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THE COMMUTATORS OF ANALYSIS

AND INTERPOLATION

Joan Cerdà

Abstract. The boundedness properties of commutators for operators are

of central importance in Mathematical Analysis, and some of these com-
mutators arise in a natural way from interpolation theory. Our aim is to
present a general abstract method to prove the boundedness of the com-
mutator [T, Ω] for linear operators T and certain unbounded operators Ω

that appear in interpolation theory, previously known and a priori unrelated
for both real and complex interpolation methods, and also to show how the
abstract result applies to some very concrete examples.

In Section 1 some examples are given to present some instances where
these commutators are used in Analysis. Section 2 is the basic one and con-
tains a general “commutator theorem” for operators of interpolation meth-
ods, and the basic idea is that Ω appears as a combination of two admissi-

ble interpolation methods, Φ and Ψ, that correspond to Φ(F ) = F (ϑ) and
Ψ(f) = F ′(ϑ) in the case of the complex method, with Ω(f) = Ψ(F ) if
Φ(F ) = f (with a natural boundedness condition over the norms). Section 3
deals with the complex interpolation method and contains typical applica-

tions to commutators with pointwise multipliers. Section 4 refers to the
real method, and an application to commutators with Fourier multipliers is
included.
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1. Introduction

By an operator T between two (complex Banach) spaces, A and B, we
understand a mapping (usually linear) from a dense subspace D(T ) of A
to B. We write T ∈ L(A,B) or T : A→ B to mean that T is bounded and
linear, if no further indication is given.

We use the notation “X . Y ” instead of “X ≤ c Y for some constant
c > 0”, and “X ≃ Y ” for “X . Y and Y . X”. Thus, ‖T (x)‖B . ‖x‖A

means that the operator T is bounded.
The mapping properties of commutators [T,M ] = TM−MT for operators

such as the following ones (and their natural extensions to several variables
and to different function spaces), are of central importance in Analysis.

• Pointwise multipliers, Mvf = vf , multiplication by a function v.
Recall that Mv : L2(R) → L2(R) if and only if v ∈ L∞(R), and then
‖Mv‖ = ‖v‖∞.

• Fourier multipliers, Tµ, where its “symbol” µ is also a given function
and T̂µf = µf̂ , where

f̂(ξ) =
∫

R
f(x) e−2πixξ dx,

i.e., µ multiplies at “the other side” of the Fourier transform. Again
Tµ : L2(R) → L2(R) if and only if µ ∈ L∞, and ‖Tµ‖ = ‖µ‖∞.
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• Singular integrals

(Tf)(x) =
∫

R
K(x, y)f(y) dy,

defined by a kernel K(x, y) that may have a singularity concentrated
for y near x, such as Calderón-Zygmund operators.

• Pseudo-differential operators, formally

(Ψaf)(x) =
∫

R
a(x, ξ)f̂(ξ) e2πixξ dξ.

Depending on the symbol a(x, ξ), the operator Ψa may be a pointwise
multiplier, a Fourier multiplier, a singular integral or a differential
operator.

1.1. An easy example from quantum theory
If T and M are continuous operators on a space E, then obviously [T,M ]
is also continuous. But assume that they are not both bounded. Then the
domain of [T,M ],

D[T,M ] := {f ∈ D(M) : T (f) ∈ D(M)},

may not be dense in E; it can even be equal to {0}.
But in some important situations D[T,M ] is dense and the commutator is

bounded, i.e., it has a well-defined bounded extension (still denoted [T,M ])
to the whole space E.

This is easily understood with the elementary example of the commutator
[p, q] on the “states space” L2 = L2(R) for the moment and position opera-
tors p and q for a single particle constrained to one dimension in quantum
mechanics. They are the self-adjoint operators p(f) = −if ′ (distributional
derivative) and q(f)(x) = xf(x) (q = Mx), with domains {f ∈ L2 : f ′ ∈ L2}
and {f ∈ L2 : q(f) ∈ L2}. They are both unbounded but D[p, q] contains
all test functions g in the Schwartz class S, a dense subspace of L2.

An obvious computation,

[p, q]f(x) = −i(xf(x))′ + xif ′(x) = −if(x),

shows that the cancellation given by the derivative provides a unique con-
tinuous extension −i Id of [p, q], and we may say that this commutator is
bounded on L2 and write [p, q] = −i Id.
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1.2. Commutators of pseudo-differential operators
The same happens with pseudo-differential operators that arise in a natu-
ral way when using the Fourier integral in the theory of partial differential
equations. We refer to [St2] for the details about the following facts.

As we have said the pseudo-differential operators admit the description
(in the one variable case)

(Ψaf)(x) =
∫

R
a(x, ξ)f̂(ξ) e2πixξ dξ, (1)

with some restrictions on the symbol, a(x, ξ), that allow to define the above
integral for functions that belong to S, which is dense in many function
spaces. If a(x, ξ) is C∞ and satisfies the estimates

|∂α
x ∂

β
ξ a(x, ξ)| ≤ Cαβ(1 + |ξ|)m−β

for all indices α and β, we say that it is a standard symbol of order m and
write a ∈ Sm; it is easily checked that the integral (1) is then absolutely
convergent and infinitely differentiable, and integration by parts shows that
Ψa(S) ⊂ S. As fundamental examples, let us mention polynomials P =∑m

α=0 aα(x)(2πiξ)α of degreem in ξ where the coefficients aα(x) are bounded
C∞ functions with bounded derivatives of all orders. In this case, it follows
from the properties of the Fourier integral that

(ΨP f)(x) =
∫

R
P f̂(ξ) e−2πixξ dξ

=
m∑

α=0

aα(x)
∫

R
(2πiξ)αf̂(ξ) e2πixξ dξ (f ∈ S),

hence, (ΨP f)(x) =
∑m

α=0 aα(x)f (α)(x), and ΨP = P (x,D) is a differential
operator of order m with variable coefficients.

If the symbol does not depend on ξ, a(x, ξ) = v(x), then the Fourier
inversion theorem gives

(Ψvf)(x) = v(x)
∫

R
f̂(ξ) e2πixξ dξ = (Mvf)(x),

a pointwise multiplier. If it does not depend on x, a(x, ξ) = µ(ξ), we get

(Ψµf)(x) =
∫

R
µ(ξ)f̂(ξ) e2πixξ dξ = (Tµf)(x),

a Fourier multiplier.
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As the first fact concerning these operators let us mention that, if a ∈ S0,
then Ψa is bounded on Lr (1 < r < ∞), and if a ∈ Sm, then Ψa : W k,r →
W k−m,r (1 < r < ∞, k ≥ m). Here W k,r = W k,r(R) denotes the usual
Sobolev space of all f ∈ Lr such that the derivatives f (α) (α ≤ k) satisfy
‖f‖k,r :=

(∑k
α=0 ‖f (α)‖r

r

)1/r
<∞.

The moment operator p is the pseudo-differential operator with the sym-
bol 2πξ in S1. It follows that p : W k,r → W k−1,r and it is unbounded on
Ls for all s, but for any a = a(x, ξ) ∈ Sm, a cancellation originated by the
derivative appears again in the commutator

[Ψa, p]f(x) = −i
∫

R

[
af̂ ′(ξ) e2πixξ +f̂(ξ)

∂

∂x
(a e2πixξ)

]
dξ

= −i
∫

R

∂a(x, ξ)
∂x

f̂(ξ) e2πixξ dξ,

i.e., [p,Ψa] = Ψi∂a/∂x, another pseudo-differential operator with standard
symbol also of order m. Hence, if a is of order 0, then the same happens
for [p,Ψa] and it is bounded on Lr (1 < r < ∞); if a(x, ξ) = v(x), then
[p,Mv] = [p,Ψa] = iMv′ is also bounded on Lr (1 < r <∞).

Similarly, for the position operator q = Mx we have [Ψa, q] = Ψb with the
symbol b = −(2πi)−1 ∂a/∂ξ of order m− 1 if a ∈ Sm.

1.3. Calderón commutators
Some other well-known examples arise with the Cauchy singular integral.

Let γ be a simple closed C1 curve in the complex plane C. The Cauchy
integral of a function f integrable on γ is

(Cγf)(z) =
1

2πi

∫

γ

f(ζ)
ζ − z

dζ (z /∈ γ).

Hence, if γ is the oriented boundary of a domain D, if f is continuous on D
and analytic on D, and if z ∈ D, then the Cauchy integral formula reads
(Cγf)(z) = f(z).

If z = γ(t) is on the curve, a singular integral in the sense of Cauchy
principal value appears,

(Sγf)(x) =
1
πi

∫
f(t)γ′(t)
γ(x)− γ(t)

dt,

where we write f(t) instead of f(γ(t)). This singular integral is associated
with the problem of finding the inner and outer non-tangential limits, C+

γ f
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and C−γ f , as z → γ. As a matter of fact, C+
γ f = f if and only if C+

γ f ∈ L1(γ)
and Sγ(C+

γ f) = C+
γ f . Privalov proved (see [St2]) that

C±γ f(z) = ±f(z)
2

+
1
2
Sγf(z) (z ∈ γ).

In this setting, the basic problem is to obtain the L2-boundedness of C±γ ,
i.e., of Sγ . If γ is C2, then this is equivalent to the L2-boundedness of the
Hilbert transform

Hf(x) =
1
π

∫

R

f(y)
x− y

dy,

which is the Fourier multiplier with the symbol µ(x) = −i sgn(x), and it
is a bounded operator on Lp if 1 < p < ∞. However, if γ is a C1 curve,
then the problem is much more involved and leads to curves y = A(x) with
a bounded derivative, i.e.

γ(x) = x+ iA(x), γ′(x) = 1 + iA′(x) (A′ ∈ L∞(R)).

Hence, we need to deal with the singular integral

(Sγf)(x) :=
∫ +∞

−∞

f(t)(1 + ia(t))
x− t+ i(A(x)−A(t))

dt,

where we may incorporate the bounded factor 1 + iA′(t) to f(t) and then
the kernel is

K(x, y) =
1

x− y

1

1 + iA(x)−A(y)
x−y

.

When |A′(x)| ≤M < 1, we have the decomposition

K(x, y) =
∞∑

k=0

(−i)kKk(x, y), Kk(x, y) =
1

x− y

(
A(x)−A(y)

x− y

)k

,

and to study the L2-boundedness of Sγ we may consider the singular integrals

(Skf)(x) =
∫

R
Kk(x, y)f(y) dy.

Note that πS0 = H, the Hilbert transform, and that

S1f(x) = A(x)
∫

f(y)
(x− y)2

dy −
∫
A(y)f(y)
(x− y)2

dy = [H2,MA]f(x),
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is the commutator of the pointwise multiplier MA with the singular integral
H2f(x) =

∫
(x − y)−2f(y) dy. If Hkf(x) =

∫
(x − y)−kf(y) dy, then Sk is

a higher order commutator; e.g., S2f = A2H3f − 2AH3(Af) +H3(A2f) =
[[H3,MA],MA]f .

The operators Sk are the Calderón commutators and the proof of the
L2-boundedness of Sγ follows from estimates

‖Sk‖ ≤ CLkMk.

In 1977, A. P. Calderón obtained the boundedness of Sγ if M is small,
and previously (in 1965) he had proved that the first commutator S1 is
bounded. The complete result, for any M , was achieved by R. Coifman,
A. McIntosh and Y. Meyer in 1982. We refer to [St2] for the full descrip-
tion of these facts.

2. The commutator theorem of interpolation theory

2.1. Interpolation
Let us quickly recall some facts of interpolation theory (we refer to [BK],
[BL], [BS], [KPS] and [Tr] for more details).

With the notation T : Ā → B̄ or T ∈ L(Ā, B̄) we represent a bounded
linear operator between two couples of spaces in the sense of interpolation
theory, where

(a) Ā = (A0, A1) (and the same for B̄) is a Banach couple, in the sense
that A0 and A1 are two (complex) Banach spaces continuously embedded in
a common Hausdorff topological linear space, that allows to endow the sum
space Σ(Ā) = A0 +A1 with the norm

‖a‖Σ(Ā) := inf
a=a0+a1

(‖a0‖0 + ‖a1‖1) (a ∈ Σ(Ā))

(we set ‖ · ‖j = ‖ · ‖Aj
, and ‖x‖j = ∞ if x 6∈ Aj);

(b) T : Σ(Ā) → Σ(B̄) and ‖T (a)‖j ≤ Mj‖a‖j (0 ≤ Mj < ∞ and a ∈ Aj

for j = 0, 1). The norm of T is ‖T‖ := max(‖T‖0, ‖T‖1) where ‖T‖j denotes
the norm of the restriction T : Aj → Bj .

An interpolation method associates with Ā and B̄ two Banach spaces,
A and B, continuously included in Σ(Ā) and Σ(B̄), respectively, such that
T : A → B whenever T : Ā → B̄ (this is referred to as an interpolation
theorem of the interpolation method).

Complex interpolation methods are the abstract counterpart of the
Riesz-Thorin convexity theorem (see Example 1 below).
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For the Calderón complex method ([Ca]), that will be our model example,
for a given ϑ, 0 < ϑ < 1, and for every couple Ā, a certain Banach space
F(Ā) of vector-valued functions is considered. It contains all bounded Σ(Ā)-
valued continuous functions on the unit strip S̄ = {z ∈ C : 0 ≤ ℜz ≤ 1},

F : S̄ → Σ(Ā),

which are analytic on S = {z ∈ C : 0 < ℜz < 1} and such that Fj(t) :=
F (j + it) define two bounded continuous functions Fj : R → Aj with the
property limt→∞ ‖Fj(t)‖j = 0, where again we set ‖ · ‖j = ‖ · ‖Aj

(j = 0, 1).
The norm on F(Ā) is

‖F‖F := max
j=0,1

(sup
t∈R

‖Fj(t)‖j).

Then we have the interpolated space

[Ā]ϑ := {F (ϑ) : F ∈ F(Ā)} (2)

with the norm ‖a‖[ϑ] := inf{‖F‖F : F (ϑ) = a}.
It is very easy to see that T (F ) := T ◦ F ∈ F(B̄) and ‖T (F )‖F ≤

‖T‖ ‖F‖F if T : Ā → B̄ and F ∈ F(Ā). Obviously, the interpolation
theorem follows from this fact.

Given Banach spaces A and B and an operator T , the main goal is to
prove that T : A → B, by showing that A and B are interpolated spaces
(A = [Ā]ϑ and B = [B̄]ϑ for some ϑ in the case of the complex method) of
two convenient couples Ā and B̄, for which it is known that T : Ā→ B̄.

Thus, a basic problem is to identify A = [Ā]ϑ and B = [B̄]ϑ, at least by
equivalence of norms showing that ‖a‖[ϑ] ≃ ‖a‖A for a ∈ Σ(Ā). This means
that for every a we must find some Fa ∈ F(Ā) such that Fa(ϑ) = a and
‖a‖A ≃ ‖Fa‖F (i.e., ‖a‖A ≤ ‖Fa‖F ≤ c‖a‖A for some c = cĀ > 1), and then
we say that Fa is “almost optimal” (for ‖a‖A).

Let us describe the case of interpolation of couples of Lp-spaces of vector-
valued function by the Calderón method that will be useful in the sequel.
We always assume that 0 < ϑ < 1, p0, p1, p ≥ 1, and p(ϑ) is such that
1/p(ϑ) = (1 − ϑ)/p0 + ϑ/p1. A weight ω is a locally integrable positive
function (on a given σ-finite measure space) and, if E is a Banach space and
|f |(·) = ‖f(·)‖E , then Lp(E,ω) is defined by the condition

∫
|f |pω <∞.

Theorem 1. Let ω0, ω1 be two weights, ω0, ω1 > 0, and let E be a complex
Banach space. Then

[Lp0(ω0, E), Lp1(ω1, E)]ϑ = Lp(ω,E),
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where p = p(ϑ) and ω = ω
(1−ϑ)p/p0
0 ω

ϑp/p1
0 . An almost optimal selection in

F(Lp0(ω0, E), Lp1(ω1, E)) for the norm of f ∈ [Lp0(ω0), Lp1(ω1)]ϑ is

Ff (z) =
f

‖f(·)‖E

( ‖f(·)‖E

‖f‖Lp(ω,E)

)((1−z)/p0+z/p1)p

‖f‖Lp(ω,E)

(ω1

ω0

)p(ϑ−z)/(p0p1)

.Proof. Obviously, Ff (ϑ) = f . If |f | := ‖f(·)‖E , f0 := |Ff (it)| and
f1 := |Ff (1 + it)|, then straightforward computations show that

f0 = ‖f‖1−p/p0

Lp(ω,E)|f |p/p0

(ω1

ω0

)pϑ/(p0p1)

and

f1 = ‖f‖1−p/p1

Lp(ω,E)|f |p/p1

(ω1

ω0

)p(1−ϑ)/(p0p1)

do not depend on t. It is an easy exercise to show that

‖Ff‖F = max(‖f0‖Lp0 (ω0), ‖f1‖Lp1 (ω1)) = ‖f‖Lp(ω,E).

�
We have found that Ff is not only almost optimal for ‖f‖[ϑ], but also

‖Ff‖F = ‖f‖Lp(ω,E).
As special cases we have the following examples:Example 1 (Riesz-Thorin theorem). Let p = p(ϑ). Then [Lp0 , Lp1 ]ϑ = Lp

and

Ff (z) :=
f

|f |

( |f |
‖f‖p

)((1−z)/p0+z/p1)p

‖f‖p

is an almost optimal selection for ‖f‖[ϑ] ≃ ‖f‖Lp .Example 2. If ω = ω1−ϑ
0 ωϑ

1 , then [Lp(ω0, E), Lp(ω1, E)]ϑ = Lp(ω,E) and

Ff (z) := ω
(z−ϑ)/p
0 ω

(ϑ−z)/p
1 f

is an almost optimal selection for ‖f‖[ϑ] ≃ ‖f‖Lp(ω,E).Remark 1. If 1 < p <∞, then there is a class of weights ω (the Mucken-
houpt Ap-weights) such that the singular integral operators of the Calderón-
Zygmund class (e.g., the Hilbert transform) are bounded on Lp(ω). Ex-
ample 2 shows that, if ω0, ω1 ∈ Ap, then also ω := ω1−ϑ

0 ωϑ
1 ∈ Ap for all

0 < ϑ < 1.
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2.2. The Rochberg and Weiss commutator theorem
In [RW], R. Rochberg and G. Weiss considered operators Ω(f) := F ′f (ϑ)
to analyse the rate of change of the interpolated norms and obtained esti-
mates for [T,Ω].

In order to explain the basic ideas, we start with comparing the deriva-
tives of the functions that appear along Thorin’s proof of the Riesz-Thorin
theorem with those of certain modifications of these functions. This will be
useful to show how cancellation, optimal selection and a second interpolation
method are involved. Note that the Riesz-Thorin theorem is the Calderón
complex method applied to the couple (Lp0(λ), Lp1(λ)).

We consider the “diagonal case” and an operator

T : (Lp0(λ), Lp1(λ)) → (Lp0(µ), Lp1(µ)),

linear and bounded, i.e. ‖Tf‖pj
≤ Mj‖f‖pj

. Then T : Lp(λ) → Lp(µ) with
a boundedness constantM satisfyingM ≤M1−ϑ

0 Mϑ
1 if 1 ≤ p0 < p < p1 ≤ ∞

and 1/p = (1 − ϑ)/p0 + ϑ/p1. This means that, for any simple function f
such that ‖f‖p = 1,

∣∣∣
∫
gTf dµ

∣∣∣ ≤M (g simple and ‖g‖p′ = 1).

In Thorin’s proof this estimate is obtained as an application of the three-lines
theorem to the function

F (z) :=
∫
gzTfz dµ

with

fz = |f |α(z) sgn f, gz = |g|(1−α(z))p′ sgn g, α(z) =
1− z

p0
+

z

p1

(hence p = 1/α(ϑ) and F (ϑ) =
∫
g(Tf) dµ). Let also

G(z) :=
∫
gz(Tf)z dµ

with (Tf)z = |Tf |α(z)p sgn(Tf) and compare the derivatives

F ′(ϑ) =
∫ [( p′

p0
− p′

p1

)
(g log |g|)Tf −

( p

p0
− p

p1

)
gT (f log |f |)

]
dµ,

G′(ϑ) =
∫ [( p′

p0
− p′

p1

)
(g log |g|)Tf −

( p

p0
− p

p1

)
gTf log |Tf |

]
dµ.
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If we denote Lh = h log |h|, we obtain

G′(ϑ)− F ′(ϑ) =
( p

p0
− p

p1

)∫
g[T (Lf)− L(Tf)] dµ, (3)

and for the circle γ = {z ∈ C : |z − ϑ| = r} with r = d(ϑ, ∂S),

|F ′(ϑ)| =
∣∣∣ 1
2πi

∫

γ

F (z)
(z − ϑ)2

dz
∣∣∣ ≤ M

r
, |G′(ϑ)| ≤ M

r
. (4)

From (3) and (4) it follows that

‖[T,L]f‖p ≤ C (‖f‖p = 1). (5)

Although L is not homogeneous, the commutator [T,L] = TL−LT satisfies
[T,L](λf) = λ[T,L]f and (5) is equivalent to

‖[T,L]f‖p ≤ C‖f‖p. (6)

For the homogeneous operator

Ω(h) = h log
|h|
‖h‖p

, (7)

L−Ω : Lp(λ) → Lp(µ) is bounded, since ‖(L−Ω)h‖p = ‖h‖p log ‖h‖p; thus,
from the Riesz-Thorin theorem and from (6) we obtain

‖[T,Ω]f‖p ≤ C‖f‖p, (8)

which is the commutator theorem.
This is how R. Rochberg and G. Weiss explain in [RW] that the deriva-

tives of some analytic families of operators in complex interpolation theory
lead to estimates for [T,Ω], where Ω can be unbounded and non-linear.

The following facts were basic in their method:
1. With the evaluation δϑ : F 7→ F (ϑ), the evaluation of the derivatives,
δ′ϑ : F 7→ F ′(ϑ), is used.

2. The functionals δϑ and δ′ϑ are combined through a cancellation prop-
erty.

3. Almost optimal selections Ff are needed to identify the interpolated
spaces, such as [Lp0 , Lp1 ]ϑ = Lp, and an Ω-operator is defined by
applying δ′ϑ to these selections.
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The functionals δϑ and δ′ϑ can be used in the abstract frame of Calderón’s
method (2) for Banach couples Ā by applying δ′ϑ to an almost optimal func-
tion Fa for every a ∈ [Ā]ϑ.

Real interpolation methods are the abstract counterpart of the Mar-
cinkiewicz interpolation theorem. We refer to Sections 4.1 and 4.2, where
we show that these methods can be described following the pattern of the
complex method.

A corresponding study for the real method was carried out by B. Jaw-
erth, R. Rochberg and G. Weiss ([JRW]), with strong formal analogies
to the complex method, but with very different details.

2.3. An abstract commutator theorem
In order to obtain a unified and extended method, using the interpolation
theory previously defined in [W], we say as in [CCS1], [CCS2] and [CCS3],
that (H,Φ) (or Φ) is an interpolator over the functional spaces spaces H(Ā)
if H is a functor from Banach couples to normed spaces,

H : Ā 7→ H(Ā), H : L(Ā; B̄) 7→ L(H(Ā);H(B̄)),

and Φ is a family of bounded linear operators

ΦĀ ∈ L(H(Ā); Σ(Ā))

such that
TΦĀ = ΦB̄H(T ) (T ∈ L(Ā; B̄)). (9)

Then, as in the case of the complex method (2), we obtain an interpolation
method,

ĀΦ := ΦĀ(H(Ā)), ‖a‖Φ := inf{‖f‖ : a = ΦĀ(f)}
and, for a fixed c = cĀ > 1, we can associate with every a ∈ ĀΦ an element
ha ∈ H(Ā) such that ΦĀ(ha) = a and ‖a‖Φ ≤ ‖ha‖ ≤ c‖a‖Φ (i.e. ‖a‖Φ ≃
‖ha‖). We say that

a ∈ ĀΦ 7→ ha ∈ H(Ā)

is an almost optimal selection for the interpolation method.
A couple of interpolators will be a pair (Φ,Ψ) of interpolators on the

same functional spaces H(Ā). This corresponds to Φ(F ) = F (ϑ) = δϑ(F )
and Ψ(f) = F ′(ϑ) = δ′ϑ(F ) of the complex method. We define an associated
Ω-operator,

ΩĀa := ΨĀ(ha) ∈ ĀΨ (a ∈ ĀΦ),

and [T,Ω] := TΩĀ − ΩB̄T = TΩ − ΩT (we suppress the subscripts Ā, B̄).
Then

Ω : ĀΦ → ĀΨ →֒ Σ(Ā). (10)
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Theorem 2. If (Φ,Ψ) satisfies the cancellation condition

ΨĀ(Ker ΦĀ) →֒ Im ΦĀ, (11)

a bounded inclusion, and T ∈ L(Ā; B̄), then [T,Ω] : ĀΦ → B̄Φ is a bounded
(possibly non-linear) operator.Proof. Let us denote

B̄Ψ,(Φ) := {b = ΨB̄(f) : f ∈ H(B̄), ΦB̄(f) = 0} = ΨB̄(Ker ΦB̄)

with ‖b‖Ψ,(Φ) = inf{‖f‖ : ΦB̄(f) = 0, b = ΨB̄(f)}. By condition (11),

‖b‖Φ ≤ C‖b‖Ψ,(Φ).

Since ΦB̄(H(T )ha−hTa) = TΦĀfa−ΦB̄hTa = 0 and [T,Ω]a = TΨha−ΨhTa

it follows that [T,Ω]a ∈ B̄Ψ,(Φ) and

‖[T,Ω]a‖Ψ,(Φ) ≤ ‖H(T )ha − hTa‖ . ‖H(T )‖ ‖a‖Φ + ‖Ta‖Φ . ‖a‖Φ.
Hence, ‖[T,Ω]a‖Φ . ‖a‖Φ. �

We also say that Ω̃ : ĀΦ → Σ(Ā) is an Ω-operator for the couple of
interpolators if Ω̃−λΩ is bounded on the interpolated spaces ĀΦ for some λ.
In this case we still have the commutator theorem

[T, Ω̃] : ĀΦ → B̄Φ (T ∈ L(Ā; B̄)),

since [T, Ω̃] = [T, λΩ] + T (Ω̃− λΩ) + (λΩ− Ω̃)T .
For another almost optimal selection a 7→ h̃a we have another operator Ω̃,

but Ω and Ω̃ are equivalent, since, for any a ∈ ĀΦ, Φ(ha − h̃a) = 0 and
(Ω̃− Ω)a = Ψ(ha − h̃a) ∈ ĀΨ,(Φ) with

‖(Ω̃− Ω)a‖Ψ,(Φ) ≤ ‖ha − h̃a‖ ≤ 2c‖a‖Φ.Remark 2. Without the cancellation condition (11), we still have [T,Ω] :
ĀΦ → B̄Ψ,(Φ).

We say that (Φ,Ψ) is almost compatible if condition (11) holds. In some
examples we have the more complete cancellation property ΨĀ(Ker ΦĀ) =
Im ΦĀ (with ‖a‖Φ ≃ ‖a‖Ψ,(Φ)) and then we say that the couple of interpo-
lators is compatible.

The operator Ω may be not only unbounded, but even non-linear. It is
always equivalent to a homogeneous one (satisfying Ω̃(λx) = λΩ̃(x)), since
we may take a homogeneous almost optimal selection (satisfying hλx = λhx),
as we shall always assume.

We shall be mainly concerned with applications of Theorem 2 and with
the domain and range spaces of Ω.
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tator theory is [CKMR]. It refers to the special case of operators Ω that can
be described through derivatives.

2.4. Domain space
Assume that (Φ,Ψ) is an almost compatible couple of interpolators and that
we have chosen a homogeneous almost optimal selection hλx = λhx.

Definition. On the set Dom(ΩĀ) := {a ∈ ĀΦ : ΩĀa ∈ ĀΦ} we define

‖a‖D := ‖a‖Φ + ‖ΩĀa‖Φ.

Observe that ‖a‖D > 0 when a 6= 0, and ‖λa‖D = |λ| ‖a‖D, since Ω is
assumed to be homogeneous. Let us see that it is also “quasi-additive”.

Lemma 1. If (Φ,Ψ) is almost compatible, then for a, b ∈ ĀΦ,

ΩĀ(a+ b)− ΩĀa− ΩĀb ∈ ĀΦ,

and there is a constant C = CA such that

‖ΩĀ(a+ b)− ΩĀa− ΩĀb‖Φ ≤ C(‖a‖Φ + ‖b‖Φ).Proof. We have ΩĀ(a + b) − ΩĀa − ΩĀb = Ψ(ha+b − ha − hb), and
Φ(ha+b − ha − hb) = 0. Hence, Ψ(ha+b − ha − hb) = Φ(f) ∈ ĀΦ and

‖ΩĀ(a+ b)− ΩĀa− ΩĀb‖Φ ≤ ‖f‖ . ‖ha+b − ha − hb‖ . ‖a‖Φ + ‖b‖Φ.

�
Theorem 3. (a) If (Φ,Ψ) is almost compatible, then Dom(ΩĀ) is a quasi-
normed space and Dom(ΩĀ) = ΦĀ(Ψ−1(ĀΦ)) (equivalent “norms”, and for
another almost optimal selection, Dom(ΩĀ) = Dom(Ω̃Ā)).

(b) If (Φ,Ψ) is compatible, then

Dom(ΩĀ) = {ΦĀ(f) : f ∈ H(Ā), ΨĀ(f) = 0} = ĀΦ,(Ψ),

with ‖x‖D ≃ inf{‖f‖H(Ā) : x = ΦĀ(f), ΨĀ(f) = 0}.Proof. (a) If a, b ∈ Dom(ΩĀ), then from Lemma 1 we obtain

‖a+ b‖D = ‖a+ b‖Φ + ‖ΩĀ(a+ b)‖Φ
≤ ‖a‖Φ + ‖b‖Φ + ‖ΩĀ(a+ b)− ΩĀa− ΩĀb‖Φ + ‖ΩĀa‖Φ + ‖ΩĀb‖Φ
. ‖a‖Φ + ‖b‖Φ + ‖a‖D + ‖b‖D . ‖a‖D + ‖b‖D.
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To show that Dom(Ω) = Φ(Ψ−1(ĀΦ)), suppose that a ∈ Dom(Ω); then
there exists ha ∈ H(Ā) such that Φ(ha) = a, ‖ha‖ ≤ C‖a‖Φ and Ψ(ha) =
Ω(a) ∈ ĀΦ. Hence ha ∈ Ψ−1(ĀΦ), and a ∈ Φ(Ψ−1(ĀΦ)).

Conversely, if a = Φ(h), Ψ(h) = Φ(h′), and Ω(a) = Ψ(ha), then we
have ΦĀ(ha − h) = 0 and thus Ψ(ha − h) = Φ(h′′) ∈ ĀΦ. Hence, Ω(a) =
Ψ(h) + Φ(h′′) = Φ(h′) + Φ(h′′) ∈ ĀΦ.

(b) Let now X := ΦĀ(Ker Ψ) with

‖x‖X = inf{‖f‖ : x = Φ(f), Ψ(f) = 0}.

For any x ∈ Dom(Ω) we have x = Φ(hx) ∈ ĀΦ, Ω(x) = Ψ(hx) = Φ(h) =
Ψ(g), with Φ(g) = 0, ‖h‖ . ‖Ω(x)‖Φ, ‖g‖ . ‖h‖. Then x = Φ(hx − g),
Ψ(hx − g) = 0 and we have x ∈ X, with

‖x‖X ≤ ‖hx − g‖ . ‖x‖Φ + ‖Ω(x)‖Φ.

Hence, ‖x‖X . ‖x‖D.
Conversely, if x ∈ X, x = Φ(f), Ψ(f) = 0 and ‖f‖ . ‖x‖X , then Ω(x) =

Ψ(hx) = Ψ(hx−f) = Φ(h), with ‖h‖ . ‖hx−g‖ (observe that Φ(hx−f) = 0).
Hence Ω(x) ∈ ĀΦ and

‖Ω(x)‖Φ . ‖hx − f‖ . ‖x‖Φ + ‖x‖X . ‖g‖+ ‖x‖X . ‖x‖X .

Finally,

‖x‖D = ‖x‖Φ + ‖Ω(x)‖Φ . ‖f‖H(Ā) + ‖ΩĀx‖Φ . ‖x‖X .

�
Observe that, as a consequence of Theorem 3, the necessary and sufficient

condition for Dom(ΩĀ) = ĀΦ is that H(Ā) = Ψ−1
Ā

(ĀΦ) + Ker ΦĀ. We can
also give a converse result for (b):

Proposition 1. (Φ,Ψ) is compatible if and only if (Φ,Ψ) is almost compat-
ible, Dom(ΩĀ) = ΦĀ(Ker ΨĀ) and ĀΦ →֒ ĀΨ.Proof. If Dom(Ω) = Φ(Ker Ψ) = Φ(Ψ−1(ĀΦ)), then given h ∈ Ψ−1(ĀΦ)
there exists h′ ∈ Ker Ψ such that h−h′ ∈ Ker Φ. Thus, Ψ−1(ĀΦ) ⊂ Ker Φ+
Ker Ψ. Hence, if a ∈ ĀΦ and h ∈ H(Ā) such that Ψ(h) = a, we have
h = h1 + h2, Φ(h1) = Ψ(h2) = 0. Therefore, a = Ψ(h1) ∈ Ψ(Ker Φ).

Conversely, if (Φ,Ψ) is compatible, then, by Theorem 3, we only need to
show that ĀΦ →֒ ĀΨ. But if a ∈ ĀΦ, then a = Φ(ha) = Ψ(g) ∈ ĀΨ and
‖g‖ . ‖ha‖ . ‖a‖Φ. �



36 JOAN CERDÀRemark 4. If the couple of interpolators (Φ,Ψ) is not almost compatible,
we may define

Dom(ΩĀ) := {a ∈ ĀΦ : ΩĀa ∈ ĀΨ,(Φ)}

and
‖a‖D := ‖a‖Φ + ‖Ω(a)‖Ψ,(Φ).

Then we still have Dom(ΩĀ) = ĀΦ,(Ψ) and ‖a‖D ≃ ‖a‖Φ,(Ψ).
Indeed, if a ∈ ĀΦ,(Ψ), then a = Φ(f), Ψ(f) = 0 and ‖f‖ ≃ ‖a‖Φ,(Ψ).

Since Ω(a) = Ψ(ha), we get Ω(a) = Ψ(ha − f) and Φ(ha − f) = 0. Thus,
Ω(a) ∈ ĀΨ,(Φ) and ‖Ω(a)‖Ψ,(Φ) ≤ ‖ha − f‖ . ‖a‖Φ + ‖a‖Φ,(Ψ). Hence,
‖a‖D = ‖a‖Φ + ‖Ω(a)‖Ψ,(Φ) . ‖a‖Φ,(Ψ).

Conversely, let a ∈ Dom(ΩĀ). Since Ω(a) ∈ ĀΨ,(Φ), we have Ω(a) = Ψ(h)
with Φ(h) = 0. Then Φ(ha − h) = a, Ψ(ha − h) = 0, and it follows that
a ∈ ĀΦ,(Ψ) and

‖a‖Φ,(Ψ) ≤ ‖ha − h‖ . ‖a‖Φ + ‖Ω(a)‖Ψ,(Φ) . ‖a‖D.

2.5. Range

Other important sets related with the Ω-operator are the range spaces:

Definition. Rang(ΩĀ) := {ΩĀa : a ∈ ĀΦ}, endowed with the norm

‖x‖R := inf{‖a‖Φ : ΩĀa = x}.

In general, Rang(ΩĀ) is not a linear space and it depends on the almost
optimal selection used to define Ω. It is easy to check that λx ∈ Rang(ΩĀ)
and ‖λx‖R = |λ| ‖x‖R, if x ∈ Rang(ΩĀ).

We shall also consider ĀΦ + Rang(ΩĀ) with

‖x‖+ := inf{‖a‖Φ + ‖ΩĀb‖R : x = a+ ΩĀb, a, b ∈ ĀΦ}.

It follows from the definitions that Rang(ΩĀ) →֒ ĀΨ and ĀΦ +Rang(ΩĀ) →֒
ĀΦ + ĀΨ. In fact, for x = ΩĀa with ‖a‖Φ . ‖x‖R we have

‖x‖Ψ = ‖Ψ(ha)‖Ψ . ‖ha‖ . ‖x‖R·

We may also define ĀΨ,(Φ) + Rang(ΩĀ) in a similar way.
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Theorem 4. (a) ĀΨ,(Φ) + Rang(ΩĀ) = ĀΨ with equivalent norms. Hence,
if (Ψ,Φ) is compatible, then ĀΨ = ĀΦ +Rang(ΩĀ) with equivalent “norms”.

(b) If (Φ,Ψ) is almost compatible, then ĀΨ →֒ ĀΦ + Rang(ΩĀ) and, for
any bounded linear operator T : Ā → B̄, T : ĀΦ + Rang(ΩĀ) → B̄Φ +
Rang(ΩB̄) is bounded.Proof. (a) If x = x1 + x2 ∈ ĀΨ,(Φ) + Rang(Ω) with ‖x‖ĀΨ,(Φ)+Rang(Ω) ≃
‖x1‖Ψ,(Φ) + ‖x2‖R and ‖x2‖R ≃ ‖x3‖Φ with Ω(x3) = x2, we can consider

x1 = Ψ(f), Φ(f) = 0, ‖f‖ . ‖x1‖Ψ,(Φ),

x2 = Ω(x3), x3 ∈ ĀΦ, ‖x3‖Φ . ‖x2‖R,

and
Ω(x3) = Ψ(hx3), Φ(hx3) = x3, ‖hx3‖ . ‖x3‖Φ.

It follows that x = Ψ(f + hx3) ∈ ĀΨ and

‖x‖Ψ ≤ ‖f‖+ ‖hx3‖ . ‖x1‖Ψ,(Φ) + ‖x2‖R.

Conversely, if x ∈ ĀΨ, then x = Ψ(f) with ‖f‖ . ‖x‖Ψ. Since Ω(Φ(f)) =
Ψ(h) with Φ(h) = Φ(f) and ‖h‖ . ‖f‖, we have x−Ω(Φ(f)) = Ψ(f−h) with
Φ(f−h) = 0. Then x−Ω(Φ(f)) ∈ ĀΨ,(Φ) and ‖x−Ω(Φ(f))‖Ψ,(Φ) . ‖f‖H(Ā).
Therefore,

x = x− Ω(Φ(f)) + Ω(Φ(f)) ∈ ĀΨ,(Φ) + Rang(Ω)

with
‖x‖ĀΨ,(Φ)+Rang(Ω) . ‖f‖ . ‖x‖Ψ.

(b) Since (Φ,Ψ) is almost compatible, ĀΨ,(Φ) →֒ ĀΦ and it follows from
(a) that

ĀΨ = ĀΨ,(Φ) + Rang(ΩĀ) →֒ ĀΦ + Rang(ΩĀ).

Let T : Ā → B̄. For any x = a + ΩĀb ∈ ĀΦ + Rang(ΩĀ) with ‖a‖Φ +
‖ΩĀb‖R . ‖x‖+ and ‖b‖Φ . ‖ΩĀb‖R we have ‖a‖Φ + ‖b‖Φ . ‖x‖+. It
follows that

Tx = (Ta+ [T,Ω]b) + ΩB̄Tb ∈ B̄Φ + Rang(ΩB̄)

with

‖Tx‖+ ≤ (‖T‖Φ,Φ + ‖[T,Ω]‖Φ,Φ)(‖a‖Φ + ‖b‖Φ)

≤ (1 + ε)2(‖T‖Φ,Φ + ‖[T,Ω]‖Φ,Φ)‖x‖+.

Thus ‖T‖ĀΦ+Rang(ΩĀ),B̄Φ+Rang(ΩB̄) ≤ ‖T‖Φ,Φ + ‖[T,Ω]‖Φ,Φ. �
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2.6. Twisted sums

Let us look at the relations of our commutators with Kalton’s work in [Ka1]
and [Ka2].

A derivation on a Banach space X is an operator

Ω : X → L

from X to a Hausdorff topological linear space L such that X →֒ L satisfying
the following conditions:

1. Ω is continuous at 0 ∈ X.
2. Ω is homogeneous (Ω(λx) = λΩ(x), hence Ω(0) = 0)).
3. Ω is quasi-additive (‖Ω(x+ y)− Ω(x)− Ω(y)‖X . ‖x‖X + ‖y‖X).

In Kalton’s work, X is a Köthe space and L = L0, the space of measurable
functions.

The corresponding derived space is

X ⊕Ω X := {(x, y) ∈ L× L : ‖(x, y)‖Ω := ‖x‖X + ‖Ω(x)− y‖X <∞}.

Hence, (x, y) ∈ X ⊕Ω X if and only if x ∈ X, Ω(x)− y ∈ X.

Proposition 2. X ⊕Ω X is a quasi-Banach space, X ⊕Ω X →֒ L× L, and

0 → X
j→ X ⊕Ω X

q→ X → 0,

where j(x) := (0, x) is an isometry and q(x, y) := x.Proof. It follows from the subadditivity of Ω that

‖(x1 + x2, y1 + y2)‖Ω . ‖(x1, y1)‖Ω + ‖(x2, y2)‖Ω
+ ‖Ω(x1 + x2)− Ω(x1)− Ω(x2)‖X

. ‖(x1, y1)‖Ω + ‖(x2, y2)‖Ω

and ‖ · ‖Ω is a quasi-norm.
Let ‖(xn, yn)‖Ω → 0. Since Ω(xn) → 0 and Ω(xn) − yn → 0 in L, it

follows that yn → 0 and xn → 0 in L. Thus, X ⊕Ω X →֒ L× L.
The linear subspace F := j(X) = {(0, x) : x ∈ X} of X ⊕ΩX is closed (if

(0, yn) → (x, y) in X ⊕Ω X, then x = 0 and ‖(0, y)‖Ω = ‖y‖X < ∞) and it
is complete (j is an isometry), and so is (X ⊕Ω X)/F . But completeness is
a three-space property, and X ⊕Ω X will be also complete. �
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Since 0 → X
j→ X⊕ΩX

q→ X → 0, X⊕ΩX is a twisted sum of X and X.

Every operator ΩĀ associated with a couple (Φ,Ψ) of interpolators is
a derivation on ĀΦ, since ΩĀ : ĀΦ → Σ(Ā) is continuous at 0, by (10),
homogeneous and quasi-additive (Lemma 1).

As in [CJMR], we associate with every T ∈ L(Ā; B̄) the operator T̃ (a, b) =
(Ta, Tb).

Theorem 5. The following properties are equivalent:
(a) [T,Ω] : ĀΦ → B̄Φ, bounded.
(b) T̃ : ĀΦ ⊕Ω ĀΦ → B̄Φ ⊕Ω B̄Φ, bounded.
Moreover, if (Φ,Ψ) is compatible, then

ĀΦ ⊕Ω ĀΦ = Im(ΦĀ,ΦB̄),

where (ΦĀ,ΦB̄)f := (ΦĀf,ΦB̄f).Proof. Let (a, b) ∈ ĀΦ ⊕Ω ĀΦ. Then

‖T̃ (a, b)‖B̄Φ⊕ΩB̄Φ
= ‖Ta‖B̄Φ

+ ‖ΩTa− Tb‖B̄Φ

≤ C‖a‖ĀΦ
+ ‖ΩTa− TΩa‖B̄Φ

+ ‖T (Ωa− b)‖B̄Φ

≤ C
(
‖a‖ĀΦ

+ ‖Ωa− b‖ĀΦ

)
= C‖(a, b)‖ĀΦ⊕ΩĀΦ

.

Conversely, let a ∈ ĀΦ. Then

‖[T,Ω]a‖B̄Φ
= ‖ΩTa− TΩa‖B̄Φ

≤ ‖(Ta, TΩa)‖B̄Φ⊕ΩB̄Φ

= ‖T̃ (a,Ωa)‖B̄Φ⊕ΩB̄Φ
≤ C‖(a,Ωa)‖ĀΦ⊕ΩĀΦ

= C‖a‖ĀΦ
.

Let now E := {(a, b) : a = Φ(f), b = Ψ(f), f ∈ H(Ā)} endowed with
the natural norm, and let (a, b) ∈ ĀΦ ⊕Ω ĀΦ. Then Ωa = Ψ(ha) with
Φ(ha) = a, ‖ha‖H(Ā) ≤ C‖a‖ĀΦ

, b− Ωa = Φ(g) = Ψ(h) with Φ(h) = 0 and
‖h‖H(Ā) ≤ C‖b− Ωa‖ĀΦ

.
Therefore, a = Φ(ha + h), b = b− Ωa+ Ωa = Ψ(ha + h); thus, (a, b) ∈ E

and

‖(a, b)‖E ≤ ‖ha + h‖H(Ā) ≤ C
(
‖a‖ĀΦ

+ ‖b− Ωa‖ĀΦ

)
= C‖(a, b)‖ĀΦ⊕ΩĀΦ

.

Let now (a, b) ∈ E and set a = Φ(h), b = Ψ(h) and ‖h‖H(Ā) ≤ C‖(a, b)‖E .
Then a ∈ ĀΦ, Ωa = Ψ(ha) and Ωa − b = Ψ(ha − h), with Φ(ha − h) = 0.
Therefore, Ωa− b ∈ ĀΦ and

‖(a, b)‖ĀΦ⊕ΩĀΦ
= ‖a‖ĀΦ

+ ‖Ωa− b‖ĀΦ
. ‖h‖H(Ā) + ‖ha − h‖H(Ā)

. ‖h‖H(Ā) . ‖(a, b)‖E .
�



40 JOAN CERDÀRemark 5. It was observed in [Ka2] that for any derivation Ω on X which
has an almost optimal selection x ∈ X 7→ yx ∈ L (in the sense that
‖Ω(x)−yx‖X ≤ c‖x‖X for some constant c > 0) and for any operator T of L
such that T : X → X, the conditions

(a) [T,Ω] : X → X, bounded,
(b) T̃ : X ⊕Ω X → X ⊕Ω X, bounded

are equivalent.
It is also shown in [Ka2] that, for super-reflexive Köthe spaces X, many

derivations (all “real centralizers”) are Ω-operators associated with the
complex interpolation method, X = [X0,X1]1/2. In this case, X ⊕Ω X
is normable.

3. The complex method

3.1. The complex commutator theorem
Let S and R be two analytic functionals on the strip S, such as δϑ and δ′ϑ.
They are linear and bounded on the spaces F(Ā) and, by defining F(T )f =
T ◦ f , (S,R) is a couple of interpolators on these functional spaces. We can
consider the Lions-Schechter interpolation methods (cf. [Li] and [Sc]) such
as

[Ā]S = S(F(Ā)).

For a fixed almost optimal selection a ∈ [Ā]S 7→ ha ∈ F(Ā), the corre-
sponding Ω-operator will be

ΩC
Ā(a) = R(ha),

and the commutator theorem (Theorem 2) reads

[T,ΩC ] : [Ā]S → [B̄]R,(S),

which turns into
[T,ΩC ] : [Ā]S → [B̄]S

if (S,R) is almost compatible.
In any case, by Remark 4,

Dom(ΩC) = [Ā]S,(R)

if Dom(ΩC) := {a ∈ [Ā]S : Ω(a) ∈ [Ā]R,(S)}.

3.2. The basic example
The couple (δϑ, δ′ϑ) of interpolators corresponds to the R. Rochberg and
G. Weiss construction [RW] associated with the complex Calderón interpo-
lation method (see Section 2.2).
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Theorem 6. The couple (δϑ, δ′ϑ) is compatible and ΩC(a) := h′a(ϑ) satisfies

(a) [T,ΩC ] : Ā[ϑ] → [B̄][ϑ],
(b) Dom(ΩC

Ā
) = {x = f(ϑ) : f ∈ F(Ā), f ′(ϑ) = 0},

‖x‖D = inf{‖f‖ : f ∈ F(Ā), f(ϑ) = x, f ′(ϑ) = 0},
(c) Āδ′ϑ

= Ā[ϑ] + Rang(ΩC).Proof. If g ∈ F(Ā) and δϑ(g) = g(ϑ) = 0, then δ′ϑ(g) = g′(ϑ) = f(ϑ)
with f(z) = ϕ′(ϑ)g(z)/ϕ(z), where ϕ is a conformal mapping from the strip
S = {z ∈ C : 0 < ℜz < 1} onto the unit disk D = {z ∈ C : |z| < 1} such
that ϕ(ϑ) = 0. We have f ∈ F(Ā) with ‖f‖ = |ϕ′(ϑ)|‖g‖. Conversely, for
every f ∈ F(Ā),

g :=
ϕf

ϕ′(ϑ)
∈ F(Ā)

with ‖g‖ = ‖f‖/|ϕ′(ϑ)|, δϑ(g) = g(ϑ) = 0, and δ′ϑ(g) = g′(ϑ) = f(ϑ) =
δϑ(f). �

If Ff is as in Example 1, then

F ′f (ϑ) = p
( 1
p1
− 1
p0

)
f log

|f |
‖f‖p

.

Hence, we can obtain the following:Example 3. An Ω-operator for [Lp0 , Lp1 ]ϑ = Lp is (equivalent to)

Ωf = f log
|f |
‖f‖p

,

which is the non-linear operator (7).
Similarly, if Ff is as in Example 2, then

F ′f (ϑ) =
(

log
ω0

ω1

)
f

and we obtain:Example 4. An Ω-operator for [Lp(ω0, E), Lp(ω1, E)]ϑ = Lp(ω,E) is the
linear operator

Ωf =
(

log
ω0

ω1

)
f.
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3.3. Application to pointwise multipliers
In order to guess a condition on b ∈ L1

loc(R) to obtain a commutator theorem
for Mb on Lp(R), let us denote

‖b‖∗ := sup
Q∋x

1
|Q|

∫

Q

|b(x)− bQ| dx
(
bQ :=

1
|Q|

∫

Q

b
)

and assume that [Mb,H] defines a bounded operator on some Lp(R) (1 <
p < ∞). We shall see that this implies ‖b‖∗ ≤ A‖[Mb,H]‖ (A > 0 is
a constant).1

We want to estimate |Q|−1
∫

Q
|b − bQ| when Q is an interval and, by

translation invariance, we may assume Q = (−r, r). If

Γ(x) := χQ(x) sgn(b(x)− bQ),

then

|Q| |b(x)χQ(x)− χQ(x)bQ| = |Q|Γ(x)χQ(x)
(
b(x)−

∫

Q

b(y)
dy

|Q|
)

=
∫

Q

(b(x)− b(y))Γ(x) dy

=
∫

Q

b(x)− b(y)
x− y

(
xΓ(x)χQ(y)− yΓ(x)χQ(y)

)
dy

= [Mb,H]
(
xΓ(x)χQ − Id Γ(x)χQ

)

= xΓ(x)[Mb,H](χQ)− Γ(x)[Mb,H](IdχQ).

Hence,

|Q|
∫

Q

|b− bQ| . ‖xΓ(x)‖p′‖χQ‖p + ‖Γ‖p′‖yχQ(y)‖p ≃ |Q|2

and ‖b‖∗ <∞.
This leads to consider the space

BMO := {f ∈ L1
loc(Rn) : ‖f‖∗ <∞}.

Let us recall that, if 1 < p < ∞, then there exists a constant C0 > 0
such that, whenever ‖b‖∗ < C0, ω := eb is an Ap-weight (i.e., the Hardy-
Littlewood maximal function is bounded on Lp(ω)), and then

K : Lp(ω) → Lp(ω)

where K is a Calderón-Zygmund operator (such as the Hilbert transform
H if n = 1, and the Riesz transforms Rj = Tmj

with mj(y) = −iyj/‖y‖ if
n ≥ 1). See [GR].
1The same result holds for b ∈ L1loc(Rn) with n > 1, if [Mb, Ri] are bounded, where

Ri, 1 ≤ i ≤ n, denote the Riesz transforms. See [CRW].
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Theorem 7 (Coifman, Rochberg and Weiss). If K is a Calderón-Zyg-
mund operator on Rn and b ∈ BMO, then [K,Mb] : Lp(Rn) → Lp(Rn).Proof. By homogeneity, we can assume that ‖b/2‖BMO < C0, so that
eb/2 and e−b/2 are Ap -weights. Therefore,

K : (Lp(eb/2), Lp(e−b/2)) → (Lp(eb/2), Lp(e−b/2)). (12)

By Example 4, Ω(Lp(eb/2),Lp(e−b/2))f = Mbf , and so (12) together with

Theorem 2 yield the result, since [Lp(ω0), Lp(ω1)]1/2 = Lp(ω1/2
0 ω

1/2
1 ). �

The BMO norm is related with the atomic Hardy space2 by the duality
defined through 〈f, g〉 :=

∫
fg. More precisely,

‖f‖H1 = sup
ϕ∈S,
‖ϕ‖∗≤1

|〈ϕ, f〉|.

As an application of Theorem 7 given by R. Coifman, R. Rochberg
and G. Weiss we have:

Corollary 1. If K is a Calderón-Zygmund operator, K∗ its adjoint,
1 < p <∞, f ∈ Lp(Rn) and g ∈ Lp′(Rn), then

(Kf)g − fK∗g ∈ H1(Rn).Proof. If b ∈ S, then

∣∣∣
∫
b
(
(Kf)g − fK∗g

)∣∣∣ =
∣∣∣
∫
g([b,K]f)

∣∣∣ . ‖b‖∗‖f‖p‖g‖p′ .

Now, by duality,

‖(Kf)g − fK∗g‖H1 = sup
‖b‖∗≤1

∣∣∣
∫
b
(
(Kf)g − fK∗g

)∣∣∣ . ‖f‖p‖g‖p′ ,

which is finite. �
2There are several descriptions for the Hardy space. Namely, H1(Rn) = {f ∈ L1 :

f =
P∞

j=1 αjaj ,
P∞

j=1 |αj | < ∞, |aj | ≤ 1
|Ij |χIj

,
R

aj = 0 (Ij interval)} and ‖f‖H1 :=

inf{P∞
j=1 |αj | : f =

P∞
j=1 αjaj}. See [GR].
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If n = 1, then H1 is the image of L2 × L2 for the bilinear mapping
(f, g) 7→ (Hg)f + f(Hg). There is no similar fact for Calderón-Zygmund
operators if n = 2 (or any n > 1), but an open problem is whether H1 is the
image of the Sobolev space W 1,2(R2)2 by the Jacobian,

J(u1, u2) := det(∇u) = ∂xu
1∂yu

2 − ∂xu
2∂yu

1.

Corollary 1 can be used to obtain the following “Jacobian Theorem”
(see [CLMS], where it is also proved that [J(W 1,2(R2)2)] = H1(R2)).

Theorem 8. If u ∈ L1
loc(R2)2 and ∇u ∈ L2(R2)2×2, then J(u) ∈ H1(Rn).Proof. We may write J(u) = ∇u1 ·B = E ·B with

B ∈ L2(R2)2, div B = 0; E ∈ L2(R)2, curlE = 0.

It follows from this last condition that

E1 = R1f, E
2 = R2f (f ∈ L2(R))

and div B = 0 implies R1B
1+R2B

2 = div(−∆)−1/2B = (−∆)−1/2 div B = 0.
Finally, an application of Corollary 1 ensures that

J(u) = E ·B =
2∑

j=1

(Rjf)Bj =
2∑

j=1

(
(Rjf)Bj − f(RjB

j)
)
∈ H1(Rn).

�

3.4. The use of vector function spaces

As observed in [CCS3], some results by C. Segovia and J. L. Torrea
(see [ST1] and [ST2]) concerning commutators of maximal functions can be
obtained from Theorem 2.

Recall that if 1 < p < ∞ and ω ∈ Ap(Rn), then the Hardy-Littlewood
maximal function M is bounded on Lp(ω).

Theorem 9. If b ∈ BMO(Rn), then the maximal operator

Sf(x) = sup
B∋x

1
|B|

∫

B

|b(y)− b(x)| |f(y)| dy

is bounded in Lp(Rn) (1 < p <∞). Here, B represents a ball in Rn.
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so eb ∈ Ap. Hence, M is bounded on Lp(e±b).

If we define

Tf(x) :=
(

1
|B|

∫

B

f(x− y)h(y) dy
)

B∋0,‖h‖∞≤1

,

then
‖Tf‖Lp(e±b,L∞) ≤ ‖Mf‖Lp(e±b) . ‖f‖Lp(e±b)

and, by Theorem 6, [T,Ω] : [Ā]1/2 → [B̄]1/2 with Ā =
(
Lp(eb), Lp(e−b)

)
and

B̄ =
(
Lp(eb, L∞), Lp(e−b, L∞)

)
.

However, since [Ā]1/2 = Lp and [B̄]1/2 = Lp(L∞) (see Example 2), from
Theorem 2 we obtain

[T,Ω] : Lp → Lp(L∞),

and, as in Theorem 7, we have ΩĀf = bf and ΩB̄(fB)B∋0 = (bfB)B∋0.
Finally, S : Lp → Lp is equivalent to the boundedness of [T,Ω] since

[T,Ω]f(x) =
(

1
|B|

∫

B

{b(x− y)− b(x)}f(x− y)h(y) dy
)

B∋0,‖h‖∞≤1

and ‖[T,Ω]f(x)‖∞ = Sf(x). �
As an application we recover the following result obtained in [MS] by real

interpolation.

Corollary 2. If b ∈ BMO(Rn), b ≥ 0 and 1 < p <∞, then

[M,Mb] : Lp(Rn) → Lp(Rn).Proof. If 0 ≤ b ∈ BMO, then

1
|B|

∫

B

b(x− y)|f(x− y)| dy

= b(x)
1
|B|

∫

B

|f(x− y)| dy +
1
|B|

∫

B

(b(x− y)− b(x))|f(x− y)| dy

and [M,Mb]f ≤ Sf . �
We set SI := TχI

. If a collection of intervals Ij ⊂ R is given, we shall con-
sider the corresponding Fourier multipliers Sj := SIj

. A weighted extension
of the Littlewood-Paley inequality proved by J. L. Rubio de Francia in
[Ru] allows us to obtain another commutator estimate.
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Theorem 10. Let {Ij}j∈J be a collection of disjoint intervals. If b ∈
BMO(R) and 2 < p <∞, then

∥∥∥
(∑

j∈J

∣∣[Sj ,Mb]f
∣∣2

)1/2∥∥∥
p
≤ C

∥∥f
∥∥

p
.Proof. As seen in [Ru], if p > 2 and ω ∈ Ap/2, then

∥∥∥
(∑

j

|SIj
f |2

)1/2∥∥∥
Lp(ω)

≤ C‖f‖Lp(ω)

or, equivalently,
Tf(x) := (Sjf)j

satisfies T : Lp(ω) → Lp(ω, ℓ2).
Hence, assuming that ‖b‖∗ is small, we have T : Lp(e±b) → Lp(e±b, ℓ2)

and the proof continues as in Theorem 9. �

3.5. Lions-Schechter complex methods
On the same functional spaces F(Ā) we may consider higher order derivatives
δ
(m)
ϑ .

A couple (δ(m)
ϑ , δ

(n)
ϑ ) is not necessarily almost compatible, but we have

the following special cases.

Theorem 11. Let Ā = (Lp0(µ), Lp1(µ)) on a given measure space. Then
(δ(n)

ϑ , δ
(n+1)
ϑ ) are almost compatible couples of interpolators over F(Ā) for

all n and

Ω(u) :=
n+

∣∣ log |u|
∣∣n

1 +
∣∣ log |u|

∣∣n u log |u|

defines an Ω-operator for this couple.Proof. For p = p(ϑ), it is known that (cf. [CC1])

[Lp0 , Lp1 ]
δ
(m)
ϑ

= Lp(logL)−p =
{
u :

∫ ( |u(x)|
1 + log |u(x)|

)p

dµ(x) <∞
}
.

That the interpolators are almost compatible, i.e.,

[Lp0 , Lp1 ]
δ
(n+1)
ϑ ,(δ

(n)
ϑ )

→֒ [Lp0 , Lp1 ]
δ
(n)
ϑ

,
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is proved in [CCMS]. It is done by associating the function

W (z) := ‖F (ϑ)‖p
F (ϑ)
|F (ϑ)|

[ |F (ϑ)|
‖F (ϑ)‖p

]((1−z)/p0+z/(p1))p

with every almost optimal f ∈ F(Ā) such that x = f (n+1)(ϑ) and f (n)(ϑ) = 0
(‖f‖ ≃ ‖x‖

δ
(n+1)
ϑ ,(δ

(n)
ϑ )

).
Let ψ be a conformal mapping from S onto the unit disc such that

ψ(ϑ) = 0, G := (f −W )/ψ ∈ F(Ā). Since (ψG)(ϑ) = f(ϑ)−W (ϑ) = 0,

W (n)(ϑ) = −(ψG)(n) ∈ [Lp0 , Lp1 ]
δ
(n−1)
ϑ

.

On the other hand,

x = W (n+1)(ϑ) + (ψG)(n+1)(ϑ),

where (ψG)(n+1)(ϑ) ∈ [Lp0 , Lp1 ]
δ
(n)
ϑ

since (ψG)(ϑ) = 0, and W (n+1)(ϑ) ∈
Lp(logL)−p since a direct computation shows that

‖h‖Lp(log L)−p ≤ ‖ψG‖ . ‖f(ϑ)‖p . ‖f‖.

To obtain an almost optimal selection hu for u ∈ [Lp0 , Lp1 ]
δ
(n)
ϑ

, let ϕ

be again an analytic bounded function on S such that ϕ(j)(ϑ) = 0 if j ∈
{0, . . . , n− 1, n+ 1} but ϕ(n)(ϑ) = 1. Then define

hu(z) := sgnu

[
cn(sgn log |u|)n + ϕ(z)

]
|u|((1−z)/p0+z/p1)p

1 + | log |u||n

with cn = (p/p1 − p/p0)−n.
Hence a possible choice for Ω is

Ωu = h(n+1)
u (ϑ)

=
| log |u||n log |u|

(
p
p1
− p

p0

)
+ n log |u|

(
p
p1
− p

p0

)

1 + | log |u||n u

=
( p

p1
− p

p0

)n+ | log |u||n
1 + | log |u||n u log |u|.

�
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Theorem 12. Let Ā = (Lp(ω0), Lp(ω1)) on a given measure space. Then
(δ(n)

ϑ , δ
(n+1)
ϑ ) are almost compatible couples of interpolators over F(Ā) for

all n and

Ω(u) :=
n+ 1 +

∣∣ log(ω0/ω1)
∣∣n

1 +
∣∣ log(ω0/ω1)

∣∣n
(
log

ω0

ω1

)
u

defines an Ω-operator for these Banach couples.Proof. It is known (cf. [CC2]) that, if 1 ≤ p <∞,

[Lp(ω0), Lp(ω1)]δ(n)
ϑ

= Lp(ω1−ϑ
0 ωϑ

1 ω̂
−np)

with ω = ω1−ϑ
0 ωϑ

1 ω̂
−np, where ω̂ = 1 +

∣∣ log(ω0/ω1)
∣∣.

To prove that

[Lp(ω0), Lp(ω1)]δ(n+1)
ϑ ,(δ

(n)
ϑ )

→֒ [Lp(ω0), Lp(ω1)]δ(n)
ϑ

,

again, as in [CCMS], we associate the function

W (z) :=
(ω0

ω1

)z−ϑ

with every almost optimal f ∈ F(Ā) such that x = f (n+1)(ϑ) and
f (n)(ϑ) = 0 (‖f‖ ≃ ‖x‖

δ
(n+1)
ϑ ,(δ

(n)
ϑ )

), and then, if ψ is as in Theorem 11,

we set G := (f −W )/ψ ∈ F(Ā). Since (ψG)(ϑ) = f(ϑ)−W (ϑ) = 0,

W (n)(ϑ) = f(ϑ)
(

log
ω0

ω1

)n

= −(ψG)(n) ∈ [Lp(ω0), Lp(ω1)]δ(n−1)
ϑ

.

On the other hand,

x = W (n+1)(ϑ) + (ψG)(n+1)(ϑ) = f(ϑ)
(

log
ω0

ω1

)(n+1)

+ v,

and v ∈ [Lp(ω0), Lp(ω1)]δ(n)
ϑ

since (ψG)(ϑ) = 0. If h0 is such that

h := f(ϑ)
(

log
ω0

ω1

)n+1

= h0 log
ω0

ω1
,

then
h0 ∈ Lp

(
ω1−ϑ

0 ωϑ
1 ω̂

−(n−1)p
)

= Lp(ω)
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and an easy computation shows that

‖h‖Lp(ω) ≤ ‖h0‖δn−1
ϑ

≤ ‖ψG‖ . ‖f(ϑ)‖p . ‖f‖.

To obtain an almost optimal selection for u ∈ [Lp(ω0), Lp(ω1)]δ(n)
ϑ

, choose

ϕ again as in Theorem 11, such that ϕ(j)(ϑ) = 0 if j ∈ {0, . . . , n− 1, n+ 1}
and ϕ(n)(ϑ) = 1. Then

hu(ϑ) :=

(
sgn log(ω0/ω1)

)n + ϕ(z)
1 + | log(ω0/ω1)|n

(ω0

ω1

)z−ϑ

u

satisfies h(n)
u (ϑ) = u and ‖hu‖ ≤ ‖u‖Lp(ω1−ϑ

0 ωϑ
1 bω−np), and

h(n+1)
u (ϑ) =

n+ 1 + | log(ω0/ω1)|n
1 + | log(ω0/ω1)|n

(
log

ω0

ω1

)
u = Ω(u).

�Remark 6. The same result, with the same proof, holds for the Banach
couples (Lp(ω0, E), Lp(ω1, E)) of vector-valued functions.

Let us apply the previous theorems to obtain some extensions of the
commutator estimates of pointwise multipliers (Theorem 7) and of the Little-
wood-Paley inequality (Theorem 10).

Proposition 3. Let K be a Calderón-Zygmund operator on Rm, b ∈ BMO
and let α ≥ 0 be a constant. Then

[K,Mb] : Lp((1 + |b|)−α) → Lp((1 + |b|)−α).Proof. Let

Mnf = b
n+ 1 + |b|n

1 + |b|n f = Mbf +
nb

1 + |b|n f.

We have

[K,Mn]f = [K,Mb]f − n[K,Mb]
( f

1 + |b|n
)
− nbK

( f

1 + |b|n
)

+
nb

1 + |b|nKf.

It follows from Theorem 12 that

[K,Mn] : Lp
( 1

1 + |b|n
)
→ Lp

( 1
1 + |b|n

)
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and from Theorem 7 that

[K,Mb]
( f

1 + |b|n
)
∈ Lp ⊂ Lp

( 1
1 + |b|n

)
if f ∈ Lp

( 1
1 + |b|n

)
.

Moreover, since b/(1 + |b|n) is bounded, we have

K
( f

1 + |b|n
)
∈ Lp, b

f

1 + |b|n ∈ Lp
( 1

1 + |b|n
)

and
b

1 + |b|nK(f) ∈ Lp ⊂ Lp
( 1

1 + |b|n
)
.

Thus
[K,Mb] : Lp

( 1
1 + |b|n

)
→ Lp

( 1
1 + |b|n

)
,

and it follows by interpolation that

[K,Mb] : Lp
( 1

1 + |b|α
)
→ Lp

( 1
1 + |b|α

)

for any α ≥ 0. �
In the same way we obtain:

Proposition 4. Let 2 < p <∞ and b ∈ BMO(R). Then
∥∥∥∥
(∑

j

∣∣[SIj
, b]f

∣∣2
)1/2

∥∥∥∥
Lp((1+|b|)−α)

≤ Cα‖f‖Lp((1+|b|)−α)

for any collection (Ij)j of disjoint intervals and for every α ≥ 0.

4. Real methods

We assume 0 < ϑ < 1 and 1 ≤ p ≤ ∞.
The real interpolation methods are the abstract counterpart of the

Marcinkiewicz interpolation theorem. As shown by J. Peetre, they ad-
mit equivalent definitions, using the K-functional or the J-functional.

4.1. The J-method
For a given Banach couple Ā, we denote ∆(Ā) = A0 ∩A1 and

J(t, a) = J(t, a; Ā) = max(‖a‖0, t‖a‖1) (a ∈ ∆(Ā), t > 0).
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The J-method corresponds to the interpolator ΦJ on the functional spaces

HJ (Ā) = {u : R+ → ∆(Ā) measurable : ‖u‖ = ‖t−ϑJ(t;u(t))‖Lp(dt/t) <∞}

defined as
ΦJ

Ā(u) =
∫ ∞

0

u(t)
dt

t
(Σ(Ā)-valued).

Again, HJ(T ) = T ◦ u if T ∈ L(Ā; B̄).
In this case,

ĀΦJ =
{
a ∈ Σ(Ā) : a =

∫ ∞

0

u(t)
dt

t
, u ∈ HJ(Ā)

}
= Āϑ,p

and we consider an almost optimal selection

ua ∈ HJ(Ā),
∫ ∞

0

ua(t)
dt

t
= a, ‖ua‖ ≤ c‖a‖ϑ,p.

To define the Ω-operator we need to associate ΦJ with another interpo-
lator ΨJ on the same functional spaces HJ(Ā). By relating the J-method
with the complex method, we shall see that

ΨJ
Ā(u) :=

∫ ∞

0

(log t)u(t)
dt

t

is a convenient definition.
The relationship is given by the mixed reiteration formula due to J.-L.

Lions (cf. [BL, Theorem 4.2.7]),

[Āϑ0,p0 , Āϑ1,p1 ]λ = Āϑ,p (13)

with ϑ = (1− λ)ϑ0 + λϑ1. One inclusion is obtained by means of

fa(z) :=
∫ ∞

0

t(ϑ1−ϑ0)(z−λ)ua(t)
dt

t

for every a ∈ Āϑ,p; then

ΩC(a) = f ′a(λ) = (ϑ1 − ϑ0)
∫ ∞

0

(log t)ua(t)
dt

t
.

Thus, we are led to define ΨJ
Ā
(u) =

∫∞
0

(log t)u(t) dt
t .
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Theorem 13. The couple of interpolators (ΦJ ,ΨJ ) is compatible and

ĀΨJ =
{
a =

∫ ∞

0

v(t)
dt

t
: v : R+ → ∆(Ā) measurable,
∥∥∥∥t−ϑ J(t, v(t))

1 + | log t|

∥∥∥∥
Lp(dt/t)

<∞
}

with

‖a‖ΨJ = inf
∥∥∥∥t−ϑ J(t, v(t))

1 + | log t|

∥∥∥∥
Lp(dt/t)

,

the infimum being taken over all representations a =
∫∞
0
v(t) dt

t .Proof. ΨJ is well defined and bounded from H(Ā) to Σ(Ā):

‖ΨJ
Ā(u)‖Σ ≤

∫ 1

0

| log t| ‖u‖0
dt

t
+

∫ ∞

1

(log t)‖u‖1
dt

t

≤
∫ 1

0

| log t|J(t, u(t))
dt

t
+

∫ ∞

1

log t
t
J(t, u(t))

dt

t

≤
[(∫ 1

0

(
| log t| tϑ

)p′ dt

t

)1/p′

+
(∫ ∞

1

(
log t
t1−ϑ

)p′
dt

t

)1/p′]

× ‖t−ϑJ(t, u)‖Lp(dt/t)

= C‖u‖H(Ā).

To see that ΦJ and ΨJ are compatible, first assume that
∫∞
0
u(t) dt

t = 0,
(with u ∈ H(Ā)) and define

F (z) =
∫ ∞

0

tzu(t)
dt

t

on the strip {z ∈ C : −ε < ℜz < ε} with ε such that 0 < ϑ− ε < ϑ+ ε < 1.
It is easily seen that F (±ε ± ti) ∈ Āϑ±ε,p, ‖F (±ε ± ti)‖ϑ±ε,p ≤ C‖u‖H(Ā),
and that, since F (0) = 0, we have

F ′(0) =
∫ ∞

0

(log t)u(t)
dt

t
= ΨJ

Ā(u) ∈
[
Āϑ−ε,p, Āϑ+ε,p

]
0

= Āϑ,p = ĀΦJ

with ‖ΨJ
Ā
(u)‖ΦJ ≤ C‖u‖H(Ā).
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For the converse inclusion ImΦJ
Ā
→֒ ΨJ

Ā
(Ker ΦJ

Ā
), let u ∈ H(Ā) be given

and consider v(t) = u(t) − u(e t). Then we have v ∈ H(Ā), F J
Ā

(v) =∫∞
0
v(t) dt

t = 0,

ΨJ
Ā(v) =

∫ ∞

0

(log t)(u(t)− u(e t))
dt

t

=
∫ ∞

0

(log t)u(t)
dt

t
−

∫ ∞

0

(
log

t

e

)
u(t)

dt

t

=
∫ ∞

0

u(t)
dt

t
= ΦJ

Ā(u)

and ‖v‖H(Ā) ≤ C‖u‖H(Ā). For the last part of the theorem, let

B =
{
a =

∫ ∞

0

v(t)
dt

t
:
(∫ ∞

0

(
J(t, v(t))

tϑ(1 + | log t|)

)p
dt

t

)1/p

<∞
}

and let a ∈ ĀΨJ be such that a =
∫∞
0

(log t)u(t) dt
t and

( ∫ ∞

0

(
J(t, u(t))

tϑ

)p
dt

t

)1/p

≤ ‖a‖ΨJ + ε.

Then a =
∫∞
0
v(t) dt

t , v(t) = (log t)u(t), and

‖a‖B ≤
∥∥∥∥t−ϑ J(t, v(t))

1 + | log t|

∥∥∥∥
Lp(dt/t)

≤ ‖t−ϑJ(t, u(t))‖Lp(dt/t) ≤ ‖a‖ΨJ + ε.

To show that B →֒ ĀΨJ , we observe that for any a ∈ B,

a =
∫ ∞

0

v(t)
dt

t
=

∫ ∞

0

v(t)
1 + | log t|

dt

t
+

∫ ∞

0

| log t| v(t)
1 + | log t|

dt

t
= b+ c,

where ∥∥∥∥t−ϑ J(t, v(t))
1 + | log t|

∥∥∥∥
Lp(dt/t)

≤ ‖a‖B + ε

and b ∈ ĀΦJ →֒ ĀΨJ such that ‖b‖Ψ ≤ C‖b‖Φ ≤ C(‖a‖B + ε). On the other
hand,

c =
∫ ∞

0

(log t)w(t)
dt

t

with w(t) = sgn(log t)v(t)/(1 + | log t|), and Φϑ,p(t, w(t)) ≤ ‖a‖B + ε. It
follows that c ∈ ĀΨJ and ‖c‖Ψ ≤ ‖a‖B + ε. Hence a ∈ ĀΨJ and ‖a‖Ψ ≤
C‖a‖B . �
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Let now ΩJ be the Ω-operator associated with the pair (ΦJ ,ΨJ ) and with
our given almost optimal selection a 7→ ua. By Theorem 2,

[T,ΩJ ] : Āϑ,p → B̄ϑ,p

if T ∈ L(Ā; B̄), and, as an application of Theorem 4,

Āϑ,p;J + Rang(ΩJ
Ā) = ĀΨJ

and

Dom(ΩJ
Ā) =

{
a =

∫ ∞

0

u(t)
dt

t
:
∫ ∞

0

(log t)u(t)
dt

t
= 0, u ∈ H(Ā)

}
(14)

which has the following description (see [CJM] for another proof):

Theorem 14.

Dom(ΩJ
Ā) =

{
a =

∫ ∞

0

u(t)
dt

t
: u ∈ H(Ā),

∥∥t−ϑ(1 + | log t|)J(t, u(t))
∥∥

Lp(dt/t)
<∞

}
.Proof. Let E be the right-hand side space with the natural norm. Choose

a =
∫∞
0
u(t) dt

t ∈ E such that u ∈ H(Ā) and
∥∥t−ϑ(1 + | log t|)J(t, u(t))

∥∥
Lp(dt/t)

≤ C‖a‖E .

Then Φϑ,p(J(t, u(t)) < ∞ and a ∈ ĀΦJ . Also a =
∫∞
0
ua(t) dt

t , ΩJ
Ā
a =∫∞

0
(log t)ua(t) dt

t and then
∫∞
0

(u(t)−ua(t)) dt
t = 0. Thus, since (log t)u(t) ∈

H(Ā), we obtain

b =
∫ ∞

0

(log t)u(t)
dt

t
∈ ĀΦJ , ΩJ

Āa−b =
∫ ∞

0

(log t)(ua(t)−u(t)) dt
t
∈ ĀΦJ ,

hence
ΩJ

Āa =
∫ ∞

0

(log t)ua(t)
dt

t
∈ ĀΦJ ,

and

‖a‖D = ‖a‖Φ + ‖ΩJ
Āa‖Φ ≤ ‖u‖H(Ā) + ‖ΩJ

Āa− b‖Φ + ‖b‖Φ
≤ ‖u‖H(Ā) + C‖u− ua‖H(Ā) + C‖u‖H(Ā) ≤ C‖a‖E .
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To show that Dom(ΩJ
Ā
) →֒ E , we shall use the following facts:

(i) (Āϑ0,q0 , Āϑ1,q1) is a partial retract of the couple (lq0(2−nϑ0), lq1(2−nϑ1))
(cf. [Cw] and [CJM]). Recall that Ā is a partial retract of B̄ if, for every
x ∈ Σ(Ā), there exists a pair of bounded linear operators, Fx : Ā→ B̄
and Px : B̄ → Ā, such that Px ◦ Fxx = x and supx ‖Fx‖ < ∞,
supx ‖Px‖ <∞.

(ii) [lp(2−nϑ0), lp(2−nϑ1)]δ
′
µ = lp((1 + |n|)2−nϑ), with ϑ = (1− µ)ϑ0 + µϑ1

(cf. [CC2]).
(iii) (Āϑ0,q0 , Āϑ1,q1)ϕµ,p = Āϕϑ,p, with ϕλ(x) = (1 + | log x|)x−λ (cf. [G]).

Let now a ∈ Dom(ΩJ
Ā
) and u ∈ H(Ā) be such that

a =
∫ ∞

0

u(t)
dt

t
,

∫ ∞

0

(log t)u(t)
dt

t
= 0,

∥∥t−ϑJ(t, u(t))
∥∥

Lp(dt/t)
<∞.

Then
F (z) =

∫ ∞

0

tzu(t)
dt

t
∈ F(Āϑ−ε,p, Āϑ+ε,p)

on the strip ϑ− ε < ℜz < ϑ+ ε, F (0) = a and F ′(0) = 0. Hence,

a ∈ [Āϑ−ε,p, Āϑ+ε,p]δ
′
0 with ‖a‖

[Āϑ−ε,p,Āϑ+ε,p]
δ′0 ≤ ‖F‖F ≤ ‖u‖H(Ā).

Keeping the notation of (i), let

F : (Āϑ−ε,p, Āϑ+ε,p) → (lp(2−n(ϑ−ε)), lp(2−n(ϑ+ε)))

and
P : (lp(2−n(ϑ−ε)), lp(2−n(ϑ+ε))) → (Āϑ−ε,p, Āϑ+ε,p)

be a pair of bounded linear mappings such that PFa = a. Then, by inter-
polation (we use (ii) and (iii)),

F : [Āϑ−ε,p, Āϑ+ε,p]δ
′
0 → lp((1 + |n|)2−nϑ)

and
P : lp((1 + |n|)2−nϑ) → Āϕϑ,p.

Hence,

‖a‖ϕϑ,p = ‖PFa‖ϕϑ,p ≤ C‖Fa‖lp((1+|n|)2−nϑ) ≤ C‖a‖
[Āϑ−ε,p,Āϑ+ε,p]

δ′0 ,

we have a ∈ Āϕϑ,p, and there exists v ∈ H(Ā) such that

a =
∫ ∞

0

v(t)
dt

t
and

∥∥t−ϑ(1 + | log t|)J(t, v(t))
∥∥

Lp(dt/t)
<∞.

Thus a ∈ E . �
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[Āϑ0,q0 , Āϑ1,q1 ]
δ′µ = Āϕϑ,q,

where 1/q = (1− ϑ)/q0 + ϑ/q1.

4.2. The K-method

It is well known that the real interpolation method can be equivalently de-
fined by the K-functional

K(t, x) = K(t, x; Ā) := inf
x=a0+a1

(‖a0‖0 + t‖a1‖1),

and ‖x‖ϑ,p ≃ ‖x‖ϑ,p;K , where

‖x‖ϑ,p;K := ‖t−ϑK(t, x)‖Lp(dt/t).

Given an almost optimal decomposition x = a0(t)+a1(t) for the K-functional
such that K(t, x) ≃ α(a0, a1), where

α(a0, a1)(t) := ‖a0(t)‖0 + t‖a1(t)‖1,

we say that
P Ā

t x = Ptx := a0(t)

is an almost optimal projection. We may assume that a0 : R → A0 is
continuous by choosing a0(2n) for each n ∈ Z and then a0(t) linear on
[2n, 22n+1

], but it is not always linear in x; if it can be chosen linear, then Ā
is said to be quasi-linearizable.Example 5. For the K-functional of the couple (L1, L∞),

Ptf := (|f | − f∗(t)) sgn fχ{|f |>f∗(t)}

defines an almost optimal projection. See [BL], Theorem 5.2.1.Remark 8. Let Ā be a couple of Banach function spaces on a measure
space. Given f ∈ Σ(Ā) let f = f0 + f1 be an almost optimal decomposition
for the K-functional. If we take Ef (t) := {ω : |f0(ω)| > |f1(ω)|}, we obtain
another almost optimal projection of the type

Ptf = fχEf (t).
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Obviously, |fχEf (t)| ≤ 2|f0| and |fχEf (t)c | ≤ 2|f1|, and so

‖fχEf (t)‖0 + t‖fχEf (t)c‖1 ≤ 2α(f0, f1) . K(t, f).Remark 9. If we have an almost optimal projection P Ā
t for a couple Ā

and X̄ = (Āϑ0,q0 , Āϑ1,q1) (ϑ0 < ϑ1) is obtained by interpolation, then the
Holmstedt reiteration formula

K(t̺, x; X̄) ≃
(∫ t

0

(
s−ϑ0K(s, x; Ā)

)q0 ds

s

)1/q0

+ t̺
( ∫ ∞

t

(
s−ϑ1K(s, x; Ā)

)q1 ds

s

)1/q1

with ̺ = ϑ1 − ϑ0 (cf. [BL, Theorem 3.6.1]) allows to obtain the almost
optimal projection for X̄,

P X̄
t x := P Ā

t1/̺x.

To see that this K-method is defined by an interpolator, it is natural to
consider the functional spaces

HK(Ā) = {(a0, a1) : R+ → A0 ×A1 :

a0, a1 measurable, a0(t) + a1(t) = const., ‖(a0, a1)‖ <∞}

with
‖(a0, a1)‖ := ‖t−ϑα(a0, a1)(t))‖Lp(dt/t)

and HK(T )(a0, a1) := (T ◦ a0, T ◦ a1).
Then the functional

ΦK(a0, a1) := a0 + a1

acting on HK(Ā) defines an interpolator on these functional spaces and
obviously ĀΦK = Āϑ,p;K = Āϑ,p.

An almost optimal decomposition for the K-functional is clearly also an
almost optimal selection

ax = (a0, a1) = (Ptx, (I − Pt)x) ∈ HK(Ā),

a0(t) + a1(t) = x, ‖(a0, a1)‖ ≤ c‖x‖ϑ,p,

for this K-method.
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Again we can look for an appropriate second interpolator ΨK by observing
that in the reiteration result (13), if for any

a = f(λ) ∈ [Āϑ0,p0 , Āϑ1,p1 ]λ

we choose an almost optimal f = fa ∈ F(Āϑ0,p0 , Āϑ1,p1) for the complex
method and define

gt(z) = t(z−λ)(ϑ1−ϑ0)f(z),

then gt(λ) = a and

a =
∫ +∞

−∞
gt(is)P0(λ, s) ds+

∫ +∞

−∞
gt(1 + is)P1(λ, s) ds = a0(t) + a1(t)

with aj(t) ∈ Āϑj ,pj
(j = 0, 1). Now we can compute the derivative (as

in [CCMS]) and we get

ΩC(a) = f ′(λ) =
∫ 1

0

a0(t)
dt

t
−

∫ ∞

1

a0(t)
dt

t
.

This suggests the definition

ΨK
Ā (a0, a1) :=

∫ 1

0

a0(t)
dt

t
−

∫ ∞

1

a0(t)
dt

t
.

Theorem 15. The couple (ΦK ,ΨK) is a compatible pair of interpolators
such that

ΩK(x) :=
∫ 1

0

a0(t)
dt

t
−

∫ ∞

1

a0(t)
dt

t

for our almost optimal selection, and ΩK = −ΩJ for a convenient almost
optimal selection for the J-method.Proof. Let ΦK(a0, a1) = 0 = a0(t) + a1(t) with (a0, a1) ∈ HK(Ā). Then,

ΨK(a0, a1) =
∫ ∞

0

a0(t)
dt

t
,

and, since Φϑ,p

(
J(t, a0(t))

)
≤ Φϑ,p

(
‖a0(t)‖0 + t‖a1(t)‖1

)
= ‖(a0, a1)‖H , we

have

ΨK(a0, a1) ∈ Āϑ,p;J = Āϑ,p;K and ‖ΨK(a0, a1)‖Φ ≤ ‖(a0, a1)‖H .
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Let now a ∈ ĀΦ. We have to find (b0, b1) ∈ H(Ā) such that

ΦK(b0, b1) = b0(t) + b1(t) ≡ 0 and ΨK(b0, b1) =
∫ ∞

0

b0(t)
dt

t
= a.

This follows from the Fundamental Lemma of Interpolation Theory (cf. [BL]):
If we discretize, we have to show that there exists a sequence (bn0 , b

n
1 ) ∈

A0 ×A1 such that

bn0 + bn1 = 0 and
∞∑

n=−∞
bn0 = a.

Let a = an
0 + an

1 , with ‖an
0‖0 + 2n‖an

1‖1 ≤ (1 + ε)K(2n, a). We have

lim
n→−∞

‖an
0‖0 = 0 and lim

n→∞
‖an

1‖1 = 0.

Write bn0 = an
0 − an−1

0 and bn1 = an
1 − an−1

1 . Then bn0 + bn1 = 0 and

K
(
1, a−

M∑

n=−N

bn0

)
= K

(
1, a−N−1

0 + aM
1

)
→ 0 as N,M →∞.

Hence
∑

n b
n
0 = a. �

4.3. A big real interpolation method
If

Sf(t) :=
∫ t

0

f(s)
ds

s
+ t

∫ ∞

t

f(s)
ds

s2
=

∫ ∞

0

f(s)min
(
1,
t

s

) ds
s
,

the Calderón operator, we set

σ(Ā) := {x ∈ Σ(Ā) : S(K(·, x))(1) <∞}. (15)

Let us prove that σ is an interpolation method by showing that it may
be defined by a convenient interpolator.

For a given Banach couple Ā, let H(Ā) be the Banach space of all mea-
surable functions

(x0, x1) : R+ → A0 ×A1

such that x0(t) + x1(t) = Φ(x0, x1) ∈ Σ(Ā), constant, and

‖(x0, x1)‖H := S(α(x0, x1))(1) <∞

(recall that α(x0, x1)(t) = ‖x0(t)‖0 + t‖x1(t)‖1).
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Then ΦĀ = Φ : H(Ā) → Σ(Ā) where Φ(x0, x1) = x0(t) + x1(t) since

‖Φ(x0, x1)‖Σ = ‖x0(t) + x1(t)‖Σ

≤ 2
∫ 2

1

α(x0, x1)(s)
ds

s

≤ 2‖(x0, x1)‖H .

If T ∈ L(Ā; B̄), we define H(T )(x0, x1) := T ◦ (x0, x1) = (Tx0, Tx1)
and we obtain a bounded linear operator H(T ) : H(Ā) → H(B̄) such that
‖H(T )‖ ≤ ‖T‖ and T ◦ ΦĀ = ΦB̄ ◦H(T ).

Observe that σ(Ā) is the image space, ĀΦ = Φ(H(Ā)), endowed with the
quotient norm

‖x‖Φ := inf
x=x0(t)+x1(t)

‖(x0, x1)‖H = S(K(·, x))(1).

Indeed, obviously S(K(·, x))(1) ≤ ‖x‖Φ. On the other hand, if x ∈ σ(Ā), we
can consider x = x0(t) +x1(t) such that α(x0, x1)(t) ≤ (1 + ε)K(t, x). Then
(x0, x1) ∈ H(Ā) and ‖x‖Φ ≤ S(α(x0, x1))(1) ≤ (1 + ε)S(K(·, x))(1).

Proposition 5. If 0 < ϑ < 1 and 1 ≤ q ≤ ∞, then Āϑ,q →֒ σ(Ā) →֒ Σ(Ā).Proof. To verify the first inclusion, we observe that, if x̄ = (x0, x1) ∈
HK(Ā) and α(t) = α(x0, x1)(t), an application of Hölder’s inequality gives

‖x̄‖Φ =
∫ 1

0

α(t)
tϑ

tϑ
dt

t
+

∫ ∞

1

α(t)
tϑ

tϑ−1 dt

t

≤ C
( ∫ ∞

0

(α(t)
tϑ

)q dt

t

)1/q

= C‖x̄‖

with C = (1/ϑq′)1/q′ + (1/((1− ϑ)q′))1/q′ , and so Āϑ,q →֒ σ(Ā). �
Let ΨĀ = Ψ : H(Ā) → Σ(Ā) be a second operator such that T ◦ ΨĀ =

ΨB̄ ◦H(T ).
If for every x ∈ σ(Ā) we choose an almost optimal decomposition for the

K-functional, hx = (x0, x1), in the sense that

x0(t) + x1(t) = x and α(x0, x1)(t) ≤ cK(t, x) (c = cĀ ≥ 1),

then ‖hx‖H ≤ c‖x‖Φ. Thus, x 7→ hx is an almost optimal selection that has
an associated Ω-operator Ω(x) = Ψ(hx) for the interpolation method σ.

The following lemma is an abstract commutator theorem with pointwise
estimates.
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Lemma 2. Assume that Ψ satisfies the following condition: For every
(x0, x1) ∈ H(Ā) such that x0 + x1 = 0, there exists a measurable function

(y0, y1) : R+ → A0 ×A1

with the properties

y0(t) + y1(t) = Ψ(x0, x1) and α(y0, y1)(t) ≤ cS(α(x0, x1))(t) for all t > 0,

where c is a constant which does not depend on (x0, x1).
Then

K(t, [T,Ω](x)) ≤ C‖T‖S(K(·, x))(t). (16)Proof. Let x ∈ σ(Ā). Then Tx ∈ H(B̄) and for the almost optimal
decompositions hx ∈ H(Ā) and hTx ∈ H(B̄) we have α(hx)(t) ≤ cK(t, x)
and α(hTx)(t) ≤ cK(t, Tx) ≤ c‖T‖K(t, x).

Then
[T,Ω]x = TΨhx −ΨhTx = ΨB̄(H(T )hx − hTx),

where H(T )hx − hTx ∈ H(B̄) and Φ(H(T )hx − hTx) = 0. Hence, there
exists (y0(t), y1(t)) such that y0 + y1 = Ψ(H(T )hx−hTx) and α(y0, y1)(t) ≤
cS(α(H(T )hx − hTx))(t). Thus

K(t, [T,Ω]x) ≤ α(y0, y1)(t) ≤ cS(α(H(T )hx − hTx))(t).

To estimate the right-hand side, we observe that α(H(T )hx − hTx) ≤
2c‖T‖K(t, x) and S is positive. �

If the above estimate (16) holds for some constant C > 0, for all x ∈ σ(Ā)
and all T ∈ L(Ā; B̄), we say that Ω is K-commuting. In the terminology of
R. A. DeVore, S. D. Riemenschneider and R. Sharpley (see [DRS])
this means that [T,Ω] is of generalized weak type ((1, 1), (∞,∞)).

Since S is positive, from condition (16) we obtain

‖[T,Ω]x‖σ = S(K(·, [T,Ω]x)(1)

≤ C‖T‖S(K(·, x))(1)

≤ C‖T‖ ‖x‖σ

and [T,Ω] : σ(Ā) → B̄. We have also the following:
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Proposition 6. If Ω is K-commuting, then Ω is well defined on the spaces
Āϑ,q and

‖[T,Ω](x)‖ϑ,q ≤ c‖T‖ ‖x‖ϑ,q (17)

for all T ∈ L(Ā; B̄) with c > 0 independent of T .Proof. By the Minkowski inequality and Hardy’s inequalities for averages
(cf. [BS]),

‖[T, Tµ]f‖B̄θ,q

≤ C‖T‖
(∥∥∥t−θ

∫ t

0

K(s, f ; Ā)
s

ds
∥∥∥

Lq(dt/t)
+

∥∥∥t1−θ

∫ ∞

t

K(s, f ; Ā)
s

ds

s

∥∥∥
Lq(dt/t)

)

≤ C‖T‖
θ(1− θ)

‖f‖Āθ,q
.

�Remark 10. Assume that Ā and B̄ are the Gagliardo completions of Ā′

and B̄′, and that the condition of Lemma 2 holds for Ā, so that ΩĀ is
K-commuting. Then ΩĀ′ is also K-commuting.

If T : Ā′ → B̄′, then also T : Ā → B̄. In the proof of Lemma 2,
K(t, [T,Ω]; B̄′) = K(t, [T,Ω]; B̄) ≤ cα(y0, y1) and K(t, x; B̄) = K(t, x; B̄′).Remark 11. If Ār is a retract of Ā (i.e., IdĀr = PJ with P : Ā→ Ār and
J : Ār → Ā), then ΩĀr = PΩĀJ .

To obtain concrete examples, we associate with every λ ∈ L∞(R+) the
operator ΨĀ : H(Ā) → Σ(Ā) such that

ΨĀ(x0, x1) =
∫ 1

0

λ(t)x0(t)
dt

t
+

∫ ∞

1

λ(t)x1(t)
dt

t
,

which is linear and bounded since
∥∥∥∥

∫ 1

0

λ(t)x0(t)
dt

t

∥∥∥∥
0

≤ ‖λ‖∞
∫ 1

0

‖x0(t)‖0
dt

t

≤ ‖λ‖∞
∫ 1

0

α(x0, x1)(t)
dt

t
,

and similarly
∥∥∥∥

∫ ∞

1

λ(t)x1(t) dt
∥∥∥∥

1

≤ ‖λ‖∞
∫ ∞

1

α(x0, x1)(t)
dt

t2
.

Thus, ‖ΨĀ(x0, x1)‖Σ ≤ ‖λ‖∞‖(x0, x1)‖H .
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Theorem 16. For every λ ∈ L∞(R+), the associated operator Ω(x) :=
Ψ(hx) is K-commuting.Proof. Let x̄ = (x0, x1) ∈ H(Ā) as in Lemma 2. Then x1(t) = −x0(t) ∈
A0 ∩A1 and

Ψ(x̄) =
∫ 1

0

λ(t)x0(t)
dt

t
−

∫ ∞

1

λ(t)x0(t)
dt

t
=

∫ ∞

0

λ̃(s)x0(s)
ds

s

(we denote λ̃(t) := sgn(1− t)λ(t)). Then, if Ψ(x̄) = y0(t)+y1(t) is an almost
optimal decomposition for the K-functional,

α(y0, y1)(t) ≤ cK(t,Ψ(x̄)) = cK
(
t,

∫ ∞

0

λ̃(s)x0(s)
ds

s

)

≤ c

∫ ∞

0

K
(
t, λ̃(s)x0(s)

) ds
s

≤ c

∫ ∞

0

J
(
s, λ̃(s)x0(s)

)
min

(
1,
t

s

) ds
s

= c

∫ ∞

0

|λ(s)|J(s, x0(s))min
(
1,
t

s

) ds
s

≤ c‖λ‖∞S(α(x̄))(t).

For the last estimate observe that J(s, x0(s)) ≤ α(x̄)(s). �

4.4. Almost optimal decomposition for approximation spaces
Let V be a Hausdorff topological linear space and X a Banach subspace of V
with continuous embedding X →֒ V.

Let us also consider a fixed approximation family At (t > 0), i.e., a family
of non-empty subsets of V with the following properties:

(a) As ⊂ At if s < t,
(b) −At = At,
(c) As +At ⊂ As+t.

It is clear that 0 ∈ ⋂
t>0At and that A =

⋃
t>0At is an Abelian group,

that will be endowed with the (semi-)norm

‖x‖A = inf{t > 0 : x ∈ At}.
Then, as in [PS], we can define the approximation spaces Ep,q, similar to the
Lorentz spaces Lp,q, of all elements f ∈ A+X such that

‖f‖Ep,q
=

( ∫ ∞

0

[
t1/pE(f, t)

]q dt

t

)1/q

<∞,
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where E(f, t) = infa∈At
‖f − a‖X . By ft we denote an element in At such

that
‖f − ft‖X ≤ cE(f, t) (18)

with c > 1 independent of t > 0 and f .

A typical example (see [PS] or [Ni]) appears for V = L0, the space of all
measurable functions on Rn, X = L∞ and

At = {f ∈ L0 : ‖f‖0 = | supp f | ≤ t}

(| supp f | denotes the measure of the support of f). In this case

E(f, t) = f∗(t),

the non-increasing rearrangement of f , Ep,q = Lp,q and we have the Holm-
stedt formula for couples of Lorentz spaces,

K(t1/p0−1/p1 , f ;Lp0,q0 , Lp1,q1)

≃
( ∫ t

0

[
(s1/p0f∗(s)

]q0 ds

s

)1/q0

+ t1/p0−1/p1

(∫ ∞

t

[
s1/p1f∗(s)

]q1 ds

s

)1/q1

,

to estimate the K-functional.
A similar result holds for couples of approximation spaces and gives an

estimate for the K-functional:

Theorem 17. If (Ep0,q0 , Ep1,q1) is a couple of approximation spaces and
p0 < p1, then

K(t1/p0−1/p1 , f ;Ep0,q0 , Ep1,q1) ≃ ‖ft‖Ep0,q0
+ t1/p0−1/p1‖f − ft‖Ep1,q1

.Proof. Let δ = 1/p0 − 1/p1. It is known (cf. [Ni]) that

K(tδ, f ;Ep0,q0 , Ep1,q1)

≃
(∫ t

0

[
s1/p0E(f, s)

]q0 ds

s

)1/q0

+ tδ
( ∫ ∞

t

[
s1/p1E(f, s)

]q1 ds

s

)1/q1

. (19)

Let ft be as in (18). Then we have E(ft, s) = 0 when s > t, and E(ft, s) ≤
2cE(f, s) when s ≤ t since ‖ft − fs‖ ≤ cE(f, t) + cE(f, s) ≤ 2cE(f, s).
Hence,

‖ft‖Ep0,q0
=

(∫ t

0

[
s1/p0E(ft, s)

]q0 ds

s

)1/q0

≤ 2c
( ∫ t

0

[
s1/p0E(f, s)

]q0 ds

s

)1/q0

.

(20)
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On the other hand,

tδ‖f − ft‖Ep1,q1
= tδ

( ∫ ∞

0

[
s1/p1E(f − ft, s)

]q1 ds

s

)1/q1

= I1 + I2

with

I1 = tδ
(∫ 2t

0

[
s1/p1E(f − ft, s)

]q1 ds

s

)1/q1

and

I2 = tδ
(∫ ∞

2t

[
s1/p1E(f − ft, s)

]q1 ds

s

)1/q1

.

From E(f − ft, s) ≤ ‖f − ft‖X we obtain the estimate

I1 ≤ (p1/q1)1/q1tδ‖f − ft‖X21/p1t1/p1

≤ c(p1/q1)1/q121/p1t1/p0E(f, t)

≤ c(p1/q1)1/q121/p1

(∫ t

0

[
s1/p0E(f, s)

]q0 ds

s

)1/q0

.

Since E(ft, s/2) = 0 when s ≥ 2t, from E(f − ft, s) ≤ E(f, s/2)+E(ft, s/2)
we have

I2 ≤ tδ
( ∫ ∞

2t

[
s1/p1E(f, s/2)

]q1 ds

s

)1/q1

= tδ
( ∫ ∞

t

[
(2s)1/p1E(f, s)

]q1 ds

s

)1/q1

.

By combining these estimates, (20) and (19), we obtain

‖ft‖Ep0,q0
+ tδ‖f − ft‖Ep1,q1

≤ CK(tδ, f ;Ep0,q0 , Ep1,q1).

Obviously, K(tδ, f ;Ep0,q0 , Ep1,q1) ≤ ‖ft‖Ep0,q0
+ tδ‖f − ft‖Ep1,q1

. �

4.5. A commutator for Fourier multipliers on Besov spaces

The Besov space Bσ,q
X (or Bσ,q

X (R)), always with 0 < σ <∞ and 1 ≤ q <∞,
is the approximation space

Bσ,q
X :=

{
f ∈ X : ‖f‖σ,q =

(∫ ∞

0

[
rσE(r, f)

]q dr

r

)1/q

<∞
}
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with
E(r, f) := dX(f, V (r)) = inf

g∈V (r)
‖f − g‖X ,

where V (0) = 0 and V (r) = {g ∈ S ′ : supp ĝ ⊂ [−r, r]}.
If 0 < θ < 1 and 1 ≤ q <∞, it is known that

(Bσ0,q0
X , Bσ̃0,q1

X )θ,q = Bσ,q
X (σ = (1− θ)σ0 + θσ̃0)

and
(X,Bσ,r

X )θ,q = Bθσ,q
X (21)

with equivalent norms (we refer to [BL], [BS], [DL] and [Pe] for general
properties of Besov spaces).

To prove a commutator theorem for Ω = Tµ on Besov spaces, we need
to select the admissible symbols µ : R → C. Let δ > 1 and consider the
partition ∆(δ) = {∆j(δ)}j∈N of R defined by

∆j(δ) =
{

(−δj ,−δj−1] ∪ [δj−1, δj), if j > 0
(−1, 1), if j = 0

and ∆̄j(δ) = [−δj ,−δj−1] ∪ [δj−1, δj ] (∆̄0(δ) = [−1, 1]). Then, µ is said to
be admissible if

V (µ) := sup
j≥0

VAR∆̄j(δ)(µ) <∞, (22)

where VAR∆̄j(δ)(µ) is the total variation of µ over the closed set ∆̄j(δ),

VAR∆̄j(δ)(µ) :=
∫

∆̄j(δ)

|dµ| = sup
π

∑
|µ(tk)− µ(tk−1)|

with the supremum taken over all partitions π of ∆̄j(δ).

An example of unbounded admissible multiplier is log+ |x|.
Proposition 7. Let X be a rearrangement invariant space with the Boyd
indices satisfying 0 < αX ≤ αX < 1, and µ a bounded admissible multiplier.
Then

Tµ : X → X

with ‖Tµ‖ ≤ cX max(V (µ), ‖µ‖∞).Proof. If X = Lp, 1 < p < ∞, this is the Marcinkiewicz multiplier
theorem (cf. [EG] or [St1]). In the general case take 1/p < αX ≤ αX < 1/q
with 1 < p, q <∞. Then

Tµ : Lp → Lp and Tµ : Lq → Lq

and, by interpolation, Tµ : X → X. �
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satisfying 0 < αX ≤ αX < 1, then the family of Fourier multipliers

Pt := Tχ[−t,t] (t > 0)

is uniformly bounded on X (C := supt>0 ‖Pt‖X,X <∞) and Ptf ∈ V (t).

It is well known that ‖Pt‖ does not depend on t > 0 and ‖Pt‖ ≤ ‖H‖,
where H : X → X is the Hilbert transform; in fact, if X = Lp and
1 < p <∞, then ‖Pt‖ = ‖H‖ (cf. [CL]). Example 6 allows us to use Theo-
rem 4 of [CKM] to describe the K-functional for pairs of Besov spaces.

Proposition 8. Let X be a rearrangement invariant space with Boyd indices
satisfying 0 < αX ≤ αX < 1 and assume that ̺ := σ0 − σ̃0 > 0. Then

K(t̺, f ;Bσ0,q0
X , Bσ̃0,q̃0

X ) ≃ ‖Ptf‖σ0,q0 + t̺‖f − Ptf‖σ̃0,q̃0 .Proof. By Proposition 7,

‖Ptf‖X ≤ cX max(2, ‖µ‖∞)‖f‖X (f ∈ X, t > 0)

since, for every f ∈ X and t > 0, Ptf ∈ V (t) is such that ‖f − Ptf‖X ≤
CE(t, f) with some constant C > 0, and thus, if gt = Ptgt ∈ V (t) is such
that ‖f − gt‖X ≤ 2dX(f, V (t)), we have

‖f − Ptf‖X ≤ ‖f − gt‖X + ‖Ptgt − Ptf‖X ≤ CdX(f, V (t)).

Then Theorem 17 applies and

K(t̺, f ; B̄) ≃ ‖Ptf‖σ0,q0 + t̺‖f − Ptf‖σ̃0,q̃0 (f ∈ Σ(B̄)),

where B̄ = (Bσ0,q0
X , Bσ̃0,q̃0

X ). �
Theorem 18. Assume that 1≤ q, q0, q1, q̃0, q̃1 <∞, 0 < θ < 1, σ0 > σ1 > 0,
σ̃0 > σ̃1 > 0, σ = (1 − θ)σ0 + θσ1 and σ̃ = (1 − θ)σ̃0 + θσ̃1. If µ is an
“admissible multiplier”, then Tµ is K-commuting, so that

[T, Tµ] : Bσ0,q0
X → Bσ̃0,q̃0

X

whenever T : (Bσ0,q0
X , Bσ1,q1

X ) → (Bσ̃0,q̃0
X , Bσ̃1,q̃1

X ).

Let us summarize the proof (we refer to [CM] for the details).
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A first simplification is obtained by considering dyadic multipliers,

µ = {µn}n≥0 :=
∞∑

n=0

µnχ∆n(2),

a constant function on every ∆n(2). In this case the admissibility condi-
tion (22) is

V (µ) = sup
n≥0

|µn − µn−1| <∞ (µ−1 := 0).

We associate with every admissible multiplier µ the admissible dyadic
multiplier µ(d) = {µn} defined by

µn =
{
µ(2n−1), if n ≥ 1
0, if n = 0,

and so we may assume that µ is a dyadic multiplier with δ = 2,

µ = {µn}n≥0 =
∞∑

n=0

µnχ∆n(2).

In this case,

Tµf =
∞∑

k=1

µk(P2kf − P2k−1f)

and, denoting

λ0 = µ1 − µ0 = µ1, λ1 = µ2 − µ1, . . . , λk = µk+1 − µk, . . . ,

we obtain a bounded sequence λ = {λn} ∈ ℓ∞ and we can consider

Tµf =
∞∑

n=1

( n∑

j=0

λj

)
(P2nf − P2n−1f)

=
∞∑

j=0

λj

∑

n>j

(P2nf − P2n−1f)

=
∞∑

j=0

λj(f − P2jf),

where the series is convergent, and

Tµ : σ(Ā) → Σ(Ā) if Ā = (Bσ0,q0
X ;Bσ̃0,q̃0

X ). (23)

Similarly, Tµ : σ(B̄) → Σ(B̄), B̄ = (Bσ1,q1
Y ;Bσ̃1,q̃1

Y ).
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Now, given T ∈ L(Ā; B̄) and f ∈ σ(Ā),

[T, Tµ]f =
∞∑

j=0

λj(Tf − TP2jf)−
∞∑

j=0

λj(Tf − P2jTf)

=
∑

Θ

λj(P2jTf − TP2jf) +
∑

N\Θ
λj(Tf − TP2jf)

− λj(Tf − P2jTf),

where Θ = {j ∈ N : 2̺(j+1) < t}. By Proposition 8,

K(2̺j , T f ; B̄) ≃ ‖P2jTf‖σ1,q1 + 2̺j‖Tf − P2jTf‖σ̃1,q̃1 (24)

with

‖P2jTf‖σ1,q1 . K(2̺j , T f ; B̄) ≤ ‖T‖K(2̺j , f ; Ā),

‖TP2jf‖σ1,q1 ≤ ‖T‖ ‖P2jf‖σ0,q0 . ‖T‖K(2̺j , f ; Ā)

and we obtain

∥∥∥
∑

Θ

λj(P2jTf − TP2jf)
∥∥∥

σ1,q1

. ‖λ‖∞‖T‖
̺ log 2

∫ t

0

K(x, f ; Ā)
dx

x
.

Also, it follows from

‖Tf − P2jTf‖σ̃1,q̃1 . K(2̺j , T f ; B̄)
2̺j

≤ ‖T‖K(2̺j , f ; Ā)
2̺j

and

‖Tf − TP2jf‖σ̃1,q̃1 ≤ ‖T‖ ‖f − P2jf‖σ̃0,q̃0 . ‖T‖K(2̺j , f ; Ā)
2̺j

that
∥∥∥

∑

N\Θ
λj(Tf − TP2jf)− λj(Tf − P2jTf)

∥∥∥
σ̃1,q̃1

≤ 22̺‖λ‖∞‖T‖
̺ log 2

∫ ∞

t

K(x, f ; Ā)
x

dx

x
.
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Summarizing, we have

K(t, [T, Tµ]f ; B̄) ≤
∥∥∥

∑

Θ

λj(P2jTf − TP2jf)
∥∥∥

σ1,q1

+ t
∥∥∥

∑

N\Θ
λj(Tf − TP2jf)− λj(Tf − P2jTf)

∥∥∥
σ̃1,q̃1

≤ c
(∫ t

0

K(x, f ; Ā)
dx

x
+ t

∫ ∞

t

K(x, f ; Ā)
x

dx

x

)

= cS(K(·, f ; Ā))(t),

and Tµ is K-commuting, as in Proposition 6. Here Āθ,q = Bσ,q
X and B̄θ,q =

Bσ̃,q
Y . �
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[CCS3] M. J. Carro, J. Cerdà and J. Soria: Commutators, interpolation and vector
function spaces. In: Function spaces, interpolation spaces, and related topics.
Proc. of the workshop, Haifa, Israel, June 7-13, 1995. Israel Math. Conf. Proc.

13, 24–31. Bar-Ilan Univ., Ramat Gan, 1999. Zbl 1007.46024, MR 2000e:46090.



THE COMMUTATORS OF ANALYSIS AND INTERPOLATION 71
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