
NAFSA 8

Viktor I. Kolyada
On embedding theorems

In: Jiří Rákosník (ed.): Nonlinear Analysis, Function Spaces and Applications,
Proceedings of the Spring School held in Prague, May 30-June 6, 2006, Vol. 8. Institute of
Mathematics of the Academy of Sciences of the Czech Republic, Praha, 2007. pp. 35--94.

Persistent URL: http://dml.cz/dmlcz/702492

Terms of use:
© Institute of Mathematics AS CR, 2007

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides
access to digitized documents strictly for personal use. Each copy of any part of this
document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech
Digital Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/702492
http://project.dml.cz


ON EMBEDDING THEOREMS

Viktor I. Kolyada

Abstract. This paper is devoted to embedding theorems for classes of func-
tions of several variables. One of our main objectives is to give an analysis of
some basic embeddings as well as to study relations between them. We also
discuss some methods in this theory that were developed in the last decades.

These methods are based on non-increasing rearrangements of functions, iter-
ated rearrangements, estimates of sections of functions, related mixed norms,
and molecular decompositions.

1. Introduction

We will study spaces of functions defined in terms of Lp-norms of derivatives
(Sobolev-type spaces) and spaces defined in terms of Lp-moduli of continuity
(in particular, spaces of Besov-Nikol’skii and Lipschitz type). We emphasize
that it is very important to include to these studies the limiting case p = 1.
This case often requires special methods. In many estimates the proofs
given for p > 1 are much easier than those for p = 1. It is clear that in
such situations the constants in these estimates obtained by “easy” methods
are not sharp. Therefore it is necessary to apply alternative methods that
would cover simultaneously all values p ≥ 1 (if the corresponding results are
true for p = 1). The most known methods of this type are those related
to the use of non-increasing rearrangements of functions. The systematic
application of these methods in the Embedding Theory goes back to the
works of Ul’yanov [64], [65].

In this paper we pay much attention to the estimates of rearrangements.
We show that they enable us to obtain general results that include embed-
dings of spaces of Sobolev and Besov-Nikol’skii type. It was for the first time
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36 VIKTOR I. KOLYADA

discovered in [10] that the relations between embeddings of these spaces are
closely connected with optimal embedding constants. Later on, in [42] we
showed that such constants can be readily derived from sharp estimates of
non-increasing rearrangements in terms of moduli of continuity. These re-
sults concern the isotropic case. In the anisotropic case the situation is much
more difficult and the results are not yet complete. An important open prob-
lem is to find general sharp estimates of rearrangements in terms of partial
moduli of continuity.

One of the most remarkable properties of rearrangements is the variation
reducing property. In 1951, Pólya and Szegö proved the following theo-
rem: the Lp-norm of the gradient of the symmetric rearrangement of a given
function f does not exceed the Lp-norm of the gradient of f . Afterwards,
fundamental estimates of the moduli of continuity of rearrangements in one
variable were obtained in the middle of seventies by Garsia and Rodemich
[24], Oswald [54] and Wik [66]. Recently, Cianchi [16] studied bounded-
ness of the decreasing rearrangement operator in Besov spaces of higher order
in the one-dimensional case. However, for functions of several variables, the
known results are not complete, especially in the anisotropic case.

We shall consider also iterated (multivariate) rearrangements. The rough
definition is the following. Given a function f on Rn, we rearrange it non-
increasingly first with respect to x1, then with respect to x2, and so on. As
a result, we obtain a function on Rn

+ that is non-increasing in each variable
and equimeasurable with |f |. We denote it by R1,...,nf . Of course, we can
change the order of variables which leads to a different function. We show
that the use of iterated rearrangements enables one to simplify proofs and,
at the same time, to obtain stronger results.

The most developed part of the embedding theory is devoted to the
study of spaces defined by numerical parameters measuring smoothness.
In this paper we consider the anisotropic fractional Sobolev spaces, the
Besov-Nikol’skii spaces and the Lipschitz spaces and for these spaces we
discuss Sobolev-type embeddings with the limiting exponent. Note that the
anisotropic Lipschitz spaces inherit partly properties of Sobolev spaces and
partly properties of Nikol’skii spaces. This is why the study of Lipschitz
spaces is met with essential difficulties and leads to rather special results.
However, we prove that sharp embeddings for Lipschitz spaces can be ob-
tained as the limiting case of embeddings for Besov-Nikol’skii spaces.

We also discuss alternative statements of problems which are expressed
not in terms of classes defined by smoothness exponents, but in terms of
individual functions. Such problems are more general and may lead to es-
sentially stronger results.
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Our approach to the Sobolev-type inequalities is based on estimates of
mixed norms. It was shown first by Gagliardo [22] and then by Fournier
[21] that the integrability properties of a function of several variables can
be controlled by the behavior of L∞-norms of its x̂k-sections. In [21], sharp
estimates of Lorentz norms in terms of certain mixed norms were proved.
These estimates immediately imply the Sobolev inequality and clarify the
role of smoothness conditions in the embeddings of Sobolev spaces W 1

1 . Sim-
ilar results for the Sobolev spaces W 1

p with p > 1 and for the anisotropic
Besov spaces Bα1,...,αn

p were obtained in our paper [41]. In a latter work,
we introduced a more general scale of mixed norm spaces and studied some
embeddings for these spaces.

The study of sections of functions leads also to the case when smooth-
ness conditions are imposed on functions with respect to only one specific
variable xk. In a sense, this is a limiting case of anisotropic classes, when
only one of the indices of smoothness is positive. This smoothness condition
can be combined with conditions of other type. In [40] we studied embed-
ding theorems and multiplicative inequalities of Gagliardo–Nirenberg type
for the corresponding norms. We proved different norm inequalities for par-
tial moduli of continuity with respect to a separate variable xk, combining
conditions on the “size” of a function and its smoothness in a given Lorentz
norm with respect to the same variable. Applying these results, we obtained
optimal constants in some known multiplicative inequalities. We considered
also the case when a derivative belongs to the space L1. In the latter case,
along with estimates of rearrangements, we used the method of molecular
decompositions due to Pelczyński and Wojciechowski [58].

In this paper we give an overview of the problems and results that have
been briefly described above. We note that many of them are not new.
However, they still generate important open problems and have interesting
links with more recent results.

Only few statements in the paper are given with proofs. These statements
were selected to show how the basic methods of rearrangements and iterated
rearrangements work. We include also the proofs of some new, unpublished
yet, results. The main of them are optimal estimates of Lorentz norms in
terms of anisotropic Besov norms (Section 8). In a limit, these estimates
give sharp embeddings of Lipschitz spaces.

2. Nonincreasing rearrangements

Denote by S0(Rn) the class of all measurable and almost everywhere finite
functions f on Rn such that, for each y > 0,

λf (y) ≡ |{x ∈ Rn : |f(x)| > y}| <∞.
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A non-increasing rearrangement of a function f ∈ S0(Rn) is a non-
increasing function f∗ on R+ ≡ (0,+∞) such that, for any y > 0,

|{t ∈ R+ : f∗(t) > y}| = λf (y). (2.1)

We shall assume in addition that the rearrangement f∗ is left continuous on
(0,∞). Under this condition it is defined uniquely by

f∗(t) = inf{y > 0 : λf (y) < t} (0 < t <∞).

Besides, we have the equality

f∗(t) = sup
|E|=t

inf
x∈E

|f(x)|.

The following relation holds [63, Chap. 5]:

sup
|E|=t

∫

E

|f(x)| dx =
∫ t

0

f∗(u) du. (2.2)

In what follows we denote

f∗∗(t) =
1
t

∫ t

0

f∗(u) du.

By (2.2), the operator f 7→ f∗∗ is subadditive,

(f + g)∗∗(t) ≤ f∗∗(t) + g∗∗(t).

Moreover, this operator is bounded in Lp for p > 1,

‖f∗∗‖p ≤
p

p− 1
‖f‖p (1 < p ≤ ∞). (2.3)

This inequality follows from the following Hardy lemma:

Lemma 2.1 ([63, p. 196]). Let α > 0 and 1 ≤ p < ∞. Then for any
non-negative measurable function ϕ on (0,∞),

(∫ ∞

0

(∫ t

0

ϕ(u) du
)p

t−α−1 dt

)1/p

≤ p

α

(∫ ∞

0

(
tϕ(t)

)p
t−α−1 dt

)1/p

and
(∫ ∞

0

(∫ ∞

t

ϕ(u) du
)p

tα−1 dt

)1/p

≤ p

α

(∫ ∞

0

(
tϕ(t)

)p
tα−1 dt

)1/p

. (2.4)

The main properties of rearrangements used in what follows are set forth
in [4], [19], [43], [44], [63]. We formulate two of them.
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Lemma 2.2. If a sequence {fk} ⊂ S0 converges in measure to a function
f ∈ S0, then f∗k (t) → f∗(t) at every point of continuity of f .

For the proof see [43, Chap. 2, § 2].

Lemma 2.3. Let f, g ∈ Lp(Rn), 1 ≤ p <∞. Then
∫ ∞

0

|f∗(t)− g∗(t)|p dt ≤
∫

Rn

|f(x)− g(x)|p dx.

The proof can be found in [44, p. 83].
It follows from (2.1) that, for any 0 < p <∞,

∫

Rn

|f(x)|p dx =
∫ ∞

0

f∗(t)p dt. (2.5)

In 1950 G. Lorentz introduced a scale of spaces, defined by two parameters,
and including the spaces Lp. Let 0 < p, r < ∞. A function f ∈ S0(Rn)
belongs to the Lorentz space Lp,r(Rn) if

‖f‖p,r ≡
(∫ ∞

0

(
t1/pf∗(t)

)r dt
t

)1/r

<∞.

For 0 < p <∞, the space Lp,∞(Rn) is defined as the class of all f ∈ S0(Rn)
such that

‖f‖p,∞ ≡ sup
t>0

t1/pf∗(t) <∞.

By (2.5) we have that ‖f‖p,p = ‖f‖p. Further, for a fixed p, the Lorentz
spaces Lp,r increase as the secondary index r increases. That is, we have the
strict embedding Lp,r ⊂ Lp,s for r < s; in particular,

Lp,r ⊂ Lp,p ≡ Lp (0 < r < p).

More exactly, the following inequality holds (see [63, p. 192]):

‖f‖p,s ≤
(p
s

)1/s(r
p

)1/r

‖f‖p,r (0 < r < s ≤ ∞). (2.6)

The difference

w(t) ≡ f∗∗(t)− f∗t) =
1
t

∫ t

0

[f∗(u)− f∗(t)] du
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measures the mean oscillations of the rearrangement f∗. We have the equal-
ity

f∗∗(t) =
∫ ∞

t

f∗∗(u)− f∗(u)
u

du. (2.7)

The space W (Rn) ≡ weak-L∞(Rn) consists of all functions f ∈ S0(Rn)
such that

‖f‖W ≡ sup
t>0

[f∗∗(t)− f∗(t)] <∞.

This space was introduced in [3] by Bennett, DeVore and Sharpley.
They proved that BMO ⊂W .

For a function f ∈ S0(Rn), we consider also the quantity

w̃(t) ≡ f∗(t)− f∗(2t).

Observe that, for any t > 0,

1
2
w̃
( t

2

)
≤ f∗∗(t)− f∗(t) ≤ 2

t

∫ t

0

w̃(u) du. (2.8)

The left-hand inequality is immediate since

f∗∗(t)− f∗(t) ≥ 1
t

∫ t/2

0

[
f∗(u)− f∗(t)

]
du ≥ 1

2
w̃
( t

2

)
.

Next, for any t > 0 and any 0 < ε < t,

∫ t

ε

w̃(u) du =
∫ t

ε

f∗(u) du− 1
2

∫ 2t

2ε

f∗(u) du ≥ 1
2

[∫ t

ε

f∗(u) du− tf∗(t)
]
.

This implies the right-hand inequality in (2.8).
Similarly, we have that, for any f ∈ S0(Rn) and any t > 0,

f∗(2t) ≤ 1
ln 2

∫ ∞

t

f∗(u)− f∗(2u)
u

du. (2.9)

Let 1 ≤ p, r <∞. For a function f ∈ S0(Rn), set

‖f‖∗p,r =
(∫ ∞

0

[
t1/p(f∗(t)− f∗(2t))

]r dt
t

)1/r

(2.10)
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and
‖f‖∗p,∞ = sup

t>0
t1/p

[
f∗(t)− f∗(2t)

]
.

It follows from (2.9) and Hardy’s inequality (2.4) that

‖f‖p,r ≤
21/pp

ln 2
‖f‖∗p,r (1 ≤ p <∞, 1 ≤ r ≤ ∞). (2.11)

Thus, ‖ · ‖p,r and ‖ · ‖∗p,r for 1 ≤ p <∞, 1 ≤ r ≤ ∞ are equivalent. However,
the latter quasi-norm can be finite in the case p = ∞, too.

For any 1 ≤ r < ∞, the space L∞,r(Rn) is defined as the class of all
functions f ∈ S0(Rn) such that

‖f‖∞,r ≡
(∫ ∞

0

[f∗∗(t)− f∗(t)]r
dt

t

)1/r

<∞

(see [2], [46]). Set also

‖f‖∗∞,r ≡
(∫ ∞

0

[
f∗(t)− f∗(2t)

]r dt
t

)1/r

. (2.12)

It follows from (2.8) that

1
2
‖f‖∗∞,r ≤ ‖f‖∞,r ≤ 2‖f‖∗∞,r.

3. Estimates of rearrangements

In this section we present the simplest versions of rearrangement estimates
and derive from them the basic Sobolev-type inequality. We include the
complete proofs to describe the main ideas of the method of rearrangements.

3.1. Estimates in terms of derivatives. The following lemma was ob-
tained in [35, Lemma 5.1].*

Lemma 3.1. Let f ∈ S0(Rn) be a locally integrable function which has all
weak derivatives ∂f/∂xk ∈ L1

loc, k = 1, . . . , n. Then

f∗∗(t)− f∗(t) ≤ √
n t1/n(|∇f |)∗∗(t). (3.1)

*In [35] the left-hand side of the corresponding estimate contained the difference ew(t)
instead of f∗∗(t)− f∗(t); by (2.8), this is equivalent to (3.1).
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Proof. Let x ∈ Rn and t > 0. Denote by Qx(t) the cube centered at x
with the side length (2t)1/n. Fix x and set

At,x = {y ∈ Qx(t) : |f(y)| ≤ f∗(t)}.

Then |At,x| ≥ t. For any y ∈ At,x,

|f(x)| − f∗(t) ≤ |f(x)| − |f(y)| ≤ |f(x)− f(y)|.

Integrating over At,x we obtain

|f(x)| − f∗(t) ≤ 1
t

∫

At,x

|f(x)− f(y)| dy

≤ 1
t

∫

Q0(t)

|f(x)− f(x+ h)| dh

≤ √
n t1/n−1

∫ 1

0

dτ

∫

Q0(t)

|∇f(x+ τh)| dh

for almost all x ∈ Rn. Let E ⊂ Rn, |E| = t. Then for all τ ∈ [0, 1] and
h ∈ Q0(t), ∫

E

|∇f(x+ τh)| dx ≤
∫ t

0

(|∇f |)∗(u) du.

Applying (2.2), we get (3.1). �
It follows from (3.1) and (2.7) that

f∗∗(t) ≤ √
n

∫ ∞

t

u1/n−1(|∇f |)∗∗(u) du.

Using induction, we immediately obtain

Corollary 3.2. For any f ∈ C∞0 and any r ∈ N,

f∗∗(t) ≤ c

∫ ∞

t

ur/n−1(Drf)∗∗(u) du,

where Drf(x) =
∑

|α|=r |Dαf(x)|.
By (2.3), the average rearrangement operator ϕ 7→ ϕ∗∗ is bounded in Lp

for p > 1. Therefore the above estimates can be applied to the study of
Sobolev spaces W r

p in the case p > 1. However, this way leads to a “bad”
constant and fails in the case p = 1. The following lemma may be more
useful.
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Lemma 3.3. Let f ∈ S0(Rn) be a locally integrable function which has
all weak derivatives ∂f/∂xk that belong to Lp on any set of finite measure
(1 ≤ p <∞). Let

Et = {x : |f(x)| > f∗(t)}.

Then for all 0 < h ≤ t,

f∗(t)− f∗(t+ h) ≤ 2
√
n t1/n−1

∫

Et+h\Et

|∇f(x)| dx. (3.2)

Moreover, f∗ is absolutely continuous on each interval [α, β], 0 < α < β <
∞, and ∣∣∣∣

d

dt
f∗(t)

∣∣∣∣ ≤ 2
√
n t1/n−1

(
d

dt

∫

Et

|∇f(x)|p dx
)1/p

(3.3)

for almost all t > 0.

Proof. We can assume that f ≥ 0. Set

g(x) =
{

min{f(x), f∗(t)} − f∗(t+ h), if x ∈ Et+h,

0, if x 6∈ Et+h.

It is easy to see that the function g has all weak derivatives ∂g/∂xk and, for
almost all x,

∇g(x) =
{ ∇f(x), if x ∈ Et+h \ Et,

0, if x 6∈ Et+h \ Et.

We have g∗(t+ h) = 0 and

g∗∗(t+ h) ≥ t

t+ h

[
f∗(t)− f∗(t+ h)

]
.

Applying Lemma 3.1, we obtain (3.2). In turn, (3.2) yields that f∗ is abso-
lutely continuous on each interval [α, β], 0 < α < ¡

¯
∞. If (f∗)′(t) exists and

is different from 0, then |Et+h \ Et| ≤ h, and we get from (3.2)

f∗(t)− f∗(t+ h) ≤ 2
√
n t1/n−1h1−1/p

(∫

Et+h\Et

|∇f(x)|p dx
)1/p

.

This implies (3.3). �
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Remark 3.4. Inequalities (3.2) and (3.3) were proved in [35] (the proof was
based on the Loomis–Whitney theorem [45]). The local absolute continuity
of the rearrangement was first proved in [29] (see also [35]).

Let W 1
p (Rn) be the Sobolev space of all f ∈ Lp(Rn) for which every first-

order weak derivative exists and belongs to Lp(Rn). The simplest version of
the classical Sobolev inequality is the following.

Theorem 3.5. Let n ≥ 2, 1 ≤ p < n, and q∗ = np/(n − p). Then for any
f ∈W 1

p (Rn),

‖f‖q∗ ≤ c

n∑

k=1

‖Dkf‖p. (3.4)

Sobolev proved this inequality in 1938 for p > 1; his method, based on
integral representations, did not work in the case p = 1. Only at the end
of fifties Gagliardo and Nirenberg gave simple proofs of the inequality
(3.4) for all 1 ≤ p < n. We will discuss Gagliardo’s approach below.

It is well known that the left-hand side in (3.4) can be replaced by the
stronger Lq∗,p-Lorentz norm. Namely, the inequality

‖f‖q∗,p ≤ c

n∑

k=1

‖Dkf‖p

(
1 ≤ p < n, q∗ =

np

n− p

)
(3.5)

holds (see [50], [57], [60]). For p > 1 this result can be obtained by inter-
polation (although the direct proof is simpler). There are numerous proofs
of (3.5) in the case p = 1; most of them are related to rearrangements,
properties of level sets, and geometric inequalities. Here we observe that for
all 1 ≤ p < n the inequality (3.5) can be immediately derived from (3.3).
Indeed, by Hardy’s inequality (2.4) and (3.3) we have

‖f‖q∗,p =
(∫ ∞

0

tp/q∗−1f∗(t)p dt

)1/p

=
(∫ ∞

0

tp/q∗−1

(∫ ∞

t

|(f∗)′(u)| du
)p

dt

)1/p

≤ q∗
(∫ ∞

0

t−p/n+p|(f∗)′(t)|p dt
)1/p

≤ 2
√
n q∗

(∫ ∞

0

d

dt

∫

Et

|∇f(x)|p dxdt
)1/p

= 2
√
n q∗‖∇f‖p.
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In the limiting case p = n the estimate (3.1) and Hardy’s inequality
immediately imply that, for any function f ∈W 1

n(Rn) (n ≥ 2),

(∫ ∞

0

[
f∗∗(t)− f∗(t)

]n dt
t

)1/n

≤ cn‖∇f‖n, (3.6)

i.e., W 1
n(Rn) ⊂ L∞,n(Rn) (see [2], [46]). Observe also that, in view of (3.10),

the inequality (3.6) can be considered as a special case of (3.13) below.

3.2. Estimates in terms of moduli of continuity. For any function
f ∈ Lp(Rn), 1 ≤ p <∞, its modulus of continuity is defined by

ω(f ; δ)p = sup
|h|≤δ

(∫

Rn

|f(x+ h)− f(x)|p dx
)1/p

(0 < δ <∞).

Observe that ω(f ; ·)p is non-decreasing and subadditive function. In partic-
ular,

ω(f ; 2δ)p ≤ 2ω(f ; δ)p for any δ ≥ 0. (3.7)

It follows that ω(f ; 2nδ)p ≤ 2nω(f ; δ)p for any n ∈ N and any δ > 0. Hence,
if ω(f ; δ)p 6≡ 0, then ω(f ; δ)p > 0 for all δ > 0 and

ω(f ; δ)p ≥ cωδ (cω = ω(1/2) > 0)

for all δ ∈ [0, 1]. It follows from the Lebesgue differentiation theorem that
ω(f ; δ)p ≡ 0 if and only if f is equivalent to 0. It can be easily seen that, for
any f ∈W 1

p (Rn) (1 ≤ p <∞),

ω(f ; δ)p ≤ ‖∇f‖p δ. (3.8)

Moreover, by the Hardy-Littlewood theorem [53, §4.8], for any 1 < p < ∞
and δ > 0,

ω(f ; δ)p = O(δ) if and only if f ∈W 1
p (Rn). (3.9)

Further, for any 1 ≤ p <∞ and any f ∈W 1
p (Rn),

lim
δ→0+

ω(f ; δ)p

δ
= sup

δ>0

ω(f ; δ)p

δ
= ‖∇f‖p (3.10)

(for the proof, see [42]).



46 VIKTOR I. KOLYADA

Let 0 < α < 1, 1 ≤ p < ∞ and 1 ≤ θ ≤ ∞. The Besov space Bα
p,θ(Rn)

consists of all functions f ∈ Lp(Rn) such that

‖f‖bα
p,θ
≡
(∫ ∞

0

(
t−αω(f ; t)p

)θ dt
t

)1/θ

<∞

if θ <∞, and
‖f‖bα

p,∞ ≡ sup
t>0

t−αω(f ; t)p <∞

if θ = ∞. Set also Bα
p = Bα

p,p. The space Bα
p,θ is a Banach space with respect

to the norm
‖f‖Bα

p,θ
= ‖f‖p + ‖f‖bα

p,θ
.

Observe that this space is not complete with respect to the norm ‖ · ‖bα
p,θ

.
We shall consider estimates of rearrangements in terms of moduli of con-

tinuity. First of all, our interest in these estimates is motivated by the
following problem due to Ul’yanov.

Let f ∈ Lp(Rn). Assume that a function ϕ is defined on R+ and ϕ(t)t−p

increases. Find sharp estimates of the integral
∫

Rn

ϕ(|f(x)|) dx

in terms of ω(f ; δ)p.
Ul’yanov [64] studied this problem in the one-dimensional case for some

special functions ϕ, in particular, for ϕ(t) = tq. His approach was based on
the following lemma.

Lemma 3.6. Let f ∈ Lp(Rn), 1 ≤ p <∞. Then for any t > 0,

f∗∗(t)− f∗(t) ≤ 21/pt−1/pω(f ; t1/n)p . (3.11)

This lemma was first proved by Ul’yanov [64] in the one-dimensional
case (see [38, p. 148] for an alternative proof). Further, the stronger version
of (3.11),

∫ t

0

[f∗(s)− f∗(t)]p ds ≤ cω(f ; t1/n)p (1 ≤ p <∞, n ∈ N) (3.12)

was proved in [31]. A simpler proof in the general case is contained in [33,
Theorem 1]; this proof is similar to the one given in the Lemma 3.1. The
estimate (3.12) is efficient for n = 1. However, if n ≥ 2 and 1 ≤ p < n,
then (3.12) is not sufficiently strong. A sharp estimate is contained in the
following theorem proved in [33].
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Theorem 3.7. Let f ∈ Lp(Rn), 1 ≤ p <∞, n ∈ N. Then for any δ > 0,

∫ ∞

δn

t−p/n

∫ t

0

(
f∗(u)− f∗(t)

)p
du
dt

t
≤ cp,n

(
ω(f, δ)p

δ

)p

. (3.13)

In particular, Theorem 3.7 enabled us to obtain sharp estimates of the
integral

∫
Rn ϕ(|f(x)|) dx for functions ϕ satisfying the condition ϕ(2t) ≤

cϕ(t) (see [33]).
An interesting open problem is to obtain inequalities similar to (3.13) in

terms of partial moduli of continuity (see Sections 4 and 7 below).

4. Smoothness of rearrangements

4.1. The Pólya-Szegö principle. Let f ∈ S0(Rn). The spherically sym-
metric rearrangement of f is defined by

f∗s (x) = f∗(vn|x|n), x ∈ Rn,

where vn = πn/2/Γ(n/2 + 1) is the measure of the n-dimensional unit ball.
The function f∗s is equimeasurable with f , it possesses the spherical symme-
try and decreases as |x| increases.

The classical Pólya-Szegö principle states that, for any f ∈ C∞0 (Rn) the
rearrangement f∗s is differentiable almost everywhere and for any 1 ≤ p ≤ ∞,

‖∇f∗s ‖p ≤ ‖∇f‖p.

A stronger version of this principle is represented by the inequality

(|∇f∗s |)∗∗(t) ≤ (|∇f |)∗∗(t) (0 < t <∞) (4.1)

(see [1], [36]). By virtue of the Hardy-Littlewood lemma [4, p. 88], (4.1)
implies that for any nonnegative and convex function ϕ on [0,+∞) with
ϕ(0+) = 0, ∫

Rn

ϕ(|∇f∗s (x)|) dx ≤
∫

Rn

ϕ(|∇f(x)|) dx.

An extension of the Pólya-Szegö principle to arbitrary rearrangement-
invariant spaces was obtained by Cianchi and Pick [18].

Observe that

g(x) ≡ |∇f∗s (x)| = vnn|x|n−1|(f∗)′(vn|x|n)|
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and g∗(t) = κ−1
n h∗(t), where h(z) = z1−1/n|(f∗)′(z)|, z > 0, and κn =

v
−1/n
n n−1 is the isoperimetric constant. Thus, (4.1) is equivalent to the

inequality ∫ t

0

h∗(u) du ≤ κn

∫ t

0

(|∇f |)∗(u) du. (4.2)

Such inequality with a worse constant follows also from Lemma 3.3.
Note that for n = 1 we have the following pointwise inequality

((f∗)′)∗(t) ≤ (f ′)∗(t) (t > 0)

(see [35]). However, for n ≥ 2 the inequality (|∇f∗s |)∗(t) ≤ c(|∇f |)∗(t) fails
to hold.

Cianchi [17] proved a second-order version of the Pólya-Szegö principle
in a form patterned on (4.2) (see also [15]).

The Pólya-Szegö principle expresses variation reducing properties of the
rearrangements. Similar properties are also contained in the estimates of the
moduli of continuity of rearrangements.

4.2. Moduli of continuity (functions of one variable). In 1968 Ul’ya-
nov [64] posed the following problem: estimate the Lp-modulus of continuity
of the rearrangement f∗ in terms of the modulus of continuity of a given
function f .

The first sharp results were obtained in the one-dimensional case by
Oswald [54] and Wik [66].

Theorem 4.1. For any f ∈ Lp[0, 1], 1 ≤ p <∞,
∫ δ

0

ω(f∗; t)p
p dt ≤

∫ δ

0

ω(f ; t)p
p dt

(
0 ≤ δ ≤ 1

2

)
.

It follows that

ω(f∗; δ)p ≤ 2ω(f ; δ)p

(
0 ≤ δ ≤ 1

2

)
. (4.3)

The sharp constant in this inequality is still unknown.
Brudnyi [13] obtained a simpler proof of the inequality (4.3), however,

with the constant 21+1/p +1 instead of 2. He used the Pólya-Szegö principle
and approximations by the Steklov averages.

Theorem 4.1 was derived from the inequality
∫∫

|t−s|≤δ

ϕ(f∗(t)− f∗(s)) dtds ≤
∫∫

|x−y|≤δ

ϕ(f(x)− f(y)) dxdy, (4.4)
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where ϕ is an even nonnegative function, increasing on [0,+∞) (see [24],
[54], [66]).

Even for a function f ∈ C∞0 its rearrangement may be non-differentiable
in some points. However, Cianchi [16] obtained some sharp results concern-
ing the second order modulus of smoothness of the rearrangement.

Denote

∆r(h)f(x) =
r∑

j=0

(−1)r−j

(
r

j

)
f(x+ jh).

If f ∈ Lp[0, 1], 1 ≤ p < ∞, then its modulus of continuity of order r is
defined by

ωr(f ; δ)p = sup
0≤h≤δ

(∫ 1−rh

0

|∆r(h)f(x)|p dx
)1/p

(0 ≤ δ ≤ 1/r).

Let 1 ≤ p < ∞, 1 ≤ θ ≤ ∞ and α > 0. Denote by r the least integer
such that r > α. The Besov space Bα

p,θ[0, 1] is defined as the class of all
f ∈ Lp[0, 1] such that

‖f‖Bα
p,θ
≡ ‖f‖p +

(∫ 1/r

0

[
t−αωr(f ; t)p

]θ dt
t

)1/θ

<∞.

It was proved by Oswald [56] and, independently, by Bourdaud and
Meyer [8], that the operator f 7→ |f | is bounded in Bα

p,θ if and only if
0 < α < 1 + 1/p.

Cianchi [16] obtained a similar result for the operator f 7→ f∗.

Theorem 4.2. Let 1 ≤ p < ∞, 1 ≤ θ ≤ ∞ and 0 < α < 1 + 1/p. Assume
that f ∈ Bα

p,θ[0, 1]. Then f∗ ∈ Bα
p,θ[0, 1] and

‖f∗‖Bα
p,θ
≤ c‖f‖Bα

p,θ
. (4.5)

It was also shown in [16] that (4.5) does not hold if 1 ≤ θ < ∞ and
α ≥ 1 + 1/p, or if θ = ∞ and α > 1 + 1/p. The case θ = ∞, α = 1 + 1/p is
open.

It would be interesting to obtain a general estimate of ω2(f∗; t)p in terms
of ω2(f ; t)p which would include (4.5) as a special case.

4.3. Moduli of continuity (multidimensional case). Garsia [23] and
Milne [49] obtained the following multidimensional analogue of the inequal-
ity (4.4).
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Theorem 4.3. Let ϕ be an even, nonnegative and nondecreasing function
on [0,+∞). Then for any measurable, any almost everywhere finite function
f on [0, 1]n and any δ ∈ [0, 1],

∫∫

|t−s|≤cnδn

ϕ
(
f∗(t)− f∗(s)

)
dtds ≤

∫∫

|x−y|≤δ

ϕ
(
f(x)− f(y)

)
dxdy, (4.6)

where cn is a constant depending only on n.

Budagov [14] proved a stronger inequality which takes into account the
difference in the behaviour of f in directions of different axes.

Theorem 4.4. Let ϕ be an even, nonnegative and nondecreasing function
on [0,+∞). Let δj ∈ (0, 1] (j = 1, . . . , n) and δ = δ1 · · · δn. Then for any
measurable and almost everywhere finite function f on [0, 1]n,

∫∫

|t−s|≤4−nδn

ϕ
(
f∗(t)− f∗(s)

)
dtds

≤
∫∫

|xj−yj |≤δj

j=1,...,n

ϕ
(
f(x)− f(y)

)
dxdy.

(4.7)

However, in contrast to the one-dimensional case, the inequalities (4.6)
and (4.7) for n ≥ 2 are not sharp. If we take ϕ(t) = tp, then (4.6) and
(4.7) can be interpreted as estimates of the Lp-modulus of continuity of f∗

in terms of the Lp-moduli of continuity of f . The inequality (4.6) implies
that

ω(f∗; δ)p ≤ cω(f ; δ1/n)p. (4.8)

Nevertheless, this estimate is not sharp. The following sharpening of (4.8)
was proved in [35].

Theorem 4.5. Let f ∈ Lp(Rn), 1 ≤ p <∞, n ≥ 2. Then for any δ > 0,

∫ ∞

δn

t−p/nω(f∗; t)p
p

dt

t
≤ cp,n

(
ω(f ; δ)p

δ

)p

. (4.9)

We emphasize that (4.9) fails to hold for n = 1. The proof of (4.9) was
obtained by the use of Lemma 3.3 and of approximations by the Steklov
averages. Inequalities (4.9) and (3.8) immediately imply the following:
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Corollary 4.6. Let f ∈W 1
p (Rn), 1 ≤ p <∞, n ≥ 2. Then

(∫ ∞

0

t−p/nω(f∗; t)p
dt

t

)1/p

≤ c‖∇f‖p.

That is, if f ∈W 1
p (Rn), then f∗ belongs to the Besov space B1/n

p (R+).

It would be interesting to obtain a sharpening of (4.6) and (4.7) for arbi-
trary functions ϕ.

Notice that for symmetric rearrangements Wik [67] proved the following
analogue of Theorem 4.1.

Theorem 4.7. Let f ∈ Lp(Rn), 1 ≤ p <∞. Then for any δ > 0,

∫ δ

0

ω(f∗s ; t)p
p dt ≤

∫ δ

0

ω(f ; t)p
p dt. (4.10)

In principle, (4.10) implies (4.8). However, the stronger inequality (4.9)
cannot be derived directly from (4.10).

Now we consider partial moduli of continuity. Let f ∈ Lp(Rn), 1 ≤ p <
∞, and k ∈ {1, . . . , n}. The partial modulus of continuity of f in Lp with
respect to the kth variable xk is defined by

ωk(f ; δ)p = sup
0≤h≤δ

(∫

Rn

|f(x+ hek)− f(x)|p dx
)1/p

(ek is the kth unit coordinate vector). It is easy to see that

max
k

ωk(f ; δ)p ≤ ω(f ; δ)p ≤
n∑

k=1

ωk(f ; δ)p. (4.11)

The function
ω(f ; δ)p = inf

δ1···δn=δ
δj≥0

max
1≤j≤n

ωj(f ; δj)p (4.12)

is called the average modulus of continuity (see [30], [31]). It follows from
the definition that

ω(f ; δ)p ≤ ω(f ; δ1/n)p.

P. Oswald [55] proved the following theorem.
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Theorem 4.8. Let f ∈ Lp(Rn), 1 ≤ p <∞. Then for any δ ≥ 0,

ω(f∗; δ)p ≤ cnω(f ; δ)p. (4.13)

Oswald based his proof on the use of some combinatorial methods.
A simpler proof was given in [35].

The inequality (4.13) looks like the one-dimensional inequality (4.3). How-
ever, in view of Theorem 4.5, it is clear that (4.13) is not sharp. Sharp esti-
mates in terms of partial moduli of continuity are known only in the setting
of Lipschitz classes.

Let 1 ≤ p < ∞ and 0 < αk ≤ 1 (k = 1, . . . , n). Denote by Λα1,...,αn
p (Rn)

the class of all f ∈ Lp(Rn) such that

‖f‖λ
α1,...,αn
p

≡ max
k=1,...,n

sup
δ>0

δ−αkωk(f ; δ)p <∞.

Set

α =
( n∑

k=1

1
αk

)−1

.

Then for any f ∈ Λα1,...,αn
p (Rn), we have ω(f ; δ)p = O(δα) and, by (4.13),

ω(f∗; δ)p ≤ cδα.

This estimate is sharp if 0 < αk < 1, k = 1, . . . , n. However, it can be
strengthened if at least one αk is equal to 1. Namely, we proved the following
theorem in [36]:

Theorem 4.9. Let α1, . . . , αn ∈ (0, 1] (n ≥ 2) and let ν be the number of
those αk that are equal to 1. Let

α =
( n∑

k=1

1
αk

)−1

and s =
p

αν
.

Then for any f ∈ Λα1,...,αn
p (Rn),

(∫ ∞

0

[
t−αω(f∗; t)p

]s dt
t

)1/s

≤ c‖f‖λ
α1,...,αn
p

.

That is, if f ∈Λα1,...,αn
p (Rn), then f∗ belongs to the Besov space Bα

p,s(R+).
Note that Corollary 4.6 is a special case of Theorem 4.9. However, we
emphasize that sharp estimates similar to (4.9) in terms of partial moduli of
continuous are unknown.
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5. Iterative rearrangements

Let x = (x1, . . . , xn). As usual, we denote by x̂k the (n − 1)-dimensional
vector obtained from the n-tuple x by removal of its kth coordinate. We
shall write x = (xk, x̂k) (let us emphasize that in this notation xk is the kth
coordinate of the vector x).

Let f ∈ S0(Rn) and 1 ≤ k ≤ n. We fix x̂k ∈ Rn−1 and consider the
x̂k-section of the function f

fbxk
(xk) = f(xk, x̂k), xk ∈ R.

We have fbxk
∈ S0(R) for almost all x̂k ∈ Rn−1. Set

Rkf(u, x̂k) = f∗bxk
(u), u ∈ R+.

We emphasize that the kth argument of the function Rkf is equal to u.
The function Rkf is defined almost everywhere on R+ × Rn−1; we call it
the rearrangement of f with respect to the kth variable. Using approxi-
mation by step functions, Lemma 2.2 and Fubini’s theorem, one can eas-
ily show that Rkf is a measurable function equimeasurable with |f |. For
each ν-tuple {k1, . . . , kν} of pairwise different indices 1 ≤ kj ≤ n we set
Rk1,...,kν

f = Rkν
· · ·Rk1f . Next, let Pn be the collection of all permutations

σ = {k1, . . . , kn} of the set {1, . . . , n}. For each σ ∈ Pn we call the function

Rσf(t) ≡ Rk1,...,kn
f(t), t ∈ Rn

+,

the Rσ-rearrangement of f . Thus, we obtain Rσf by “rearranging” f in
a non-increasing order successively with respect to the variables xk1 , . . . , xkn

.
Doing so, we replace successively the arguments xk1 , . . . , xkn

with the argu-
ments tk1 , . . . , tkn

. It is easy to see that Rσf is decreasing with respect
to each variable. In view of the above observation, Rσf is equimeasurable
with |f |.

In analogy with Lemma 2.2, we have the following:

Lemma 5.1. Let fk ∈ S0(Rn) (k ∈ N) and assume that the sequence {fk}
converges in measure to a function f ∈ S0(Rn). Then for each permutation
σ ∈ Pn,

lim
k→∞

Rσfk(t) = Rσf(t) for almost all t ∈ Rn
+.

Further, the following theorem holds for the partial moduli of continuity
of the iterative rearrangements.



54 VIKTOR I. KOLYADA

Theorem 5.2. Let f ∈ Lp(Rn) (1 ≤ p < ∞). Then for each permutation
σ ∈ Pn and each k = 1, . . . , n,

ωk(Rσf ; δ)p ≤ cωk(f ; δ)p for all δ ≥ 0,

where c is an absolute constant.

This theorem can be easily derived from (4.3) by induction, with the use
of Lemma 2.3.

In what follows we set

π(t) =
n∏

k=1

tk, t = (t1, . . . , tn) ∈ Rn
+.

Let 0 < p, r <∞ and let σ ∈ Pn (n ≥ 2). We denote by Lp,r
σ (Rn) the class

of all functions f ∈ S0(Rn) such that

‖f‖p,r;σ ≡
(∫

Rn
+

[
π(t)1/pRσf(t)

]r dt

π(t)

)1/r

<∞

(see [6]). The choice of a permutation σ is essential. We also set

Lp,r(Rn) =
⋂

σ∈Pn

Lp,r
σ (Rn), ‖f‖Lp,r =

∑

σ∈Pn

‖f‖p,r;σ.

The following result was obtained in [68].

Theorem 5.3. Let f ∈ S0(Rn). Then for any σ ∈ Pn,

‖f‖p,r ≤ 21/r−1/p‖f‖p,r;σ if 0 < r ≤ p <∞ (5.1)

and
‖f‖p,r;σ ≤ 21/p−1/r‖f‖p,r if 0 < p < r <∞. (5.2)

Proof. Denote F (t) = Rσf(t). We may suppose that

|{t ∈ Rn
+ : F (t) = y}| = 0 for any y > 0.

Set
Aν = {t ∈ Rn

+ : f∗(2−ν+1) ≤ F (t) < f∗(2−ν)}, ν ∈ Z.
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If t = (t1, . . . , tn) ∈ Aν and s = (s1, . . . , sn) ∈ Rn
+ with 0 < sk ≤ tk,

k = 1, . . . , n, then F (s) ≥ f∗(2−ν+1). Hence, π(t) ≤ 2−ν+1 for all t ∈ Aν .
Let 0 < r < p. We have

‖f‖r
p,r;σ =

∫

Rn
+

π(t)r/p−1F (t)r dt

=
∑

ν∈Z

∫

Aν

π(t)r/p−1F (t)r dt

≥
∑

ν∈Z
2(r/p−1)(1−ν)

∫

Aν

F (t)r dt

=
∑

ν∈Z
2(r/p−1)(1−ν)

∫ 2−ν+1

2−ν

f∗(u)r du

≥ 2r/p−1
∑

ν∈Z

∫ 2−ν+1

2−ν

ur/p−1f∗(u)r du

= 2r/p−1‖f‖r
p,r.

Hence, we obtain (5.1). The proof of (5.2) is similar. �
Thus, for any σ ∈ Pn,

Lp,r
σ ⊂ Lp,r (r ≤ p), Lp,r ⊂ Lp,r

σ (p ≤ r).

If p 6= r, then these embeddings are strict (see [68]). Moreover, we have the
following statement.

Proposition 5.4. Let 0 < r < p < ∞. There exists a measurable set
E ⊂ R2 with |E| <∞ such that χE 6∈ Lp,r

1,2(R2) ∪ Lp,r
2,1(R2).

Proof. Set
ϕ(x) =

1
x(ln(2/x))p/r

, 0 < x ≤ 1,

and
E = {(x, y) : 0 < y ≤ ϕ(x), 0 < x ≤ 1}.

Then R1,2χE = R2,1χE = χE and we have
∫∫

R2
+

(ts)r/p−1χE(t, s)r dtds =
∫ 1

0

tr/p−1 dt

∫ ϕ(t)

0

sr/p−1 ds

=
p

r

∫ 1

0

tr/p−1ϕ(t)r/p dt =
p

r

∫ 1

0

1
t ln(2/t)

dt = ∞.

�
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It was shown in our work [39] that in the Sobolev-type inequalities the
usual Lorentz norm at the left-hand side can be replaced by a stronger
Lq∗,p-norm. We shall consider the simplest special case of this result which
gives a refinement of the inequality (3.5).

Theorem 5.5. Let n ≥ 2, 1 ≤ p < n, and q∗ = np/(n − p). Then for any
f ∈W 1

p (Rn),

‖f‖Lq∗,p ≤ c

n∑

k=1

‖Dkf‖p. (5.3)

Proof. Let σ = {1, . . . , n}. We estimate ‖f‖Lq∗,p
σ

. First, we consider the
case p = 1. We have

|f(x)| ≤ 1
2

∫

R
|Djf(u, x̂j)| du ≡

1
2
ψj(x̂j), j = 1, . . . , n.

This implies that

Rσf(t) ≤ 1
2

min
1≤j≤n

Rbσj
ψj(t̂j), t ∈ Rn

+, (5.4)

where σ̂j is the (n− 1)-tuple obtained from σ by removal of the jth coordi-
nate. Set

Aj = {t ∈ Rn
+ : tj ≤ π(t)1/n}, j = 1, . . . , n.

Then Rn
+ = ∪n

j=1Aj . Further, by (5.4), for any j = 1, . . . , n, we have

∫

Aj

π(t)−1/nRσf(t) dt

≤ 1
2

∫

Rn−1
+

π(t̂j)−1/nRbσj
ψj(t̂j)

∫ π(btj)
1/(n−1)

0

t
−1/n
j dtjdt̂j

≤
∫

Rn−1
+

Rbσj
ψj(t̂j) dt̂j = ‖Djf‖1,

where π(t̂j) =
∏

k 6=j tk. Thus,

‖f‖Ln′,1
σ

≤
n∑

j=1

‖Djf‖1.

Similar estimates hold for any σ ∈ Pn, which proves (5.3) for p = 1.
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Let now p > 1. By virtue of Lemma 5.1, we may assume that ‖f‖Lq∗,p <
∞. Set K = (2n!)q∗ . For any j = 1, . . . , n we have

|f(x)| ≤ Rjf(Ktj , x̂j) +
∫ xj+Ktj

xj

|Djf(u, x̂j)| du

≤ Rjf(Ktj , x̂j) + (Ktj)1−1/pψj(x̂j),

where

ψj(x̂j) =
(∫

R
|Djf(u, x̂j)|p du

)1/p

.

It follows that for any j = 1, . . . , n

Rσf(t) ≤ Rσ′j
f(Ktj , t̂j) + (Ktj)1−1/pRbσj

ψj(t̂j),

where σ′j is obtained from σ by moving the jth coordinate to the first place.
As above, from these estimates we easily obtain that

∫

Aj

π(t)p/q∗−1Rσf(t)p dt ≤ K−p/q∗
∫

Rn
+

π(t)p/q∗−1Rσ′j
f(t)p dt

+ c

∫

Rn−1
+

Rbσj
ψj(t̂j) dt̂j

= K−p/q∗‖f‖p

Lq∗,p
σ′

j

+ c‖Djf‖p
p.

This implies

∫

Rn
+

π(t)p/q∗−1Rσf(t)p dt ≤
(

1
2n!

)p

‖f‖p

Lq∗,p + c

n∑

j=i

‖Djf‖p
p

and therefore

‖f‖Lq∗,p ≤ c′
n∑

j=i

‖Djf‖p.

�

Now we prove some estimates in terms of moduli of continuity which will
be applied below.
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Lemma 5.6. Let ϕ ∈ Lp(R+), 1 ≤ p <∞. Then

∫ ∞

0

1
x

∫ 2x

x/2

|ϕ(y)|p dydx ≤ 3‖ϕ‖p
p.

Proof. Using Fubini’s theorem, we obtain

∫ ∞

0

1
x

∫ 2x

x/2

|ϕ(y)|p dydx =
∑

k∈Z

∫ 2−k+1

2−k

1
x

∫ 2x

x/2

|ϕ(y)|p dydx

< 3
∑

k∈Z

∫ 2−k+1

2−k

|ϕ(y)|p dy = 3‖ϕ‖p
p.

�

Lemma 5.7. Let 1 ≤ p < ∞ and n ≥ 2. Assume that f ∈ Lp(Rn
+) is

a nonnegative function nonincreasing in each variable. Then for any 1 ≤
k ≤ n and any h > 0,

(∫

Rn−1
+

∫ ∞

h

u−p
[
f(u, t̂k)− f(2u, t̂k)

]p
dudt̂k

)1/p

≤ 12
ωk(f, h)p

h
. (5.5)

Proof. Fix t̂k ∈ Rn−1
+ and denote g(u) = f(u, t̂k), u ∈ R+. Let 0 < h ≤ u.

Then

g(u)− g(2u) ≤ 2
h

∫ 2u

u/2

[g(z)− g(z + h)] dz. (5.6)

Indeed,

∫ 2u

u/2

[g(z)− g(z + h)] dz =
∫ 2u

u/2

g(z) dz −
∫ 2u+h

u/2+h

g(z) dz

≥
∫ u/2+h

u/2

g(z) dz − hg(2u)

=
∫ u/2+h

u/2

[g(z)− g(2u)] dz

≥ h

2
[g(u)− g(2u)].
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Further, (5.6) implies

g(u)− g(2u) ≤ 4u1−1/p

h

(∫ 2u

u/2

[g(z)− g(z + h)]p dz

)1/p

.

Thus, the left-hand side of (5.5) does not exceed

4
h

(∫

Rn−1
+

∫ ∞

0

1
u

∫ 2u

u/2

[
f(z, t̂k)− f(z + h, t̂k)

]p
dzdudt̂k

)1/p

.

Applying Lemma 5.6, we obtain (5.5). �

6. Spaces of fractional smoothness

In this section we consider definitions of some anisotropic spaces of fractional
smoothness.

Let r ∈ N, 1 ≤ p < ∞, and 1 ≤ j ≤ n. Denote by W r
p;j(Rn) the Sobolev

space of all functions f ∈ Lp(Rn) for which there exists the weak partial
derivative Dr

jf ∈ Lp(Rn). Set also

W r1,...,rn
p (Rn) =

n⋂

j=1

W
rj

p;j(R
n) (rj ∈ N, 1 ≤ p <∞).

Let a function f be given on Rn. For r ∈ N, 1 ≤ j ≤ n and h ∈ R we set

∆r
j(h)f(x) =

r∑

i=0

(−1)r−i

(
r

i

)
f(x+ ihej),

where ej is the unit coordinate vector in Rn. If f ∈ Lp(Rn), then the function

ωr
j (f ; δ)p = sup

0≤h≤δ
‖∆r

j(h)f‖p

is called the partial modulus of continuity of order r of the function f with
respect to the variable xj in Lp. If r = 1, then we omit the superscript in
this notation.

If f has the weak derivative Dr
jf ∈ L1

loc(Rn), then

∆r
j(h)f(x) =

∫ h

0

· · ·
∫ h

0

Dr
jf(x+ (u1 + · · ·+ ur)ej) du1 . . . dur (6.1)

for almost all x (see [5, §16, (8)]).
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Let f ∈ Lp(Rn) (1 ≤ p ≤ ∞), α > 0, and 1 ≤ j ≤ n. Let r be the least
integer such that r > α. The function f belongs to the class Hα

p;j(Rn) if

‖f‖hα
p;j
≡ sup

δ>0

ωr
j (f ; δ)p

δα
<∞. (6.2)

We emphasize that if α ∈ N, then in (6.2) we take the modulus of continuity
of the order r = α+ 1.

If αj > 0 (j = 1, . . . , n) and 1 ≤ p ≤ ∞, the Nikol’skii spaceHα1,...,αn
p (Rn)

is defined by

Hα1,...,αn
p (Rn) =

n⋂

j=1

H
αj

p;j(R
n).

Assume now that α > 0, 1 ≤ p, θ < ∞ and 1 ≤ j ≤ n. As above, let r
be the least integer such that r > α. A function f ∈ Lp(Rn) belongs to the
class Bα

p,θ;j(Rn) if

‖f‖bα
p,θ;j

≡
(∫ ∞

0

[
t−αωr

k(f ; t)p

]θ dt
t

)1/θ

<∞.

Denote also Bα
p,p;j ≡ Bα

p;j .

Let αj > 0 (j = 1, . . . , n) and 1 ≤ p, θ <∞. Then we set

Bα1,...,αn

p,θ (Rn) =
n⋂

j=1

B
αj

p,θ;j(R
n) (Bα1,...,αn

p ≡ Bα1,...,αn
p,p ).

It is easy to see that

‖f‖hα
p;j

= lim
θ→+∞

‖f‖bα
p,θ;j

.

This is why we set Bα
p,∞;j(Rn) = Hα

p;j(Rn) by definition.
It is also well known that

Bα
p,θ;j ⊂ Bα

p,η;j if 1 ≤ θ < η ≤ ∞

(see, e.g., [53]). Moreover, the following estimate holds [41].
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Lemma 6.1. Let 1 ≤ p < ∞, 1 ≤ θ < η ≤ ∞, 0 < α < 1 and 1 ≤ j ≤ n.
Then for any function f ∈ Lp(Rn),

‖f‖bα
p,η;j

≤ 8[α(1− α)]1/θ−1/η‖f‖bα
p,θ;j

.

Bourgain, Brezis and Mironescu [9] (see also [11]) found a limiting
relation between Sobolev and Besov norms. They proved that a function
f ∈ Lp(Rn) (1 < p < ∞) belongs to W 1

p (Rn) if and only if there exists
a finite limit

lim
α→1−

(1− α)‖f‖p
bα

p
.

Moreover, for any 1 ≤ p <∞ and any f ∈W 1
p (Rn),

lim
α→1−

(1− α)‖f‖p
bα

p
=

1
p
‖∇f‖p

p. (6.3)

For the partial Besov norms we have the following statement.

Lemma 6.2.

lim
α→1−

(1− α)1/θ‖f‖bα
p,θ;k

=
(

1
θ

)1/θ

sup
δ>0

ωk(f, δ)p

δ
. (6.4)

The proof can be given in the same way as in [42, Proposition 2.5]. Ob-
serve that if f ∈W 1

p;j(Rn) (1 ≤ p <∞), then

sup
δ>0

ωk(f, δ)p

δ
= ‖Dkf‖p

(see [42, Proposition 2.4]).
Let us emphasize again that in the definition of the Nikol’skii space

Hα
p;j(Rn) the order r of the modulus of continuity is strictly greater than

the smoothness exponent α. If α ∈ N, it is also natural to admit the value
r = α. However, it leads to completely different spaces – Lipschitz-type
spaces.

Assume that α > 0 and denote by α∗ the least integer r ≥ α. Let
1 ≤ p < ∞ and 1 ≤ j ≤ n. Denote by Λα

p;j(Rn) the class of all functions
f ∈ Lp(Rn) such that

‖f‖lαp;j
≡ sup

δ>0

ωα∗
j (f ; δ)p

δα
<∞.
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Clearly, ‖f‖lαp;j
= ‖f‖hα

p;j
if α 6∈ N. If α ∈ N, then we have the strict

embedding Λα
p;j ⊂ Hα

p;j . Moreover, by the Hardy–Littlewood theorem [53,
§ 4.8], if α ∈ N, then

Λα
p;j(Rn) = Wα

p;j(Rn) for 1 < p ≤ ∞. (6.5)

If αj > 0 (j = 1, . . . , n) and 1 ≤ p <∞, we set

Λα1,...,αn
p (Rn) =

n⋂

j=1

Λα
p;j(Rn).

We shall also consider the fractional Sobolev spaces.
The Bessel kernel Gα of order α > 0 on R is defined as the function with

Fourier transform

Ĝα(ξ) = (1 + 4π2ξ2)−α/2, ξ ∈ R

(see [62, p. 130]).
Let 1 ≤ p ≤ ∞, α > 0, α /∈ N, and 1 ≤ j ≤ n. Let f be a measurable

function on Rn. We say that f belongs to the space Lα
p;j(Rn) if there exists

a function fj ∈ Lp(Rn) such that for almost all x ∈ Rn

f(x) =
∫

R
Gα(xj − t)fj(t, x̂j) dt. (6.6)

The use of Fubini’s theorem together with the arguments given in [62, p. 135]
show that the equality (6.6) determines the function fj uniquely, up to its
values on a set of n-dimensional Lebesgue measure zero. We also have

‖f‖p ≤ ‖fj‖p.

We call fj the Bessel derivative of the function f of order α with respect to
xj and we denote it by Dα

j f .
If α ∈ N, then we set Lα

p;j(Rn) = Wα
p;j(Rn).

The strict embedding

Lα
p;j(Rn) ⊂ Λα

p;j(Rn) = Hα
p;j(Rn), α /∈ N,

holds for 1 ≤ p ≤ ∞ (see [53, Chap. 9.3]). Further, if α ∈ N, then

Lα
1;j(Rn) ≡Wα

1;j(Rn) ⊂ Λα
1;j(Rn)
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and
Lα

p;j(Rn) ≡Wα
p;j(Rn) = Λα

p;j(Rn) (1 < p <∞)

(see (6.5)).
Let αj > 0 (j = 1, . . . , n) and 1 ≤ p ≤ ∞. Set

Lα1,...,αn
p (Rn) =

n⋂

j=1

L
αj

p;j(R
n).

We shall call Lα1,...,αn
p (Rn) the fractional Sobolev space or the Sobolev-

Liouville space. Note that this definition is different from the one in the
monograph [53] only in the case when p = 1 and at least one of the αj is an
odd integer (see [38], [53]).

7. Embeddings

In this section we will study Sobolev-type inequalities in terms of fractional
smoothness. Our main objective is to discuss different statements of prob-
lems as well as to study relations between different results in this area.
Therefore, we consider only the simplest versions of the known theorems.

The origins of the embedding theory are contained in the following basic
results due to Hardy and Littlewood [26], [27].

Theorem 7.1. Let 1 < p <∞, 0 < α < 1/p, and q∗ = p/(1−αp). Assume
that f ∈ Lp[0, 2π],

∫ 2π

0
f(x) dx = 0, and let fα be the fractional Weyl integral

of f of order α. Then
‖fα‖q∗ ≤ c‖f‖p.

Note that this theorem is not true for p = 1. In 1938 Sobolev extended
Theorem 7.1 to the Riesz potentials for functions of several variables.

Theorem 7.2. Let 1 ≤ p <∞, 0 < α ≤ 1, p < q <∞ and 1/p− 1/q < α.
Assume that f ∈ Lp[0, 1] and ω(f ; δ)p = O(δα). Then f ∈ Lq[0, 1] and
ω(f ; δ)q = O(δα−1/p+1/q).

Simple examples show that for 0 < α < 1/p the function f may fail to
belong to the space Lq∗ with the limiting exponent q∗ = p/(1− αp).

For the fractional Sobolev-Liouville spaces Lα1,...,αn
p (Rn) the embedding

into Lq with the limiting exponent was proved by Lizorkin (see [53]). The
following result was proved in [38], [39].
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Theorem 7.3. Assume that 1 < p <∞, n ≥ 1 or p = 1, n ≥ 2. Let αj > 0
(j = 1, . . . , n) and let

a ≡ n

(
n∑

j=1

1
αj

)−1

<
n

p
.

Let q∗ = np/(n− αp). Then for every function f ∈ Lα1,...,αn
p (Rn)

‖f‖q∗,p ≤ c
n∑

j=1

‖Dαj

j f‖p. (7.1)

Let us emphasize that, in contrast to the case n = 1 (see Theorem 7.1),
if n ≥ 2 Theorem 7.3 is true for p = 1, too. Observe also that the left-hand
side in (7.1) can be replaced by the stronger norm ‖f‖Lq∗,p (cf. [39]).

Next, we have the following limiting embedding theorem for Besov spaces
(see [5, § 18], [25], [38], [57]).

Theorem 7.4. Let n ∈ N and αj > 0 (j = 1, . . . , n). Set

α = n

(
n∑

j=1

1
αj

)−1

.

Assume that 1 ≤ p < n/α and 1 ≤ θ ≤ ∞. Let q∗ = np/(n− αp). Then

Bα1,...,αn

p,θ (Rn) ⊂ Lq∗,θ(Rn)

and, for every function f ∈ Bα1,...,αn

p,θ (Rn),

‖f‖q∗,θ ≤ c‖f‖b
α1,...,αn
p,θ

. (7.2)

In particular, if 1 ≤ p < q < ∞ and α = n(1/p − 1/q), then for any
f ∈ Bα1,...,αn

p,q (Rn)
‖f‖q ≤ c‖f‖b

α1,...,αn
p,q

. (7.3)

The inequality (7.3) gives a sharp estimate of the Lq-norm of the function
f in terms of its Bα1,...,αn

p,q -norm. However, the problem can be formulated
in a different way, posed by Ul’yanov [64]: given a function f ∈ Lp(Rn),
find sharp estimates of ‖f‖q in terms of partial moduli of continuity of f .
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It is more general and may lead to essentially sharper results. The only
exception is the case n = 1 in which the sharp estimate of ‖f‖q via modulus
of continuity coincides with the estimate via Besov norm.

Let f ∈ Lp(R), 1 ≤ p < ∞, and let p < q < ∞. Applying Ul’yanov’s
inequality (3.11), equality (2.7) and Hardy’s inequality (2.4), we obtain the
estimate

‖f‖q ≤ c

(∫ ∞

0

t−q/pω(f ; t)q
p dt

)1/q

(7.4)

(cf. [64]). This inequality is sharp in the following sense. We shall call the
modulus of continuity any non-decreasing, continuous and bounded function
ω(δ) on [0,+∞) which satisfies the conditions

ω(δ + η) ≤ ω(δ) + ω(η), ω(0) = 0.

If ω(δ) is a given modulus of continuity and 1 ≤ p < ∞, denote by Hω
p (R)

the class of all functions f ∈ Lp(R) for which ω(f ; δ)p = O(ω(δ)). Ul’yanov
[64] proved that the embedding

Hω
p (R) ⊂ Lq(R) (1 ≤ p < q <∞)

holds if and only if ∫ ∞

0

t−q/pω(t)q dt <∞.

Thus, (7.4) is sharp for any order of the modulus of continuity. At the same
time, (7.4) coincides with (7.3) (for n = 1 and α < 1) and can be written as
an embedding of a Besov space,

Bα
p,q(R) →֒ Lq(R), α =

1
p
− 1
q
.

For n ≥ 2 the situation is completely different. We start from the isotropic
case. Let 1 ≤ p < q <∞ and let α = n(1/p− 1/q). Then

Bα
p,q(Rn) ⊂ Lq(Rn).

This embedding was proved in many papers (for the references, see [5, § 18],
[32], [38]). The values of parameters are sharp. Observe that for α < 1 the
inequality

‖f‖q ≤ c

(∫ ∞

0

[
t−αω(f ; t)p

]q dt
t

)1/q

(7.5)
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follows immediately from the estimate (3.11) and, for any α > 0, it can
be derived from a similar rearrangement estimate in terms of higher order
moduli of continuity [38, Section 10].

Let us return to the problem stated above: given a function f ∈ Lp(Rn),
find sharp estimate of ‖f‖q in terms of ω(f ; t)p. By virtue of relations (3.9)
and (3.10), this problem includes the Sobolev embedding (3.4). It cannot
be completely solved with the use of the estimate (3.11) and it requires the
use of the stronger estimate (3.13). The corresponding results were obtained
in our work [33] in the general setting of Orlicz classes ϕ(L). In the case
ϕ(t) = tq the result reads as follows.

Let 1 ≤ p < q <∞, 1/p− 1/q ≤ 1/n. Then for any f ∈ Lp(Rn)

‖f‖q ≤ c

(∑

ν∈Z

[
2νn/pων

]q2−νnγν

)1/q

, (7.6)

where ων = ω(f ; 2−ν)p and

γν =
1
ων

min
{
ων − ων+1, ων −

ων−1

2

}
.

In comparison with (7.5), we have additional factors γν (0 ≤ γν ≤ 1) at
the right-hand side. These factors play a crucial role. In particular, if
f ∈W 1

p (Rn) and 1/p− 1/q = 1/n, then, by (7.6), (3.8) and (3.7), we obtain

‖f‖q ≤ c‖∇f‖1−1/q
p

(∑

ν∈Z
(2νων − 2ν−1ων−1)

)1/q

≤ c‖∇f‖p.

Thus, (7.6) contains both the Sobolev inequality (3.4) and the inequality
(7.5). At the same time, (3.4) cannot be derived from (7.5) (or (7.3)).

In a different form, the link between estimates in terms of Sobolev and
Besov norms was found by Bourgain, Brezis and Mironescu [10]. They
proved the following theorem.

Theorem 7.5. Let 0 < α < 1 and 1 ≤ p < n/α. Then for any f ∈ Bα
p (Rn),

‖f‖p
q ≤ cn

1− α

(n− αp)p−1
‖f‖p

bα
p

(
q =

np

n− αp

)
, (7.7)

where the constant cn depends only on n.
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In view of (6.3), the Sobolev inequality (3.4) can be considered as a limit-
ing case of (7.7). Note that the proof of (7.7) in [10] was quite complicated.
Afterwards, Maz’ya and Shaposhnikova [47] gave a simpler proof of this
result. Moreover, they studied the behaviour of the optimal constant as
α→ 0. Namely, they proved the following inequality

‖f‖p
q ≤ cp,n

α(1− α)
(n− αp)p−1

‖f‖p
bα

p

(
q =

np

n− αp

)
. (7.8)

It was observed in [42] that the inequalities (7.7) and (7.8) can be imme-
diately derived from the rearrangement estimate (3.13). More exactly, the
following result was obtained in [42].

Theorem 7.6. Let 0 < α < 1, 1 ≤ p < n
α and q = np

n−αp . Then for any
f ∈ Bα

p (Rn),

‖f‖p
q,p ≤ cp,n

α(1− α)
(n− αp)p

‖f‖p
bα

p
. (7.10)

We note that, by (2.6),

‖f‖p
q ≤

n− αp

n
‖f‖p

q,p ,

and hence (7.10) immediately implies (7.8).
Now we consider estimates in terms of partial moduli of continuity. It is

clear that such estimates are sharper than those expressed in terms of the
“isotropic” modulus of continuity ω(f ; δ)p because they take into account the
differences in the behaviour of a function with respect to different variables.
That is, “bad” properties in some directions can be compensated by “good”
properties in other directions. The main problem is to find a right balance.
The first approach to this problem can be obtained with the use of the
average modulus of continuity (see (4.12)).

The following refinement of the inequality (3.11) was proved in [30]:

f∗(t)− f∗(2t) ≤ ct−1/pω(f ; t)p, f ∈ Lp(Rn), 1 ≤ p <∞, (7.11)

where ω(f ; t)p is the average modulus of continuity. An alternative proof of
a more general inequality involving the moduli of continuity of higher order
was given in [38, Lemma 10.3]. Applying (7.11) and Hardy’s inequality (2.4),
we obtain that, for 1 ≤ p < q <∞,

‖f‖q ≤ c

(∫ ∞

0

t−q/pω(f ; t)q
p dt

)1/q

(7.12)
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(see [30]). It looks exactly like the inequality (7.4) for functions of one
variable. However, there are essential differences between (7.4) and (7.12).
For any choice of 0 < αj < 1 such that

α ≡ n

(
n∑

j=1

1
αj

)−1

= n

(
1
p
− 1
q

)
< 1,

(7.12) implies the embedding

Bα1,...,αn
p,q (Rn) ⊂ Lq(Rn).

Indeed, taking δj = δα/(nαj) in (4.12), we obtain that

ω(f ; δ)p ≤
n∑

j=1

ωj(f ; δα/(nαj)),

which yields that for any f ∈ Bα1,...,αn
p,q (Rn) the right-hand side in (7.12)

is finite. However, the infimum in (4.12) is not necessarily attained for the
values δj of the form δj = δβj . Therefore, in contrast to one-dimensional
case, inequality (7.12) is not equivalent to embeddings of Besov spaces. The
second (and the most important) difference is that (7.12) is sharp only under
additional conditions on ωk(f ; δ)p. That is, in general, the average modulus
of continuity cannot give a completely correct description of the behaviour
of a function.

Sharp estimates of Lq-norm of a function f ∈ Lp(Rn) in terms of its partial
moduli of continuity were obtained in our work [32]. It was a solution of the
problem posed by Ul’yanov [64]: find necessary and sufficient conditions
for the embedding

Hω1,...,ωn
p ⊂ Lq (1 ≤ p < q <∞).

Here ωk(δ) are the given moduli of continuity and Hω1,...,ωn
p is the class of

all functions f ∈ Lp(Rn) such that

ωk(f ; δ)p ≤ cωk(δ) for all δ ≥ 0 (k = 1, . . . , n).

Later on, Netrusov [51], [52] extended these results to the moduli of conti-
nuity of higher orders. However, his methods do not work for p = 1. In the
latter case the problem is solved only for the first order moduli of continu-
ity [32]. Observe that the proofs in [32] and [52] are long and complicated
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(neither the formulations of the results are simple). Therefore, we think that
it is necessary to look for simpler approaches. A natural way would be to
find sharp estimates of the rearrangement f∗ in terms of partial moduli of
continuity (an anisotropic analogue of the inequality (3.13)). However, as
we have already mentioned above, such estimates are unknown.

In the next section we consider an important special case of the classes
Hω1,...,ωn

p .

8. Lipschitz classes

We shall discuss the problem of embedding with the limiting exponent for
Lipschitz classes.

For any αj ∈ (0, 1] and 1 ≤ p ≤ ∞, we have the following embeddings

Lα1,...,αn
p (Rn) ⊂ Λα1,...,αn

p (Rn) ⊂ Hα1,...,αn
p (Rn). (8.1)

If 1 ≤ p ≤ ∞, then the right embedding in (8.1) becomes equality if and
only if 0 < αj < 1 for all j = 1, . . . , n. In the left embedding the equality
takes place if and only if 1 < p ≤ ∞ and αj = 1, j = 1, . . . , n.

Let n ≥ 2. Set

α ≡ n

(
n∑

j=1

1
αj

)−1

.

Assume that 1 ≤ p <∞ and α < n/p. Let q∗ = np/(n− αp). Then

Lα1,...,αn
p (Rn) ⊂ Lq(Rn) for all p < q ≤ q∗

and
Hα1,...,αn

p (Rn) ⊂ Lq(Rn) for all p < q < q∗,

but for q = q∗ the latter embedding does not hold. The problem arises:
what can be said about the embedding

Λα1,...,αn
p (Rn) ⊂ Lq∗(Rn)?

The solution of this problem was obtained in [32]:

Theorem 8.1. Let 1 ≤ p <∞, 0 < αj ≤ 1, and

α ≡ n

(
n∑

j=1

1
αj

)−1

<
n

p
.
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Let q∗ = np/(n − αp). Let ν be the number of αj that are equal to 1. The
embedding

Λα1,...,αn
p (Rn) ⊂ Lq∗(Rn) (8.2)

holds if and only if
ν ≥ n

α
− p.

Remark 8.2. It follows that, in contrast to the Sobolev-Liouville and
Nikol’skii spaces, the embedding Λα1,...,αn

p ⊂ Lq is not uniquely determined
by the value of the harmonic mean α. Roughly speaking, this means that for
the spaces Λα1,...,αn

p the contribution of the variable xk is not proportional
to 1/αk.

Theorem 8.1 has been proved in various ways, but there are no simple
proofs. Observe that this theorem cannot be derived from the estimate
(7.11). Indeed, if ωk(f ; t)p = O(tαk), then ω(f ; t)p = O(tα/n) and (7.11)
gives only the weak estimate f∗(t) = O(t−1/q∗).

Netrusov [52] extended Theorem 8.1 to arbitrary values of αk > 0.
Moreover, he proved a theorem on embedding of Λα1,...,αn

p into Lorentz
spaces. He proposed another approach based on a modification of the method
of integral representations. However, his proof was rather long and compli-
cated, and it did not work for p = 1. Applying rearrangements, we proved
these results in [38] in a different way, including the case of p = 1.

Theorem 8.3. Let n ≥ 2 and αj > 0 (j = 1, . . . , n). Let

α = n

(
n∑

j=1

1
αj

)−1

, 1 ≤ p <
n

α
and q∗ =

np

n− αp
.

Assume that there is an integer among the numbers αj. Let

α′ =

( ∑

j:αj∈N

1
αj

)−1

and s =
nα′p
α

.

Then for every function f ∈ Λα1,...,αn
p (Rn),

‖f‖q∗,s ≤ c

n∑

j=1

‖f‖
l
αj
p;j
.

Netrusov also proved that the index s in this theorem cannot be replaced
by a smaller one. Note that for a given value of the mean index α, the bigger
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is the number of the integers among αj the smaller is the index s. If there
are no integers αj at all, then s = ∞. In the other extreme case, if all αj

are integers, we have s = p and Theorem 8.3 coincides with the embedding
theorem with the limiting exponent for anisotropic Sobolev spaces Wα1,...,αn

p

(cf. Theorem 7.3).
If 0 < αj ≤ 1 (j = 1, . . . , n), then s = np/(να), where ν is the number

of αj that are equal to 1 (we note that in this case Theorem 8.3 is closely
related to Theorem 4.9. We have s ≤ q∗ if and only if ν ≥ n/α− p. This is
exactly the necessary and sufficient condition for the embedding (8.2) (see
Theorem 8.1).

The question arises: how do these results relate to embeddings of Nikol’-
skii-Besov spaces? We consider this question for 0 < αj ≤ 1. First, we prove
the following new (unpublished yet) theorem.

Theorem 8.4. Let 1 ≤ p <∞, p ≤ θj ≤ ∞, and 0 < βj < 1 (j = 1, . . . , n).
Set

β = n

(
n∑

j=1

1
βj

)−1

, θ =
n

β

(
n∑

j=1

1
βjθj

)−1

.

Assume that 1 ≤ p < n/β. Let q = np/(n− βp). Then for any function

f ∈
n⋂

j=1

B
βj

p,θj ;j
(Rn)

the estimate

‖f‖Lq,θ ≤ c

n∏

j=1

[
(1− βj)1/θj‖f‖

b
βj
p,θj ;j

]β/(nβj)

(8.3)

holds, where c = c0(4n)q and c0 is an absolute constant.

Proof. Let σ = 1, . . . , n. Denote F (t) = Rσf(t), t ∈ Rn
+. We may assume

that f is a continuous function with compact support and that all θj <∞.
Then

I ≡
(∫

Rn
+

n∏

k=1

t
θ/q−1
k F (t)θ dt

)1/θ

<∞.

Set r = [q(2 + log2 n)] + 1 and denote

Aν = {t ∈ Rn
+ : F (t) ≤ 2F (2rtν , t̂ν)} (ν = 1, . . . , n).
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Set also

E = Rn
+ \

( n⋃

ν=1

Aν

)
.

Then

F (t) ≤ 2
n∏

k=1

ϕk(t)β/(nβk) for all t ∈ E, (8.4)

where
ϕk(t) = F (tk, t̂k)− F (2rtk, t̂k).

On the other hand,

∫

Aν

n∏

k=1

t
θ/q−1
k F (t)θ dt ≤ 2θ(1−r/q)Iθ.

This implies that

∫

E

n∏

k=1

t
θ/q−1
k F (t)θ dt ≥ (1− 2θ(1−r/q)n)Iθ ≥ 1

2
Iθ.

Using this estimate and (8.4), we obtain

I ≤
(

2
∫

Rn
+

n∏

k=1

[
t
θ/q−1
k (t)ϕk(t)βθ/(nβk)

]
dt

)1/θ

<∞. (8.5)

Set

νk =
(
θk

p
− θkβk − 1

)
θβ

nθkβk
, µk =

(
θk

p
− 1
)

θβ

nθkβk
.

Then
νk +

∑

j 6=k

µj =
θ

q
− 1 (k = 1, . . . , n).

Applying Hölder’s inequality with the exponents nθkβk/(θβ) in (8.5), we
obtain

I ≤ 2
n∏

k=1

Ik, (8.6)

where

Ik =

(∫

Rn
+

t−θkβk

k

(
n∏

j=1

tj

)θk/p−1

ϕk(t)θk dt

)β/(nθkβk)

.
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We have

ϕk(t) =
r−1∑

i=0

[
F (2itk, t̂k)− F (2i+1tk, t̂k)

]
.

Thus,
Ik ≤ 2rβ/(nβk)Jk, (8.7)

where

Jk =

(∫

Rn
+

t−θkβk

k

(
n∏

j=1

tj

)θk/p−1

ψk(t)θk dt

)β/(nθkβk)

and
ψk(t) = F (tk, t̂k)− F (2tk, t̂k).

By Fubini’s theorem,
∫

R+

t
θk/p−θkβk−1
k ψk(t)θk dtk

= (1− βk)θk

∫

R+

hθk(1−βk)−1

∫ ∞

h

t
θk/p−1
k

(
ψk(t)
tk

)θk

dtkdh.

Hence,

J
nθkβk/β
k = (1− βk)θk

∫

R+

hθk(1−βk)−1Qk(h) dh, (8.8)

where

Qk(h) =
∫

Rn−1
+

∫ ∞

h

t
θk/p−1
k

(
ψk(t)
tk

)θk

dtkdt̂k.

Observe that

ψk(t) ≤
(

n∏

j=1

tj

)−1 ∫ t1

0

· · ·
∫ tn

0

[F (v)− F (v + 2tkek)] dv

≤ 2

(
n∏

j=1

tj

)−1/p

ωk(F ; 2tk)p.

Thus, by (3.7),

Qk(h) ≤ 4θk−p

(
ωk(F ;h)p

h

)θk−p ∫

Rn−1
+

∫ ∞

h

(
ψk(t)
tk

)p

dtkdt̂k.
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Applying Lemma 5.7 and Theorem 5.2, we obtain

Qk(h) ≤ 4θk+p

(
ωk(F ;h)p

h

)θk

≤ cθk

(
ωk(f ;h)p

h

)θk

,

where c is an absolute constant. This estimate and (8.8) imply that

Jk ≤ 2c
(

(1− βk)
∫ ∞

0

[
h−βkωk(f ;h)p

]θk dh

h

)β/(nθkβk)

.

From here, using (8.7) and (8.6), we obtain (8.3). �

Observe that the dependence of the constant c in (8.3) on q, c = c0(4n)q,
certainly is not optimal.

The left-hand side in (8.3) contains the special Lorentz norm ‖f‖Lq,θ . We
have also a similar theorem in terms of the usual Lorentz norm.

Theorem 8.5. Let 1 ≤ p <∞, p ≤ θj ≤ ∞, and 0 < βj < 1 (j = 1, . . . , n).
Set

β = n

(
n∑

j=1

1
βj

)−1

, θ =
n

β

(
n∑

j=1

1
βjθj

)−1

.

Assume that 1 ≤ p < n/β. Let q = np/(n− βp). Then any function

f ∈
n⋂

j=1

B
βj

p,θj ;j
(Rn)

satisfies

‖f‖q,θ ≤ c

n∏

j=1

[
(1− βj)1/θj‖f‖

b
βj
p,θj ;j

]β/(nβj)

, (8.9)

where c = c0(4n)q and c0 is an absolute constant.

We shall not give here a complete proof of this theorem. If θ ≤ q, then, by
(5.1), ‖f‖q,θ ≤ c‖f‖Lq,θ and Theorem 8.5 follows from Theorem 8.4. In the
case θ > q the relation between these norms is opposite (see Theorem 5.3).
In this case we apply a different approach.

Observe that the inequality (8.9) without factors (1−βj)1/θj can be readily
derived from the estimate (7.11).
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Assume that 0 < αj ≤ 1 (j = 1, . . . , n). We shall show that in this
case Theorem 8.3 can be obtained as a limiting case of Theorem 8.5. More
exactly, we apply Theorem 8.5 to derive the inequality

‖f‖q∗,s ≤ c

n∏

k=1

‖f‖α/(nαk)

l
αk
p;k

, (8.10)

where α < n/p, q∗ = np/(n−αp), ν is the number of αj that are equal to 1,
and s = np/(να).

If αk < 1, we take βk = αk, θk = ∞. Set σ = {k : αk = 1}. If k ∈ σ, take
βk < 1, θk = p. Then

θ =
np

β

(∑

k∈σ

1
βk

)−1

.

Assume now that βk → 1 for each k ∈ σ. Then β → α, q → q∗, and
θ → s = np/(να). Hence, the left-hand side in (8.9) tends to ‖f‖q∗,s. For the
corresponding terms in the right-hand side of (8.9), we have, by Lemma 6.2,

(1− βk)1/p‖f‖
b

βk
p;k
→
(

1
p

)1/p

‖f‖l1p;k
.

Thus, we obtain (8.10).
We noted already in [38] that the spaces Λα1,...,αn

p are not yet explored in
a satisfactory manner. The study of these spaces requires specific methods.
Besides the works cited above, we mention also the paper by Pérez [59]
in which an interesting unified approach to the spaces Λα1,...,αn

p has been
developed.

9. Mixed norms

In this section we consider an approach to the Sobolev-type inequalities
based on estimates of certain mixed norms. This approach originates in the
works due to Gagliardo [22] and Fournier [21].

We have already mentioned in Section 3 that Sobolev’s inequality (3.4)
with p = 1 was proved in 1958 independently by Gagliardo and Niren-
berg. The central part of Gagliardo’s proof was the following lemma.

Lemma 9.1. Let n ≥ 2. Assume that gk ∈ L1(Rn−1) (k = 1, . . . , n) are
non-negative functions on Rn−1. Then

∫

Rn

(
n∏

k=1

gk(x̂k)

)1/(n−1)

dx ≤
(

n∏

k=1

∫

Rn−1
gk(x̂k) dx̂k

)1/(n−1)

. (9.1)



76 VIKTOR I. KOLYADA

Assume now that f ∈ W 1
1 (Rn). Then for almost all x ∈ Rn and every

k = 1, . . . , n,

|f(x)| ≤ 1
2

∫

R
|Dkf(x)| dxk ≡

1
2
gk(x̂k).

Thus, applying (9.1), we immediately obtain the inequality

‖f‖n/(n−1) ≤
1
2

(
n∏

k=1

‖Dkf‖1
)1/n

. (9.2)

This yields (3.4) with p = 1.
However, a stronger statement can be derived from (9.1). Let

Vk ≡ L1
bxk

(Rn−1)[L∞xk
(R)] (1 ≤ k ≤ n)

be the space with the mixed norm

‖f‖Vk
≡
∫

Rn−1
ϕk(x̂k) dx̂k,

where
ϕk(x̂k) = ess sup

xk∈R
|f(x)|.

Gagliardo’s lemma immediately implies the following theorem.

Theorem 9.2. Assume that f ∈ ⋂n
k=1 Vk, n ≥ 2. Then f ∈ Ln/(n−1)(Rn)

and

‖f‖n/(n−1) ≤
(

n∏

k=1

‖f‖Vk

)1/n

.

Since

‖f‖Vk
≤ 1

2
‖Dkf‖1 (k = 1, . . . , n) (9.3)

for f ∈W 1
1 (Rn), then (9.2) follows from Theorem 9.2.

As we know, the left-hand side in (3.4) can be replaced by the stronger
Lorentz Lq∗,p-norm (see (3.5)). To prove (3.5) for p = 1, Fournier [21]
applied the following refinement of the Theorem 9.2.
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Theorem 9.3. Assume that f ∈ ⋂n
k=1 Vk, n ≥ 2. Then f ∈ Ln/(n−1),1(Rn)

and

‖f‖n/(n−1),1 ≤
(

n∏

k=1

‖f‖Vk

)1/n

. (9.4)

Taking into account (9.3), we immediately obtain (3.5) with p = 1. More
exactly,

‖f‖n/(n−1),1 ≤
1
2

(
n∏

k=1

‖Dkf‖1
)1/n

. (9.5)

We see that the inequality (9.5) (as well as (9.2)) can be broken down into
two successive steps. The main step is the inequality (9.4). To derive (9.5)
from (9.4), one has only to apply the following simple fact: if a function
f ∈ L1(Rn) has a weak derivative Dkf ∈ L1(Rn), then f ∈ Vk (see (9.3)).

Fournier [21, p. 66] observed that it is not clear to what extent the
methods of his paper can be applied to obtain the inequality (3.5) in the
case 1 < p < n. We studied this question in [41]. One of the main problems
in this work was to find an analogue of Theorem 9.3 for more general mixed
norm spaces. To clarify this problem, we can consider the following example.
Let n = 2 and 1 ≤ r <∞. Assume that

f ∈ L1
y(R)[Lr

x(R)] and f ∈ L1
x(R)[Lr

y(R)].

Which Lorentz space does the function f belong to?
First of all, we studied mixed norm spaces related to the Sobolev spaces

W 1
p and inequality (3.5) for arbitrary 1 ≤ p < n. We realized that if Dkf ∈

L1(Rn), then f ∈ Vk ≡ L1
bxk

[L∞xk
]. Suppose now that Dkf ∈ Lp(Rn) for some

p > 1; what is the corresponding space Vk in this case? A similar question
arises if a function f belongs to a Besov space with respect to a separate
variable xk. In turn, this question is related to embeddings of anisotropic
Besov spaces.

Studying these problems, we introduce a scale of generalized spaces with
mixed norms similar to the spaces Vk. In particular, the spaces

Lp(Rn−1)[Lr,∞(R)] (1 ≤ p, r <∞)

are contained in this scale.* First we define the “weak” spaces Λσ.

*Lr,∞ is the space of all measurable functions f such that supt>0 t1/rf∗(t) < ∞.
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Let σ ∈ R. Denote by Λσ(R) the space of all measurable functions f such
that

‖f‖Λσ ≡ sup
t>0

tσ[f∗(t)− f∗(2t)] <∞. (9.6)

If 0 < σ < ∞ and r = 1/σ, then Λσ(R) = Lr,∞(R). If σ = 0, then Λσ

coincides with the space weak-L∞ introduced in [3]. If σ < 0, then (9.6) is
a weak version of Lipschitz condition for the rearrangement f∗.

The main result in [41] is the following theorem.

Theorem 9.4. Assume that 1 ≤ p < ∞, n ≥ 2 (n ∈ N) and that αk

(k = 1, . . . , n) are positive numbers such that

α ≡ n

(
n∑

k=1

1
αk

)−1

≤ n

p
.

Let
σk =

1
p
− αk, Vk ≡ Lp

bxk
(Rn−1)[Λσk

xk
(R)]

and

q =





np

n− αp
if α <

n

p
,

∞ if α =
n

p
.

Suppose that

f ∈ S0(Rn) and f ∈
n⋂

k=1

Vk.

Then f ∈ Lq,p(Rn) and

‖f‖∗q,p ≤ c

n∏

k=1

‖f‖α/(nαk)
Vk

, (9.7)

where

c = cn

(
n∏

k=1

(nαk − α)α/(nαk)

)−1/p

(9.8)

and cn is a constant depending only on n.

Recall that the modified Lorentz norm ‖ · ‖∗p,r is defined by (2.10) and
(2.12). Note that the case α = n/p also is included.
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Remark 9.5. If at least one of the numbers αk tends to 0, then the constant
c in (9.7) tends to infinity. We show that the order of growth of this constant
given by (9.8) is optimal.

We can now give the answer to a specific problem stated above.

Example 9.6. Let n = 2 and 1 ≤ r ≤ ∞. Let

f ∈ L1
y[Lr

x] and f ∈ L1
x[Lr

y].

Applying Theorem 9.4, we obtain that f ∈ Lq,1(R2), where q = 2r/(r + 1).
In the case r = ∞ this result coincides with Fournier’s theorem.

Remark 9.7. Consider the case when αk = 1, k = 1, . . . , n, in Theorem 9.4.
If p = 1, then σk = 0 (k = 1, . . . , n), q = n/(n− 1), and

Vk = L1
bxk

[weak-L∞xk
]

From Theorem 9.4 we have

‖f‖n/(n−1),1 ≤ c

(
n∏

k=1

‖f‖Vk

)1/n

.

This inequality is slightly stronger than Fournier’s inequality (9.4). Indeed,
the right-hand side of (9.4) contains the norms in the spaces L1

bxk
[L∞xk

]. We
have proved that the interior L∞xk

-norms can be replaced by weaker norms
of the weak-L∞xk

.
If 1 < p ≤ n, then σk = 1/p− 1 (k = 1, . . . , n) and Vk = Lp

bxk
[Λ1/p−1

xk ]. In
this case Theorem 9.4 asserts that

‖f‖q,p ≤ c

(
n∏

k=1

‖f‖Vk

)1/n

, where q =
np

n− p
.

If p = n, then q = ∞ and we have the norm in L∞,n(Rn) at the left-hand
side.

It is easy to see that these results are closely related to Sobolev-type
inequalities (3.5) and (3.6). Indeed, applying Lemma 3.1, we obtain the
following proposition.

Proposition 9.8. Let k ∈ {1, . . . , n} and 1 ≤ p < ∞. Assume that f ∈
Lp(Rn) and that f has the weak partial derivative Dkf ∈ Lp(Rn).
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Then f ∈ Vk ≡ Lp
bxk

[Λ1/p−1
xk ] and

‖f‖Vk
≤ 4‖Dkf‖p.

Recall that

W 1
p (Rn) →֒ Lq∗,p(Rn)

(
1 ≤ p ≤ n, q∗ =

np

n− p

)
(9.9)

(see (3.5) and (3.6)). At the same time, by Theorem 9.4,

n⋂

k=1

Vk →֒ Lq∗,p(Rn) (9.10)

and by Proposition 9.8,

W 1
p (Rn) →֒

n⋂

k=1

Vk. (9.11)

Thus, we can split (9.9) into two embeddings (9.10) and (9.11). Clearly,
(9.10) is the main part of (9.9).

Theorem 9.4 can be also applied to the study of estimates involving certain
Besov norms. Namely, consider inequality (7.2) for 0 < αj < 1 (j = 1, . . . , n)
and θ = p, i.e.,

‖f‖q,p ≤ c‖f‖b
α1,...,αn
p

, q =
np

n− αp
. (9.12)

The sharp asymptotics of the constant c in (9.12) as some of the numbers αk

tend to 1 is contained as a special case in Theorem 8.5. However, we obtain
an alternative proof of this result, applying Theorem 9.4 and the following
proposition [41].

Proposition 9.9. Let 0 < α < 1, 1 ≤ p < ∞ and 1 ≤ k ≤ n (n ≥ 2).
Assume that f ∈ Bα

p;k(Rn). Then f ∈ Vk ≡ Lp
bxk

[Λ1/p−α
xk ] and

‖f‖Vk
≤ 100[α(1− α)]1/p‖f‖bα

p;k
.

Theorem 9.4 and Proposition 9.9 immediately imply the following result
[41].
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Theorem 9.10. Let 1 ≤ p < ∞, n ≥ 2 (n ∈ N) and 1/2 < αk < 1
(k = 1, . . . , n). Assume that

α ≡ n

(
n∑

k=1

1
αk

)−1

≤ n

p
.

Let

q =





np

n− αp
if α <

n

p
,

∞ if α =
n

p
.

Then for every function f ∈ Bα1,...,αn
p (Rn) we have f ∈ Lq,p(Rn) and

‖f‖∗q,p ≤ c

n∏

k=1

[
(1− αk)1/p‖f‖b

αk
p;k

]α/(nαk)

, (9.13)

where c ≡ cn is a constant depending only on n .

If α < n/p, then, by (2.11) and (9.13), we obtain the inequality

‖f‖q,p ≤ qcn

n∏

k=1

[
(1− αk)1/p‖f‖b

αk
p;k

]α/(nαk)

, (9.14)

where cn is a constant depending only on n. By (2.6), it follows from (9.14)
that

‖f‖q ≤ q1−1/pcn

n∏

k=1

[
(1− αk)1/p‖f‖b

αk
p;k

]α/(nαk)

. (9.15)

Thus, (9.15) implies (7.7).
Assume that for some k there exists a weak derivative Dkf ∈ Lp(RN ).

Then, by (6.4), for the corresponding term in (9.13) we have

(1− αk)1/p‖f‖b
αk
p;k
→
(

1
p

)1/p

‖Dkf‖p, as αk → 1.

Theorem 8.5 shows that (similarly to (9.9)) the embedding

Bα1,...,αk
p (Rn) →֒ Lq,p(Rn)

can be split into two parts. The main part is contained in Theorem 9.4.
The factors (1−αk)α/(pnαk) in (9.13) appear when we apply Proposition 9.9
(i.e., in the “easy” part of (9.13)). Observe that this approach gives us an
alternative explanation of the phenomenon related to these factors.
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10. Estimates of moduli of continuity

The problem of estimating the moduli of continuity of a function in Lq in
terms of its moduli of continuity in Lp (1 ≤ p < q ≤ ∞) has a long history. It
emerged with the study of embeddings of Lipschitz classes (E. Titchmarsh,
G. H. Hardy and J. E. Littlewood, and S. M. Nikol’skii). Many
authors have devoted papers to subsequent investigations of the problem
(see [5, § 16], [34], [65]). The following result was obtained in [34].

Theorem 10.1. Let either 1 < p < ∞ and n ≥ 1 or p = 1 and n ≥ 2.
Suppose that f ∈ Lp(Rn), p < q <∞, and γ ≡ n(1/p− 1/q) < 1. Then for
every δ > 0,

(∫ ∞

δ

[
tγ−1ω(f ; t)q

]p dt
t

)1/p

≤ cδγ−1

(∫ δ

0

[
t−γω(f ; t)p

]q dt
t

)1/q

. (10.1)

It was also proved in [34] that this theorem is sharp. Namely, let 1 ≤
p < ∞, n ≥ 1, and let ω(δ) be a modulus of continuity. Then there exists
a function f ∈ Lp(Rn) such that ω(f ; δ)p ≤ ω(δ) and for every q ∈ (p,∞)
with γ ≡ n(1/p− 1/q) < 1 and every δ > 0,

(∫ ∞

δ

[
tγ−1ω(f ; t)q

]p dt
t

)1/p

≥ cδγ−1

(∫ δ

0

[
t−γω(t)

]q dt

t

)1/q

,

where c = c(p, q, n) > 0.
Furthermore, it was shown in [42] that Theorem 10.1 yields the optimal

constant in the different norm inequality for Besov spaces (in the spirit of
Theorem 7.5).

Theorem 10.2. Let 0 < α < 1 and p < q <∞. Assume that

γ ≡ n

(
1
p
− 1
q

)
< α

and 1 ≤ θ < ∞. If either p > 1, n ≥ 1 or p ≥ 1, n ≥ 2, then for any
f ∈ Bα

p,θ(Rn),

‖f‖bα−γ
q,θ

≤ A
(1− s)1/θ∗

(α− γ)1/θ
‖f‖bα

p,θ
,

where θ∗ = max{p, θ} and the constant A does not depend on α and f .

This assertion does not hold for p = n = 1. It was also shown that the
exponent 1/θ∗ is sharp in a sense.
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We return to Theorem 10.1. If f has all first-order generalized derivatives
Djf ∈ Lp(Rn) (j = 1, . . . , n), then, by (10.1) and (3.10),

(∫ ∞

0

[
tγ−1ω(f ; t)q

]p dt
t

)1/p

≤ c
n∑

k=1

‖Dkf‖p (10.2)

(for p > 1 and n ≥ 1 this inequality was proved by Il’in [5, §18]; if p = n = 1,
then (10.2) fails to hold).

Suppose now that f has a partial derivative Djf ∈ Lp(Rn) with respect
to only a single variable xj . The problem is to estimate the partial moduli of
continuity ωj(f ; δ)q with respect to the same variable in Lq, q > p. It is clear
that for n ≥ 2 this problem cannot be solved without additional conditions
on f . However, it is not necessary to assume smoothness with respect to
the other variables. In many cases it suffices to assume, in addition, that f
belongs to some space Lr. These conditions lead naturally to multiplicative
inequalities of Gagliardo–Nirenberg type. A more general problem of esti-
mating of ωj(f ; δ)q in terms of ωj(f ; δ)p and the norm of f in some Lr also
leads to similar inequalities.

Multiplicative inequalities of Gagliardo–Nirenberg type ([5, §15]) are
closely related to the Sobolev inequality. As we have seen, the exact in-
tegrability exponents for functions in Sobolev spaces are expressed in terms
of the Lorentz spaces Lq,p. Therefore, we study multiplicative inequalities
for moduli of continuity in the scale of these spaces.

If f ∈ Lp,s(Rn), then the function

ωr
j (f ; δ)p,s = sup

0≤h≤δ
‖∆r

j(h)f‖p,s

is called the partial modulus of continuity of order r of the function f with
respect to the variable xj in Lp,s. If r = 1, then we omit the superscript in
this notation.

Let 1 ≤ p, s ≤ ∞. An ordered pair (p, s) is said to be admissible if one of
the following conditions holds: (i) 1 < p < ∞, 1 ≤ s ≤ ∞; (ii) p = s = 1;
(iii) p = s = ∞. We set L∞,∞ = L∞.

First, we have the following theorem [40].

Theorem 10.3. Let (p0, s0) and (p1, s1) be admissible pairs and let p1 > 1.
Let 0 < θ < 1 and let numbers p and s be defined by

1
p

=
1− θ

p0
+

θ

p1
,

1
s

=
1− θ

s0
+

θ

s1
. (10.3)



84 VIKTOR I. KOLYADA

Suppose that a function f ∈ Lp0,s0(Rn) ∩ S0(Rn) has the weak derivative
Dr

jf ∈ Lp1,s1(Rn) with respect to the variable xj, 1 ≤ j ≤ n (n, r ∈ N).
Then

(∫ ∞

0

[
h−θrωr

j (f ;h)p,s

]s dh
h

)1/s

≤ c‖f‖1−θ
p0,s0

‖Dr
jf‖θ

p1,s1
, (10.4)

where c = cr(p′)1/s′(p′1)
θ[θ(1−θ)]−1/s and the constant cr depends only on r.

The proof easily follows by the estimate

(∆r
k(h)f)∗(t) ≤ min{2rf∗(2−rt), hr(Dr

kf)∗∗(t)} (10.5)

(see (6.1)). Of course, this estimate does not work in the case p1 = s1 = 1.
However, we prove that in this case the inequality (10.4) is still true if
p0, s0 < ∞. This shows that the constant in (10.4) is not optimal and an
alternative general approach should be found. Nevertheless, Theorem 10.3
fails if p1 = s1 = 1 and p0 = s0 = ∞.

We have the following corollaries of Theorem 10.3.

Corollary 10.4. Suppose that a function f ∈ L1(Rn) has all first-order
weak derivatives and |∇f | ∈ L∞(Rn). Let 0 < θ < 1 and p = 1/(1 − θ).
Then

‖f‖bθ
p
≤ cn[(1− θ)θ]−1/p‖f‖1−θ

1 ‖∇f‖θ
∞, (10.6)

where c is an absolute constant.

In particular, for θ = 1/2 and n = 1 we have

∫ ∞

0

∫

R
[f(x+ h)− f(x)]2 dx

dh

h2
≤ c‖f‖1‖f ′‖∞. (10.7)

This inequality was obtained by Kashin [28] (the proof presented in [28]
is due to Besov). A special discrete version of the inequality (10.7) was
proved earlier by Bochkarev [7].

Corollary 10.5. Let 0 < θ < 1, 1 < ν < ∞ and p = ν/θ. Suppose that
a function f ∈ L∞(Rn) has the weak derivative Dr

jf ∈ Lν(Rn) (r ∈ N).
Then

(∫ ∞

0

[
t−θrωr

j (f ; t)p

]p dt
t

)1/p

≤ cr(ν′)θ(1− θ)−1/p‖f‖1−θ
∞ ‖Dr

jf‖θ
ν . (10.8)
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Let us consider the case r = 1. By (10.8) and (4.11) we get that

‖f‖bθ
ν/θ

≤ K‖f‖1−θ
∞ ‖∇f‖θ

ν (1 < ν <∞), (10.9)

where K = cn(ν′)θ(1− θ)−θ/ν and c is an absolute constant. We note that
inequality (10.9) follows from a more general result of Runst [61] (see also
the paper [12] by Brezis and Mironescu). The authors admit in [12]
that they do not know any elementary proof of (10.9) (without using the
Littlewood-Paley theory). Such a proof was later obtained by Maz’ya and
Shaposhnikova [48]. We see that inequalities (10.6) and (10.9) represent
limit cases of Theorem 10.3 (for r = 1). We also note that the method of
proving Theorem 10.3 differs from the methods used in [48].

Applying Theorem 10.3 and approximation by the generalized Steklov
means, we obtain the following result [40].

Theorem 10.6. Let (p0, s0) and (p1, s1) be admissible pairs and let p1 > 1.
Let 0 < θ < 1 and let numbers p and s be defined by (10.3). Suppose that
f ∈ Lp0,s0(Rn) ∩ Lp1,s1(Rn) (n ∈ N). Let r ∈ N and 1 ≤ j ≤ n. Then

(∫ ∞

δ

[
t−θrωr

j (f ; t)p,s

]s dt
t

)1/s

≤ K‖f‖1−θ
p0,s0

[
δ−rωr

j (f ; δ)p1,s1

]θ

for any δ > 0, and

(∫ ∞

0

[
t−θαωr

j (f ; t)p,s

]s dt
t

)1/s

≤ K ′(r − α)1/s‖f‖1−θ
p0,s0

(∫ ∞

0

[
t−αωr

j (f ; t)p1,s1

]sθ dt

t

)1/s

for any 0 < α < r, where K = cr(p′)1/s′(p′1)
θ[(1−θ)θ]−1/s and K ′ = 2Kθ1/s.

Corollary 10.7. Let r ∈ N, 0 < α < r, 1 < ν <∞, 0 < θ < 1 and p = ν/θ.
Suppose that f ∈ Lν(Rn) ∩ L∞(Rn) (n ∈ N). Then for any 1 ≤ j ≤ n

(∫ ∞

0

[
t−θαωr

j (f ; t)p

]p dt
t

)1/p

≤ K(r − α)1/p‖f‖1−θ
∞

(∫ ∞

0

[
t−αωr

j (f ; t)ν

]ν dt
t

)θ/ν

,

(10.10)

where K = cr(ν′)θ(1− θ)−1/p.
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Let r = 1 and 0 < α < 1. Applying (10.10) and (4.11), we obtain the
inequality

‖f‖bαθ
ν/θ

≤ K(1− α)θ/ν‖f‖1−θ
∞ ‖f‖θ

bα
ν
, 1 < ν <∞, (10.11)

where K = cn(ν′)θ(1− θ)−θ/ν and c is an absolute constant.
The inequality (10.11) was proved by Maz’ya and Shaposhnikova [48].

They also showed that the dependence of the constant K on the parameters
is exact. We note that the relationship between the norms in (10.11) was
obtained earlier (without establishing the exact order of the constant) by
Runst [61]. The problem of the exact constant was posed by Brezis and
Mironescu [12].

Theorems 10.3 and 10.6 do not hold for p1 = 1 and p0 = ∞. In generall,
the problem becomes much more complicated when p1 = 1. In [40] this case
was considered only for r = 1 (although similar results hold for arbitrary
order of derivatives and moduli of continuity); namely, the following theorem
was proved.

Theorem 10.8. Let 1 < p0 <∞, 1 ≤ s0 <∞ and 0 < θ < 1. Let

1
p

=
1− θ

p0
+ θ,

1
s

=
1− θ

s0
+ θ.

Assume that a function f ∈ Lp0,s0(Rn) (n ∈ N) has a weak derivative Dkf ∈
L1(Rn). Then

(∫ ∞

0

[
t−θrωk(f ; t)p,s

]s dt
t

)1/s

≤ c‖f‖1−θ
p0,s0

‖Dkf‖θ
1 ,

where c = c(p0, s0)[(1− θ)θ]−1/s.

Applying Theorem 10.8, we obtain that
∫ ∞

0

h−αωj(f ;h)q,1
dh

h
≤ c‖f‖1−α

n/(n−1),1‖Djf‖α
1 , (10.12)

where α = 1 − n(1 − 1/q). Let us compare inequalities (10.12) and (10.2)
(for p = 1). By (10.2),

∫ ∞

0

h−αωj(f ;h)q
dh

h
≤ c

n∑

k=1

‖Dkf‖1. (10.13)
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In this relation the partial modulus of continuity with respect to the variable
xj is estimated in terms of the norms of the derivatives with respect to all the
variables. The inequality (10.12) gives a more exact result. Indeed, suppose
that a function f ∈ S0(Rn) (n ≥ 2) has all first-order weak derivatives
Dkf ∈ L1(Rn) (k = 1, . . . , n). In this case, by (3.5),

‖f‖n/(n−1),1 ≤ c

n∑

k=1

‖Dkf‖1. (10.14)

Thus, inequality (10.13) can be obtained by successive application of in-
equalities (10.12) and (10.14).

Of course, a similar situation occurs for inequality (10.2) when 1 ≤ p < n.
Theorem 10.8 yields also the following result.

Theorem 10.9. Let 1 < p0 <∞, 1 ≤ s0 <∞, and 0 < θ < 1. Let

1
p

=
1− θ

p0
+ θ,

1
s

=
1− θ

s0
+ θ.

Suppose that f ∈ Lp0,s0(Rn) ∩ L1(Rn) (n ∈ N) and let 1 ≤ j ≤ n. Then

(∫ ∞

δ

[
t−θωj(f ; t)p,s

]s dt
t

)1/s

≤ K‖f‖1−θ
p0,s0

[
ωj(f ; δ)1

δ

]θ

(10.15)

for any δ > 0, and

(∫ ∞

0

[
t−θαωj(f ; t)p,s

]s dt
t

)1/s

≤ K1(1− α)1/s‖f‖1−θ
p0,s0

(∫ ∞

0

[
t−αωj(f ; t)1

]sθ dt

t

)1/s

for any 0 < α < 1, where K = c(p0, s0)[(1− θ)θ]−1/s and K1 = 2Kθ1/s.

Let BV be the space of functions of bounded variation on Rn (see [69]). It
is well known that ‖f‖BV is equivalent to supδ>0 ω(f ; δ)1/δ. Using (10.15)
and (4.11), we get the following result.

Corollary 10.10. Let 0 < θ < 1, 1 < p < ∞ and 1/q = (1 − θ)/p + θ.
Suppose that f ∈ Lp(Rn) ∩ BV(Rn). Then

‖f‖bθ
q
≤ c‖f‖1−θ

p ‖f‖θ
BV .
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This result gives a sharpening of the inequality

‖f‖bθ
q
≤ c‖f‖1−θ

b0p
‖f‖θ

BV ,

which was proved in [20, Theorem 1.5].
Our proof of Theorem 10.8 is based on the use of rearrangements. We

employ also the method of molecular decompositions (due to Pelczyński
and Wojciechowski [58]). Let us briefly describe the idea of this method.

We can assume that f ≥ 0. Denote µk = f∗(2−k) and

gk(x) = max{f(x), µk} − µk (k ∈ Z).

Further, let uk(x) = gk(x)− gk+1(x). Then

f(x) =
∑

k∈Z
uk(x) (10.16)

almost everywhere on Rn. We note that

0 ≤ uk(x) ≤ µk+1 − µk

and ∣∣{x : uk(x) > 0}
∣∣ ≤ 2−k.

If µk+1 = µk, then uk(x) ≡ 0. Let σ = {k ∈ Z : µk+1 > µk} and

Gk = {x : µk < f(x) < µk+1}, k ∈ σ.

Assume that f has the weak partial derivative D1f ∈ L1(Rn). Denote
by D the set of all x̂1 ∈ Rn−1 such that the function f(x1, x̂1) is locally
absolutely continuous with respect to the variable x1 on R. Then

measn−1(Rn−1 \D) = 0.

Let x̂1 ∈ D and k ∈ σ. The section

Gk(x̂1) = {x1 ∈ R : (x1, x̂1) ∈ Gk}

is an open set in R. The function uk(x1, x̂1) is also locally absolutely con-
tinuous with respect to the variable x1. This readily implies that

D1uk(x) = D1f(x)χGk
(x) (10.17)

almost everywhere on Rn.
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For h > 0, we set

fh(x) = f(x+ he1)− f(x),

uk,h(x) = uk(x+ he1)− uk(x).

By (10.16),
fh(x) =

∑

k∈Z
uk,h(x).

It follows from (10.17) that

|uk,h(x)| ≤ h

∫

R
|D1uk(x)| dx1 = h

∫

Gk(bx1)

|D1f(x)| dx1. (10.18)

Thus, ∫

Rn

|uk,h(x)| dx ≤ h

∫

Gk

|D1f(x)| dx ≡ hJk

for any k ∈ σ. Since the sets Gk are pairwise disjoint, we obtain that
∑

k∈σ

Jk ≤ ‖D1f‖1.

The latter inequality plays a crucial role in the subsequent proof. The
main advantage of the molecular decomposition (10.17) is that the supports
of the derivatives D1uk(x) are pairwise disjoint. Due to this fact the weak
estimate

|g(t)− g(t+ h)| ≤ h

∫

R
|g′(u)| du (t, h ∈ R, h > 0)

applied to g = uk,h (see (10.18)) leads to sharp results.
We emphasize again that the inequality (10.5) (with r = 1) cannot be

applied in the case p1 = s1 = 1 since the operator ϕ 7→ ϕ∗∗ is unbounded
in L1.
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[58] A. Pelczyński and M. Wojciechowski: Molecular decompositions and embed-
ding theorems for vector-valued Sobolev spaces with gradient norm. Studia Math.
107 (1993), no. 1, 61–100. Zbl 0811.46028, MR 94h:46050.
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