � Z 1�1 P (Ft; 
) dt = krvk (
) <1:Hence, by (2.13), u 2 BV (
); furthermore, kruk (
) � krvk (
) by (2.12).We know that Et is a solution ofminfP (E;Rn ) : E �
 = Lt �
g;



284 William P. Ziemerwhile Ft �
 = Lt �
 almost everywhere. Hence,P (Et;Rn ) � P (Ft;Rn ): (3.19)Next, note thatP (Et;Rn ) = Hn�1(@�Et �
)+Hn�1(@�Et \ @
) +Hn�1(@�Et \
)� Hn�1(@�Lt �
) + P (Et; 
): (3.20)We will now show thatP (Ft;Rn ) = Hn�1(@�Lt �
) +Hn�1(@�Ft \
)= Hn�1(@�Lt �
) + P (Ft; 
); (3.21)which will establish (3.18) in light of (3.19) and (3.20).ObserveP (Ft;Rn ) = Hn�1(@�Lt �
) +Hn�1(@�Ft \ @
) +Hn�1(@�Ft \
):We claim that Hn�1(@�Ft \ @
) = 0 for almost all t because @�Ft � @Ft �v�1(t) since v 2 C0(Rn ). But Hn�1(v�1(t) \ @
) = 0 for all but countablymany t since Hn�1(@
) <1.In [BDG], the least gradient problem was posed in terms of minimizingthe total variation among (possibly discontinuous) functions in BV (
). Thefollowing result shows that the function u de�ned by (3.17) is a solution tothis problem as well.Theorem 3.7. If 
 is a bounded Lipschitz domain that satis�es (3.1) and(3.2), then the function u de�ned by (3.17) is a solution toinf fkrvk (
) : v 2 BV (
); v = g on @
g ; (3.22)where g : @
 ! R1 is continuous. Here, v = g on @
 is understood in thesense of trace theory in BV.Proof. Obviously, the in�mum de�ned by (3.22) is no greater than thatde�ned by (1.1). To show they are equal, the proof proceeds as in Theo-rem 3.6. Thus, we consider a competitor v 2 BV (
) in problem (3.22) andlet v 2 BV (Rn ) be the extension as de�ned above. Note that since g iscontinuous on @
, we have v 2 BV (Rn ) \ C0(Rn �
). As in the proof of



Functions of least gradient and BV functions 285Theorem 3.6, we need only establish (3.18) for almost all t 2 T . For this,we argue as follows. Since g is the trace on @
 of v 2 BV (
) in the senseof BV theory, we know (cf. [Z], x 5.14) for Hn�1-almost all x 2 @
limr!0ZB(x;r)\
 jv(y)� g(x)j dy = 0: (3.23)Consider such an x that is also an element of @�Ft \ @
. For such an x,observe that g(x) = t. Indeed, if g(x) < t, say g(x) = t� "; then0 = limr!0 1jB(x; r) \
j�ZB(x;r)\
\fv<tg jv(y)� g(x)j dy+ ZB(x;r)\
\fv�tg jv(y)� g(x)j dy�� lim supr!0 1jB(x; r) \
j ZB(x;r)\
\fv�tg jv(y)� g(x)j dy� " lim supr!0 jB(x; r) \
 \ fv � tgjjB(x; r) \
j :Using also the fact that g is the trace of v 2 BV (Rn � 
), we can employa similar argument to show that0 = lim supr!0 jB(x; r) \ (Rn �
) \ fv � tgjjB(x; r) \ (Rn �
)j :Hence, we conclude thatlimr!0 jB(x; r) \ fv � tgjjB(x; r)j = 0:This implies that x 62 @�Ft; a contradiction. Similarly, a contradiction isreached if g(x) > t. In view of (3.19), it follows that Hn�1(@�Ft \ @
) = 0.Thus, P (Ft;Rn ) = Hn�1(@�Lt �
) + P (Ft; 
)and as in Theorem 3.6, this is su�cient to establish (3.18).We conclude this section with the observation that conditions (3.1) and(3.2) are necessary to ensure existence of solutions to (1.1) with arbitraryboundary data g. To support this claim, we state the following withoutproof.



286 William P. ZiemerTheorem 3.8. Suppose 
 is a bounded Lipschitz domain which fails tosatisfy (3.2). Then there exists continuous boundary data g for which theproblem (1.1) has no solution.Thus having demonstrated the existence of our solution, the questions ofuniqueness and regularity become important. We quote the following resultswithout proof.Theorem 3.9. Let 
 � Rn be a bounded, Lipschitz domain satisfying (3.1)and (3.2). If u1; u2 2 C0(
)\BV (
) are solutions of (1.1) relative to theirown boundary data, thensup
 ju1 � u2j = sup@
 ju1 � u2j :In particular, the solution to (1.1) is unique.Concerning regularity, note that in two dimensions, one can readily con-struct functions of least gradient by ensuring the level sets are straight linesegments. Thus, functions of the form u(x; y) = f(y=x) have least gradi-ent. It is then easy to construct functions of least gradient having regularityproperties in the interior no better than the regularity of the boundary data.It can be shown that if the Dirichlet boundary data is of class C0;�, thenthe solution will be of class C0;�=2. In fact, a similar result can be obtainedin terms of the modulus of continuity of the boundary data. Our result onregularity is as follows.Theorem 3.10. Suppose 
 is a bounded, open subset of Rn with C2 bound-ary having strictly positive mean curvature. Suppose g 2 C0;�(@
) for some0 < � � 1 and u 2 C0(
) \ BV (
) is a function of least gradient in 
relative to its boundary data, g. Then u 2 C0;�=2(
).4 Area minimizing sets subject to a volume constraintThe work in this and the next section is based on [StZ] and is concernedwith the problem of minimizing area subject to a volume constraint in agiven convex set. In precise terms we have the following. Let 
 � Rn be abounded convex set. Thus, j
j < 1 where j
j denotes Lebesgue measure.For a number 0 < v < j
j, let E � 
 denote a set with jEj = v such thatP (E) � P (F )



Functions of least gradient and BV functions 287for all sets F � 
 with jF j = v, where P (E) denotes the perimeter of E.The main question we investigate is whether E is convex.It should be emphasized that the perimeter of a competitor F is takenrelative to Rn , or what is the same, the perimeter is taken relative to theclosure of 
 since F is assumed to be a subset of 
. This problem is con-siderably di�erent from minimizing perimeter relative to the interior of 
.This was considered in [Gr] where it was shown that a minimizer is regularand intersects @
 orthogonally.The question of existence of a solution to our problem is resolved imme-diately in the context of sets of �nite perimeter. Regularity questions havebeen considered by other authors. Tamanini [T] has shown that an area min-imizing set E subject to a volume constraint has the property that @E \
is real analytic except for a closed set whose Hausdor� dimension does notexceed n � 8. Also, under the assumption that @
 2 C1, it was shown in[GMT2] that @E is an (n � 1)-manifold of class C1 in some neighborhoodof each point in @E \ @
. In R2 , and in Rn ; n > 2 under an additionalcondition on 
, we are able to obtain regularity results and ultimately es-tablish that a minimizer E is convex. Assuming only that 
 is bounded andconvex, the convexity of E is an open question in Rn ; n > 2.The additional condition we impose on 
 if n > 2 is the following.We assume that a largest closed ball, B
 , contained in 
 hasa great circle that is a subset of @
. A great circle of B
 isde�ned as the intersection of @B
 with a hyperplane, TB
 ,passing through the center of B
 . The equatorial \disk" isde�ned as DB
 = TB
 \ B
 .
9>>>>>=>>>>>; (4.1)Also, assuming initially that @
 2 C2 and strictly convex, we invoke a re-sult of [BK] to conclude that @E 2 C1;1 at points near @
. We then show,Theorem 5.9, that E is convex. Finally, through an approximation proce-dure, we show that E is convex with C1;1 boundary assuming only that
 satis�es a great circle condition. Clearly, there is no uniqueness if v istoo small. However, with H
 denoting the union of all largest balls in 
,if jH
 j � v < j
j, then E is unique. In addition for such v we show thatperimeter minimizers E are nested as a function of v. In general for non-convex 
 one can expect neither uniqueness nor nestedness as indicated byexamples in [GMT1].De�nition 4.1. Let M denote a k-dimensional C1 submanifold of Rn ,0 < k < n; and let f : M ! R be an arbitrary function. We will say that f isdi�erentiable at x0 2M if f is the restriction to M of a function �f : U ! R



288 William P. Ziemerwhere is U � Rn is some open set containing x0 and where �f is di�erentiableat x0. We leave the proof of the following to the reader.Lemma 4.2. Let M be an (n� 1)-dimensional C1 submanifold of Rn andlet f : M ! R be a Lipschitz function. Then f is di�erentiable at Hn�1almost all points of M .In view of the preceding Lemma, we can de�ne the directional derivativeof f relative to M at Hn�1-almost all x 2 M in the usual manner. Givena vector � in the tangent space to M at x, let  : (�1; 1) ! M be any C1curve with (0) = x and 0(0) = � . De�neD�f(x) = ( �f � )0(0)where it is understood that �f is di�erentiable at x. Observe that this de�-nition is independent of the extension �f .If we are given a Lipschitz vector �eld X : M ! Rn , by using usualmethods, it now becomes clear how to de�ne the divergence of X relativeto M , denoted by divM X .If the closure M of M is a C1-manifold with boundary @M = M �Mand if X : Rn ! Rn is a C1 vector �eld with the property that for eachx 2 M , X(x) is an element of the tangent space to M at x, then theclassical divergence theorem statesZM divM X dHn�1 = Z@M X � � dHn�2 (4.2)where � is the outward pointing unit co-normal of @M . That is, j�j = 1,� is normal to @M , and tangent to M .De�nition 4.3. Let M be an oriented (n� 1)-dimensional submanifold ofRn of class C1;1; that is,M is of class C1 and its unit normal � is Lipschitz.From Lemma 4.2, we have that the components of � are di�erentiable atHn�1-almost all points of M . Thus, divM � is de�ned Hn�1-almost every-where on M . At such points, we de�ne the mean curvature of M at x asHM (x) = divM �(x)If X : Rn ! Rn is a C1 vector �eld, consider its decomposition into itstangent and normal parts relative to M ,X = X> +X?



Functions of least gradient and BV functions 289where X? = (X � �)�:Then, at Hn�1-almost all points in M , it follows thatdivM X? = (X � �) divM �:Hence, divM X? = HMX � �:On the other hand, from (4.2) we haveZM divM X> dHn�1 = Z@M X � � dHn�2:Since divM X = divM X> + divM X?, we obtainZM divM X dHn�1 = ZM HMX � � dHn�1 + Z@M X � � dHn�2: (4.3)5 Main resultsIn this section we consider the following situation.Let 
 be a bounded, convex domain in Rn ; n � 2. Let E � 
denote a set which minimizes perimeter in the closure of 
subject to a volume constraint jEj = v < j
j. ThusP (E;Rn ) � P (F;Rn )for all sets F � 
 with jF j = v.
9>>>>>>>>=>>>>>>>>; (5.1)We will �rst establish boundary regularity and curvature properties for suchperimeter minimizers under the assumption that 
 is strictly convex andthat @
 2 C2. Convexity, nestedness and uniqueness results will then beestablished under the further assumption thatn = 2 or 
 satis�es a great circle condition.The assumption of strict convexity and C2 regularity will then be dispensedwith in part through an approximation argument.



290 William P. ZiemerAssociated with (5.1) is some further notation. We let H denote theconvex hull of a minimizer E of (5.1), and we denote by H+ that part of Hthat lies \above" the equatorial disk DB
 of B
 as de�ned in (4.1). SinceP divides H into two parts, we arbitrarily call one of them the part thatlies \above" P .Next, we recall some facts concerning area minimizing sets with a volumeconstraint. The main result of [GMT1] is that if E is area minimizing witha volume constraint, then  (x; r) � Crn (5.2)for each x 2 @E and for all su�ciently small r > 0. Consequently, it fol-lows from work of Tamanini [T] that an area minimizing set E with avolume constraint possesses an area minimizing tangent cone at each pointof (@E) \
. From this it follows that (@E) \ 
 enjoys the same regular-ity properties as an area minimizing set; that is, (@E) \ 
 is real analyticexcept for a closed singular set S whose Hausdor� dimension does not ex-ceed n � 8. Furthermore, it was established in [GMT2], Theorem 3, that@E is an (n � 1)-manifold of class C1 in some neighborhood of each pointx 2 @E \ @
.The object of this section is to prove that E is convex and we begin byproving C1;1; regularity of @E near @
. For this we will need the followingresult of Br�ezis and Kinderlehrer, [BK].Theorem 5.1. Let a : Rn�1 ! Rn�1 be a C2 vector �eld satisfying the con-dition that for each compact C � Rn�1 , there exists a constant � = �(C) > 0such that (a(p)� a(q)) � (p� q) � � jp� qj2for all p; q 2 C. Let U � Rn�1 be an open connected set and let � 2 C2(U)satisfy � � 0 on @U . Let f 2 C1(U). With K =K� denoting the convex setof Lipschitz functions v satisfying v � � in U and v = 0 on @U , let u 2 Kbe a solution of ZU a(ru) � r(v � u) dx � ZU f(v � u) dxfor all v 2 K. Then u 2 C1;1(V ) on any domain V with V � U .We now apply this result to obtain C1;1 regularity of the boundary ofa minimizer E of the variational problem (5.1) near @
 . Since @E is an(n�1)-manifold of class C1 in some neighborhood of each point x 2 @E\@
,



Functions of least gradient and BV functions 291it follows that near such a point x, we may represent both @E and @
 asgraphs of functions u and �, respectively, de�ned on an open set U 0 2 Rn�1containing x0 where x = (x0; y00), y00 2 R. We will assume u and � chosenin such a way that u � �, u = 0 on @U 0 and � � 0 on @U 0. Using theconvexity of 
, this can be accomplished by considering a hyperplane P0passing throughE and parallel to the tangent plane to @E at x. By taking P0su�ciently close to the tangent plane, U 0 can be de�ned as P0 \ E. Nowselect v 2 K and for 0 < " < 1, de�ne u" on U 0 as u" = u+"(v�u). We willassume " chosen small enough so that the graph of u" remains in 
. Notethat u" 2 K. Select a point z 2 (@E) \ 
 at which @E is regular. Thus,@E is real analytic near z and its mean curvature is a constant K there.In a neighborhood of z, we can represent @E as the graph of a function wde�ned on some open set V 0 � Rn�1 containing z0 where z = (z0; z00). Theneighborhoods about x and z where @E is represented as a graph are takento be disjoint. Let ' 2 C10 (V 0) denote a function with the property thatZV 0 'dHn�1 = ZU 0(v � u) dHn�1; (5.3)and de�ne w" = w � "'. The graphs of the functions u" and w" producea perturbation of the set E, say E". Because of (5.3), we have that jEj =jE"j. With F (") = ZU 0q1 + jru"j2 + ZV 0q1 + jrw"j2;the minimizing property of @E implies that F (0) � F (") for all small " andtherefore that F 0(0) � 0. Thus,ZU 0 ruq1 + jruj2 � r(v � u)� ZV 0 rwq1 + jrwj2 � r' � 0:Since w has constant mean curvature K, we obtainZV 0 rwq1 + jrwj2 � r' = � ZV 0 K' = �K ZV 0 ' = �K ZU 0(v � u);and therefore ZU 0 ruq1 + jruj2 � r(v � u) � �K ZU 0(v � u): (5.4)



292 William P. ZiemerIf � 2 C10 (U 0) denotes an arbitrary non-negative test function, thenwith v � u = �, (5.4) states that u is a weak solution of H@E � K. Thiscombined with the C1;1- regularity of u implies that H@E � K pointwisealmost everywhere in a neighborhood of @
. Since H@E = K in @E\(
nS)with Hn�1(S) = 0 we have the following result.Theorem 5.2. Assume that 
 is bounded, convex and has a C2 boundary.If E is a minimizer of (5.1), then @E 2 C1;1 in some neighborhood of @
and H@E � K Hn�1-almost everywhere on @E.We now will exploit Theorem 5.2 to establish both regularity and a meancurvature estimate for the boundary of the convex hull of E.Theorem 5.3. Assume that 
 is bounded, strictly convex and has a C2boundary. If E is a minimizer of (5.1) with convex hull H then @H 2 C1;1and H@H � K Hn�1-almost everywhere on @H.Proof. Note that the singular set S in @E is a closed subset of 
 andthus separated from @
, in fact it is contained in the interior of H, for ifx 2 @E \ @H \
, then the tangent cone to @E at x must be a hyperplanebecause E � H and H is convex. Consequently @E is regular at x. Let Nbe an open neighborhood of S with compact closure in the interior of H .Thus by Theorem 5.2 and the analyticity of @E in 
 n S we see that @E isC1;1 at points in G := @E nN . Therefore for some C we havej�(x) � �(z)j � Cjx� zj; x; z 2 G (5.5)where �(x) is the outward unit normal to @E at x. Also since @E is C1 atpoints in G there exists an " such that for all x 2 G and z 2 @E \ B(x; ")we have j�(x) � (x � z)j � 12 jx� zj: (5.6)Choose x 2 @E \ @H � G and let 0 < � < 1=2. Then de�ned = �minf"; dist(@H;N); (2C)�1; diamEg:Let y = x � d�(x) and observe that y is in the interior of E since @Ecannot intersect the line segment xy at a point z 6= x due to (5.6). Letr = dist(y; @E) and note that 0 < r � d. Now choose any z 2 @E such thatjy � zj = r. Note that z 2 G, for otherwise we would have z 2 N and sincejx� zj � jx� yj+ jy � zj, it would follow that2d � jx� zj � dist(@H;N) � d� > 2d;



Functions of least gradient and BV functions 293a contradiction. Then, jx � zj � jx � yj + jy � zj � 2d < " and both (5.5)and (5.6) hold. Thus, since x = y + d�(x) and z = y + r�(z), we havejd� rj � j�(x) � (x� z)j andjx� zj = j(d� r)�(x) + r(�(x) � �(z))j � (1=2+ Cr)jx � zj � 3=4jx� zj;(since r � d � �=(2c) � 1=(4c)) which implies that x = z and thereforer = d. This implies that for every x 2 @E \ @H there exists a ball Bx � Eof radius d containing x.Given any p 2 @H we claim that p is a convex combination of pointsfxig in @E\@H . To see this note that if C is a convex set with E � C thenE � C since if x 2 E then either x 2 C or x 2 @C; in the later case x lies ina support plane of C so if x 2 
, regularity theory implies that x 2 E � C,and if x 2 @
 then x is not in the singular set S of E (since S is a compactsubset of
) so again x 2 E � C. Consequently from the de�nition of convexhull H of E as the intersection of all convex sets containing E, we see thatE � H . MoreoverH is the convex hull of E from which we conclude by a wellknown result that H is closed since E is a compact subset of Rn . Note thatthe set of �nite convex combinations of points from E is convex, contains E,and is contained in any convex set which contains E and so equals H . Thusif p 2 @H we have p 2 H , since H is closed, and consequently p =Pki=1 �ixifor xi 2 E andPki=1 �i = 1; �i � 0; i = 1; : : : ; k. If we take k to be as smallas possible then either k = 1 and p 2 E and the claim is trivially true, or plies in the k dimensional interior of the convex hull M of fxig in which caseno xi can lie in the interior of H since then the same would be true of p.Consequently xi 2 @E \ @H , i = 1; : : : ; k, as claimed.Taking the convex hull ofSki=1 Bxi we see that there exists a ball Bp � Hof radius d containing p, i.e. H satis�es a uniform interior sphere condition.We claim that this implies @H is C1;1. To see this, consider the problemof prescribing unit vectors �1; �2 2 Rn , and �nding a convex set eH, satis-fying the interior sphere condition noted above, and points x; y 2 @ eH with�(x) = �1, �(y) = �2, such that jx � yj is minimized. It is clear that x; ymust lie in a two dimensional plane orthogonal to the intersection of twohyperplanes having �1; �2 as normals, i.e. one needs only consider the twodimensional case where it is easy to see that one must have Bx = By. Takingthe center of this ball to be the origin then �(x) = x=d; �(y) = y=d and wetrivially have j�(x) � �(y)j � 1d jx� yj:



294 William P. ZiemerSince this is the case when jx � yj is smallest for �xed �(x); �(y) we haveestablished that �(x) is Lipschitz in general.We now prove thatH@H � K Hn�1-almost everywhere in @H . Note thatH@H = H@E Hn�1-almost everywhere on @E \ @H by Theorem 5.2. Thuswe need only consider points p 2 @H n@E. In fact since @H is C1;1 we needonly consider p 2 @H n@E at which @H is classically twice di�erentiable. Asabove, any such p lies in the k dimensional interior of the convex hull M ofcertain points pi 2 @E, i = 1; : : : ; k. Note that k 6= 1 due to p =2 @E. Choosea coordinate system such that points in Rn are represented as (x; y; z),x 2 Rk , y 2 Rn�k�1 , z 2 R, with z = 0 the tangent plane to @H at p,pi = (xi; 0; 0), i = 1; : : : ; k, and z � 0 in H . We will construct an analyticfunction g whose graph does not lie below @H , contains M , and has meancurvature bounded above by K + " (for any " > 0) in a small neighborhoodof p. This will lead to the conclusion that H@H � K at p.Let @E be represented as z = f(x; y) for f de�ned in a neighborhood inRk � Rn�k�1 of [(xi; 0). Thus(xi; y; f(xi; y)) 2 @E � Hfor small jyj, and consequentlykXi=1 �i(xi; y; f(xi; y)) 2 H if kXi=1 �i = 1; �i � 0 (5.7)for small jyj. For any given x in N , where N is the convex hull of thepoints xi, i = 1; : : : ; k, let � = �(x) = (�1(x); : : : ; �k(x)) be the uniquevector such thatx = kXi=1 �i(x)xi; kXi=1 �i(x) = 1; �i(x) � 0:Thus if we de�ne g(x; y) = kXi=1 �i(x)f(xi; y)we see from (5.7) for x 2 N and small jyj that(x; y; g(x; y)) 2 H;and so the surface z = g(x; y) does not lie below @H at such (x; y).



Functions of least gradient and BV functions 295Note thatM\@
 = ;, for otherwise the plane z = 0, which containsM ,would be a tangent plane to @
, thus contradicting the strict convexity of@
. Also M does not intersect the singular set of @E since M � @H . Thus@E is analytic at each pi and therefore both f(xi; y) and g(x; y) are smoothfor small jyj. Furthermore,0 � �yf(xi; 0) � �f(xi; 0) � Ksince rf(xi; 0) = 0, H@E equals �f at points where the gradient is zero,and the second derivatives of f are non-negative at (xi; 0) due to the factthat f � 0, f(xi; 0) = 0 for all i. Hence, for any " > 0, �yf(xi; y) � (K+")for small enough jyj, so �yg(x; y) � (K + ") as well. However �xg = 0 andso �g � (K + ") for small jyj. Recall that @H is trapped between fz = 0gand the graph of g over a region which contains p in its interior. Sinceg(p) = 0 and @H is twice di�erentiable at p we conclude that H@H(p) � Kas required.Theorem 5.4. Assume that 
 is bounded, strictly convex and satis�esa great circle condition. If E is a minimizer of (5.1) with jB
 j � jEj thenB
 � Ewhere B
 is the largest ball in 
.Proof. If jEj = jB
 j then clearly E must be a ball. Since there is onlyone largest ball in 
 due to strict convexity, we have E = B
 . OtherwisejB
 j < jEj. In this case translate the upper and lower hemispheres of B
by a distance d in opposite directions orthogonal to TB
 until H , the convexhull of the two translated hemispheres, intersects E in a set of measure jB
 j,i.e. jH \ Ej = jB
 j: (5.8)This is possible because of the great circle condition and because 
 isbounded and convex. Now translate the hemispheres back to their originalpositions while rigidly carrying along the parts of E lying in the exteriorof H . Let eE be the union of the translated parts of E with B
 . Note thatj eEj = jEj and therefore P ( eE) � P (E): (5.9)Using a standard inequality, cf. [MM], we haveP (E) + P (H) � P (E \H) + P (E [H)



296 William P. Ziemerwhere P (S) denotes P (S; Rn ). For brevity, write D = DB
 . Observe thatP (H) = 2dHn�2(@D) + P (B
); P (E [H) = P ( eE) + 2dHn�2(@D)and thus P (E) + P (B
) � P (E \H) + P ( eE):In view of (5.9) it follows that P (E \ H) � P (B
). But then the isoperi-metric inequality and (5.8) imply that E \H is a ball. However 
 containsonly one largest ball and so we must have E \H = B
 , i.e. B
 � E.SupposeM is an oriented (n�1)-dimensional C1-submanifold of Rn andf : M ! Rn�1 a C1 mapping. Let Jf(x) denote the Jacobian of f at x andnote that the sign of the Jacobian depends on the orientation ofM . We recallthe following result, cf. [F2], Theorem 3.2.20: For any Hn�1-measurable setE �M and any Hn�1-measurable function ',ZE '[f(x)] jJf(x)j dHn�1(x) = Z '(y)N(f; E; y) dy (5.10)where N(f; E; y) denotes the number (possibly in�nite) of points inf�1(y) \ E. Here equality is understood in the sense that if one side is�nite, then so is the other. In our application (5.11) below, we will knowthe left side is �nite, therefore ensuring that N(f; E; y) is �nite for almostall y.Lemma 5.5. There is a constant C = C(n) such that for each x 2 (@E)\
we have Hn�1((@E) \ B(x; r))rn�1 � Cfor almost all su�ciently small r > 0.Proof. It follows from (5.2) that we may as well assume @E is area mini-mizing. In this case the result follows immediately from the fact thatHn�1((@E) \ B(x; r))rn�1is non-decreasing in r, for r > 0 su�ciently small, cf. [F2], Theorem 3.4.3.



Functions of least gradient and BV functions 297Lemma 5.6. For every " > 0 and any open set V � Rn containing thesingular set S of @E, there exists an open set W and a Lipschitz functionf such that S �W � ff = 1g;spt f � V;Z@E jrf j dHn�1 � ":Proof. Let V be any open set containing S and let � = 1=2(dist S;Rn �V ).Since Hn�7(S) = 0 and S is compact, there is a �nite collection of openballs fB(xi; ri)gmi=1 such that 2ri < �;B(xi; ri) \ S 6= ;; S � Smi=1 B(xi; ri)and mXi=1 rn�7i < "C ;C as in Lemma 5.5. We will assume that each ball B(xi; ri) has been chosenso that ri < 1 and that 2ri satis�es Lemma 5.5. Let W denote the union ofthese balls and de�ne fi byfi(x) =8>><>>:1 if jx� xij � ri2� jx� xijri if ri � jx� xij � 2ri0 if 2ri � jx� xij :In view of Lemma 5.5, it follows thatZB(xi;ri)\@E jrfij dHn�1 � Crn�2i < Crn�7i :Now let f := max1�i�m fi. Then f is Lipschitz, W � ff = 1g; spt f � Vand Z@E jrf j dHn�1 � mXi=1 ZB(xi;ri)\@E jrfij dHn�1< C mXi=1 rn�7i < ":



298 William P. ZiemerLemma 5.7. Let T denote the (n � 1)-recti�able current determined by(@E)+, the part of @E that lies above the equatorial disk D := DB
 of B
.Then @T is the (n� 2)-sphere given by @T = @D.Proof. Clearly, the support of @T contains the (n� 2)-sphere, but we mustrule out the possibility of it containing points of S as well. For this purpose,choose x 2 S and let ' be any smooth di�erential form supported in someneighborhood of x that does not meet (@E)+ \ @D. It su�ces to showthat T (d') = 0. Let � denote Hn�1 restricted to (@E)+. Appealing toLemma 5.6, we can produce a sequence of Lipschitz functions f!ig suchthat !i ! 1 � a.e.jr!ij ! 0 � a.e.!i vanishes in a neighborhood of SZ(@E)+ jr!ij d�! 0:Thus, we obtain0 = T (d('!i)) = T (d' ^ !i) + T (' ^ d!i)= Z(@E)+ d' ^ !i + Z(@E)+ ' ^ d!i:The �rst integral tends to Z(@E)+ d' = T (d')while the second tends to 0. Thus, T (d') = 0.Let E denote a minimizer of (5.1), where 
 is strictly convex withC2 boundary. Since @E is locally an (n � 1)-manifold of class C1 exceptfor a singular set S whose Hausdor� dimension does not exceed n � 8, itfollows that @E can be regarded as an oriented n�1 integral current whoseboundary is 0; i.e. an oriented n� 1 integral cycle.Let T denote the n � 1 integral current represented by (@E) \ H+.Since @E is of class C1;1 in a neighborhood of each point of (@E)\ (@
), itfollows that the tangent cone to @E at such points is in fact a tangent plane.Consequently, @E is analytic near such points and therefore the singular setS of @E lies in the interior of (@E) \ H+. We know from Lemma 5.7 thatthe boundary of T is the (n� 2)-sphere determined by @DB
 , the equator



Functions of least gradient and BV functions 299of B
 . Let p : Rn ! TB
 denote the orthogonal projection and considerthe current R := p#(T ). Note that @R = p#(@T ) = @DB
 . Furthermore,DB
 is the unique current in TB
 whose boundary is @DB
 and therefore,we conclude that R = DB
 . Let us consider the action of R operating onan (n � 1)-form '. For this we will let �(x) denote the Grassman (n � 1)-vector of norm one that is in the tangent plane orthogonal to �(E; x), theexterior normal to E at x. The vector �(x) is chosen in such a way that�(x) ^ �(E; x) forms the Grassman unit n-vector that induces a positiveorientation of Rn . Also, we let dp(�(x)) denote the value of the di�erentialof p operating on �(x). Then, with the help of (5.10), we haveR(') = T (p#')= Z(@E)\H+ p#' � �= Z(@E)\H+ '[p(x)] � dp(�(x)) dHn�1(x)= ZDB
 '(y)[N+(p; @E; y)�N�(p; @E; y)] dywhere N+(p; @E; y) denotes the number of points of p�1(y) \ @E at whichJp is positive and similarly, N�(p; @E; y) denotes the number of points ofp�1(y) \ @E at which Jp is negative. Since R = DB
 , we conclude thatN+(p; @E; y)�N�(p; @E; y) = 1 (5.11)for almost all y 2 DB
 .Lemma 5.8. Assume that 
 is bounded, strictly convex, has a C2 bound-ary, and satis�es a great circle condition. Let H denote the convex hull forany minimizer E of the variational problem (5.1). Then there is a constantK such that H@H = K at Hn�1-almost all points of (@H) \
.Proof. First, we recall that @E \ 
 is C1 at all of its points except fora singular set S � @E \ 
 whose Hausdor� dimension does not exceedn � 8. Furthermore, we know that @E \ 
 is real analytic at all pointsaway from S and that @H is C1;1. Finally, we know that E contains B
 .Let (@E)+ and (@H)+ denote the parts of @E and @H respectively that lieabove the equatorial plane P of B
 . Let p : Rn ! P denote the orthogonalprojection. The mean curvature of @E is equal to a constant K at all pointsof @E\(
�S). LetX denote the vertical unit vector. We wish to apply (4.3)with (@E)+ replacing M . Referring to the proof of Lemma 5.7, we see that



300 William P. Ziemerthis can be done in spite of the singular set S 2 (@E)+. Thus, applying (4.3),we obtainZ(@H)+ H@HX � �H dHn�1 = Z(@E)+ H@EX � �E dHn�1 (5.12)where �H and �E denote the unit exterior normals to H and E respectively.Let A = (@E)+ \ (@H)+;B = ((@H)+ �A) \ fx : H@H(x) < Kg;C = ((@H)+ �A) \ fx : H@H(x) = Kg:Since H@H � K Hn�1-a.e. in (@H)+ \
, it su�ces to prove thatHn�1(B) = 0: (5.13)Observe that both B and C are subsets of @H+. Note also that A;B; and Care mutually disjoint subsets of (@H)+ with Hn�1[(@H)+�(A[B[C)] = 0.Thus, p(A); p(B) and p(C) are mutually disjoint and their union occupiesalmost all of DB
 . Clearly, �E and �H as well as H@H and H@E agreeHn�1-almost everywhere on A. Therefore,ZAH@HX � �H dHn�1 = ZAH@EX � �E dHn�1 : (5.14)Since X ��H is the Jacobian of the mapping p : @H+ ! DB
 , it follows from(5.10) that ZBH@HX � �H dHn�1 < KHn�1[p(B)];ZC H@HX � �H dHn�1 = KHn�1[p(C)]:Now let A� = ((@E)+) \ p�1[p(A)];B� = ((@E)+) \ p�1[p(B)];C� = ((@E)+) \ p�1[p(C)]:Next, observe that both B� and C� are subsets of 
. To see this, considerx 2 B�. If it were true that x 2 B� \ @
, then x 2 (@H)+ and thus x 2 A.



Functions of least gradient and BV functions 301This is impossible since p(A) and p(B) are disjoint. A similar argumentholds for C�. Referring to (5.10) and (5.11), we obtainZB� H@EX � �E dHn�1= K ZB�\fx:X��E(x)>0gX � �E dHn�1+K ZB�\fx:X��E(x)<0gX � �E dHn�1= K Zp(B�)N+(p; @E; y)�N�(p; @E; y) dHn�1(y)= KHn�1[p(B�)]= KHn�1[p(B)]:Similarly,ZC�H@EX � �E dHn�1 = KHn�1[p(C�)] = KHn�1[p(C)]and ZA�KX � �E dHn�1 = KHn�1(p(A)):Finally, because A � (@H)+ and consequently N+(p;A; y) = 1 andN�(p;A; y) = 0 for Hn�1-almost all y 2 p(A), we obtainZAKX � �E dHn�1 = KHn�1(p(A)):Now, using the facts that A� � A � 
 and H@E = K on A� � A � S, weobtainZA�H@EX � �E dHn�1= ZA� KX � �E dHn�1 + ZA�(H@E �K)X � �E dHn�1= ZA� KX � �E dHn�1 + ZA(H@E �K)X � �E dHn�1= KHn�1(p(A)) �KHn�1(p(A)) + ZAH@EX � �E dHn�1= ZAH@EX � �E dHn�1:



302 William P. ZiemerUnder the assumption Hn�1(B) > 0, we would obtainZ(@H)+H@HX � �H dHn�1< ZAH@HX � �H dHn�1 +KHn�1[p(B)] +KHn�1[p(C)]= ZAH@EX � �E dHn�1 +KHn�1[p(B�)] +KHn�1[p(C�)]= ZA� H@EX � �E dHn�1 +KHn�1[p(B�)] +KHn�1[p(C�)]= ZA� H@EX � �E dHn�1 + ZB�H@EX � �E dHn�1+ ZC�H@EX � �E dHn�1= ZA�[B�[C�H@EX � �E dHn�1� Z(@E)+ H@EX � �E dHn�1;where we have used that A�; B� and C� are mutually disjoint. This wouldcontradict (5.12), thus establishing (5.13).A function u 2 C1(W ) is called a weak subsolution (supersolution) ofthe equation of constant K mean curvature ifMu(') = ZW ru � r'q1 + jruj2 �K'dx � 0 (� 0)whenever ' 2 C10 (W ); ' � 0.We note that if u 2 C1;1 and classically satis�es the equation of constantmean curvature equation almost everywhere, then u is a weak solution.The following result will be stated in the context of Rn�1 because of itsapplications in the subsequent development.Theorem 5.9. Suppose 
 is a bounded, strictly convex domain with C2boundary that satis�es a great circle condition. Then any minimizer E ofthe variational problem (5.1) is convex.With the results above, by means of an approximation procedure, itcan be shown that E is convex with C1;1 boundary assuming only that 
satis�es a great circle condition. The proof of this can be found in [StZ].



Functions of least gradient and BV functions 3036 The inner trace of Sobolev functionsIn this and the next two sections, I will discuss results that are based on[SwZ].If 
 � Rn is an open set, W k;p(
), p � 1, will denote the Sobolev spaceof functions f 2 Lp(
) whose distributional derivatives of order up to andincluding k are also elements of Lp(
). The norm on W k;p(
) is de�ned bykfkWk;p(
) := �Xj�j�k Z
 jD�f jp dx�1=pand W k;p0 (
) is de�ned as the closure in W k;p(
) of the family of C1functions in 
 with compact support. It is well known that the space ofBessel potentialsLk;p(Rn ) := ff : f = Gk � g; g 2 Lp(Rn )gwith norm kfkk;p := kgkp is isometric to W k;p(Rn ). For arbitrary � > 0,the Bessel kernel G� is that function whose Fourier transform isbG�(x) = (2�)�n=2(1 + jxj2)��=2:The Bessel capacity of an arbitrary set E � Rn is de�ned asCk;p(E) := inffkgkp : g 2 Lp(Rn ); g � 0; Gk � g � 1 on Egwhere the in�mum is taken over all non-negative functions g 2 Lp(Rn ) suchthat Gk �g � 1 on E. When k = 1 and 1 < p < n, this capacity is equivalentto the p-capacity, p, whose de�nition for bounded sets E � Rn is given byp(E) = inf�ZRn(jf jp + jDf jp) dx�where the in�mum is taken over all f 2 W 1;p(Rn ) for which E is containedin the interior of ff � 1g. When p � n the p-capacity of any non-emptyset is positive. The Lebesgue measure of a set E � Rn is denoted by jEjand B(x; r) is the open ball of radius r centered at x. It will be clear fromcontext the dimension of the Euclidean space on which Lebesgue measureis de�ned. Hausdor� (n�1)-dimensional measure will be denoted by Hn�1.The integral average of a function f over a set E is denoted byZE f = 1jEj ZE f(x) dx:



304 William P. ZiemerAn integrable function f is said to possess a Lebesgue point at x0 if thereis a number l = l(x0) such thatlimr!0ZB(x0;r) jf(y)� lj dy = 0:Recall that l = f almost everywhere. Also, f is said to be approximatelycontinuous at x0 if there is a measurable set E with metric density one atx0 such that limx!x0x2E jf(x)� f(x0)j = 0:Note that if f has a Lebesgue point at x0 and l(x0) = f(x0), then f isapproximately continuous at x0.If f 2 W k;p0 (
), then the function f� de�ned asf�(x) := (f(x) if x 2 
0 if x =2 
 (6.1)is an element of W k;p(Rn ). It is well known that a Sobolev functionf 2W k;p(Rn ) possesses a Lebesgue point everywhere except for a Ck;p nullset, cf. [Z], Theorem 3.3.3. Furthermore, if f 2 W k;p0 (
), it is not di�cultto prove thatlimr!0ZB(x;r) f�(y) dy = limr!0 1jB(x; r)j ZB(x;r)\
 f(y) dy = 0 (6.2)for Ck;p-q.e. x 2 Rn n
, in particular for Ck;p-q.e. x 2 @
. The converse ofthis is one of the main results in [AH] which states the following.Theorem 6.1 ([AH], Theorem 9.1.3). Let k be a positive integer, let1 < p <1 and let f 2 W k;p(Rn ). If 
 � Rn is an arbitrary open set,then f 2 W k;p0 (
) if and only iflimr!0ZB(x;r) jD�f(y)j dy = 0 (6.3)for Ck�j�j;p-q.e. x 2 Rn n
 and for all multiindices �, 0 � j�j � k � 1.For W 1;p(Rn ), 1 < p <1, this result is due independently to Havin [H]and Bagby [B].



Functions of least gradient and BV functions 305A natural question arises whether the assumption that f 2 W k;p(Rn )can be replaced by the weaker one, f 2 W k;p(
), in which case (6.3) wouldhave to be replaced bylimr!0 r�n ZB(x;r)\
 jD�f(y)j dy = 0:A similar question is raised in [AH], Section 9.12.1, concerning a di�erentresult. The purpose of this note is to provide an a�rmative answer to thisquestion.In the course of this development, we will utilize the space BV , the classof functions of bounded variation.De�nition 6.2. The space BV (
) consists of all real-valued integrablefunctions f de�ned on 
 with the property that the distributional par-tial derivatives of f are totally �nite Radon measures. The total variationmeasure of the vector valued measure associated with the gradient of fis denoted by kDfk. When viewed as a linear functional, its value on anon-negative real-valued continuous function g supported in 
 iskDfk (g) = sup�Z
 g div v dx : v 2 C1c (
;Rn ); jv(x)j � f(x); x 2 
�;and its value on a set E is kDfk (E). The space BVloc(
) consists of allfunctions f de�ned on 
 with the property that f 2 BV (
0) for every openset 
0 compactly contained in 
. The measure theoretic boundary of a setE � Rn is de�ned as@mE = �x : 0 < lim supr!0 jE \ B(x; r)jjB(x; r)j �T�x : lim infr!0 jE \B(x; r)jjB(x; r)j < 1� :If Hn�1(@mE \
) <1, then E is said to have �nite perimeter in 
.Functions in BV (Rn ) can be characterized in terms of their behavior asfunctions of one variable. For this, consider a real valued function g de�nedon the interval [a; b]. The essential variation of g on [a; b] is de�ned asessV ba (g) := sup( kXi=1 jg(ti)� g(ti�1)j)



306 William P. Ziemerwhere the supremum is taken over all �nite partitions of [a; b] induced bya < t0 < t1 < t2 < � � � < tk < b where g is approximately continuous ateach point of ft0; t1; : : : ; tkg.Now let us consider f 2 BV (Rn ) as a function of a single variablexn while keeping �xed the remaining n � 1 variables. Thus, let bxn :=(x1; x2; : : : ; xn�1) and de�ne fbxn(t) := f(bxn; t). In a similar manner, we cande�ne the remaining functions fbx1 ; fbx2 ; : : : ; fbxn�1 . A function f 2 BVloc(Rn )if and only if for almost every bxk 2 Rn�1 ; essV bkak fbxk(�) <1 andZR essV bkak fbxk(�) dbxk <1 (6.4)for each rectangular cell R � Rn�1 , k 2 f1; 2; : : : ; ng, �1 < ak < bk <1.Another characterization of BV (
) is due to Fleming and Rishel [FR],and its statement most suitable for our purposes can be found in [Z], The-orem 5.4.4.Theorem 6.3. If 
 � Rn is open and f 2 BV (
), thenkDfk (
) = ZR1Hn�1(@mAt \
) dt; (6.5)where At := fx : f(x) > tg. Conversely, if f 2 L1(
) and At has �niteperimeter in 
 for almost all twithZR1Hn�1(@mAt \
) dt <1; (6.6)then f 2 BV (
).In addition we will need the following known results concerning BV andSobolev functions.Theorem 6.4 ([F2], Theorem 4.5.9(29)). If f 2 BV (Rn ) is approximatelycontinuous at Hn�1-almost all points of Rn , then f is continuous on almostall lines parallel to the coordinate axes.Theorem 6.5 ([GZ], Theorem 7.45). A function f de�ned on [a; b] is ab-solutely continuous if and only if f is of bounded variation, continuous, andcarries sets of measure zero into sets of measure zero.Theorem 6.6 ([Z], Theorem 2.1.4). Suppose f 2 W 1;p(
), p � 1. Let
0 �� 
. Then f has a representative ef that is absolutely continuous on



Functions of least gradient and BV functions 307almost all line segments of 
0 that are parallel to the coordinate axes andthe classical partial derivatives of ef agree almost everywhere with the dis-tributional derivatives of u. Conversely, if f has such a representative andthe classical partial derivatives D1f; : : : ; Dnf together with f are in Lp(
0)then f 2 W 1;p(
0).7 The inner traceWe are now in a position to prove our theorem.Theorem 7.1. Let 
 � Rn be an arbitrary open set and let f be a functionde�ned on 
 with the property that f 2 BV (
0) for every open boundedsubset 
0 � 
. If f� is approximately continuous Hn�1-a.e. in Rn , thenf� 2 BVloc(Rn ).Proof. Let At := ff > tg and A�t := ff� > tg. For each t 6= 0 we claimthat Hn�1[@mA�t n
] = 0. For this purpose, let x0 2 Rn n
 be a point ofapproximate continuity of f�. Then f�(x0) = 0 andlimx!x0x2E f�(x) = 0 (7.1)for some set E � Rn whose metric density is one at x0. If t > 0 this impliesthat limr!0 jA�t \ B(x0; r)jjB(x0; r)j = 0and therefore that x0 62 @mA�t . Similarly, if t < 0 let B�t := ff� < tg. Thenequation (7.1) implies thatlimr!0 jB�t \ B(x0; r)jjB(x0; r)j = 0 and therefore limr!0 jA�t \ B(x0; r)jjB(x0; r)j = 1;thus showing that x0 62 @mA�t . Since Hn�1-a.e. point of Rn n
 is a point ofapproximate continuity of f�, this shows that Hn�1[@mA�t n 
] = 0 for allt 6= 0.Having established our claim, it follows that for any bounded open setU � Rn ,Z 1�1Hn�1(@mA�t \ U) dt = Z 1�1Hn�1(@mA�t \
 \ U) dt= Z 1�1Hn�1(@mAt \
 \ U) dt= kDfk (
 \ U) <1



308 William P. Ziemerwhere the third equality is implied by (6.5) and is �nite by the assumptionthat f 2 BV (
 \U). That f� 2 BV (U) now follows from the �rst equalityand (6.6). Since U is arbitrary, we conclude that f� 2 BVloc(Rn ), as desired.Theorem 7.2. Let 
 � Rn be an arbitrary open set and assume thatf 2W 1;p(
), 1 < p <1, has the property thatlimr!0 r�n ZB(x;r)\
 jf(y)j dy = 0 (7.2)for p-q.e. x 2 @
. Then f 2W 1;p0 (
).Except for a factor of 1=2, the left side of (7.2) could be interpreted asthe inner trace of f on domains with su�cient regularity, for example, ondomains of �nite perimeter. Thus our theorem states that if the inner traceof f is zero p-q.e. on @
, then f 2 W 1;p0 (
).Proof. De�ne f� as in (6.1). The proof consists of the following steps.Step 1. f� is approximately continuous Hn�1-a.e. in Rn .Recall that f has a Lebesgue point at p-q.e. point in 
. Furthermore,for any set E, p(E) = 0 implies Hn�p+"(E) = 0 for all " > 0, cf. [Z], The-orem 2.6.16. In particular, Hn�1(E) = 0. Consequently, f� has a Lebesguepoint at Hn�1-almost all points in 
. Furthermore, for p-q.e. x 2 @
, weknow thatlimr!0ZB(x;r) jf�(y)j dy = limr!0 r�n ZB(x;r)\
 jf(y)j dy = 0;so f� has a Lebesgue point at Hn�1-a.e. point in @
. Finally, f� is iden-tically zero on Rn n
 and therefore we conclude that f� is approximatelycontinuous at Hn�1-a.e. on Rn .Step 2. We know from Theorem 7.1 that f� 2 BVloc(Rn ).Step 3. f� is continuous on almost all line segments parallel to the coordi-nate axes.This follows from Steps 1, 2 and Theorem 6.4.Step 4. f� is of bounded variation on each bounded interval of almost alllines parallel to the coordinate axes.This follows from Step 2 and (6.4).



Functions of least gradient and BV functions 309Step 5. f� is absolutely continuous on almost all line segments parallel tothe coordinate axes.In view of Theorem 6.5 we must show that on almost all line segmentsparallel to the coordinate axes, f� (as a function of one variable) carriessets of Lebesgue measure zero (linear measure zero) into sets of Lebesguemeasure zero. For this, consider for example a line segment � parallel tothe nth coordinate axis passing through the point x = (bx; xn) with theproperty that f�(bx; �) is continuous and of bounded variation and that f(bx; �)is absolutely continuous on each bounded interval contained in �\
. Recallfrom steps 3 and 4 and Theorem 6.6 that almost all bx in Rn�1 have thisproperty. Let E � � be a set of linear measure zero and let I be anybounded, open interval of � \ 
. For any closed interval J � I , it followsfrom Theorem 6.6 that f�(J \ E) is of measure zero and therefore, bya limiting process, f�(I \E) is of measure zero. Hence, E \�\
 is carriedinto a set of measure zero. Finally, f� is constantly zero on E\�\ (Rn n
),and so f� carries sets of measure zero into measure zero.Step 6. From Step 5 we see that the distributional partial derivativesof f� are functions and Step 2 implies that jDf�j 2 L1loc(R1 ). Since theclassical partial derivatives of f� exist almost everywhere on Rn , we havethat Df� = 0 a.e. on Rn n 
 and that Df� = Df on 
. Consequently,jDf�j 2 Lp(Rn ). Theorem 6.6 implies that f� 2W 1;p(Rn ) and sincelimr!0ZB(x;r) jf�(y)j dy = 0for p-q.e. x 2 Rn n
, it follows from Theorem 6.1 that f� 2 W 1;p0 (
). Asf� = f on 
, it follows that f 2 W 1;p0 (
) as desired.8 Extensions to W k;p(
)As in Theorem 7.2, we address the problem of replacing the requirementthat f 2 W k;p(Rn ) with f 2 W k;p(
). This will be an easy consequence ofTheorems 6.1 and 7.1.For this, we begin with the following observation. If 
 � Rn is an arbi-trary open set and f 2W k;p0 (
), then f� 2 W k;p(Rn ) andD�f� = (D�f)� (8.1)for each multiindex 0 � j�j � k.



310 William P. ZiemerWe now are in a position to prove the following.Theorem 8.1. Let k be a positive integer, let 1 < p < 1 and letf 2W k;p(
). If 
 � Rn is an arbitrary open set, then f 2 W k;p0 (
) ifand only if limr!0 r�n ZB(x;r)\
 jD�f(y)j dy = 0 (8.2)for Ck�j�j;p-q.e. x 2 Rn n
 and for all multiindices �, 0 � j�j � k � 1.Proof. The proof of su�ciency is immediate and thus we will consider onlynecessity. This proceeds by induction on k with the case k = 1 having beenestablished by Theorem 7.2. Assume that f 2 W k;p(
) satis�es condition(8.2). Then f 2 W k�1;p(
), and since Ck�1�j�j;p � Ck�j�j;p for every mul-tiindex �, 0 � j�j � k � 2, it follows that f satis�es condition (8.2) as anelement of W k�1;p(
). Thus by the induction hypothesis we conclude thatf 2W k�1;p0 (
) and hence that f� 2W k�1;p(Rn ).Let � be a multiindex with j�j = k � 1, and de�ne g := D�f . Theng 2 W 1;p(
) satis�es the hypotheses of Theorem 7.2, which implies thatg� 2 W 1;p(Rn ). Thus by (8.1), we have that D�f� = (D�f)� 2 W 1;p(Rn )whenever j�j = k � 1. It follows that f� 2 W k;p(Rn ). Now we may ap-ply Theorem 6.1 to conclude that f� 2 W k;p0 (
). This yields our desiredconclusion since f� = f on 
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