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MULTILINEAR HARMONIC ANALYSIS

Loukas Grafakos

In memory of Nigel Kalton

Abstract. This article contains an expanded version of the material covered
by the author in two 90-minute lectures at the 9th international school on
Nonlinear Analysis, Function spaces and Applications, held in Třešt’, Czech
Republic during the period September 11 to September 17, 2010.

1. Introduction

An operator acting on function spaces may not only depend on a main vari-
able but also on several other function-variables that are often treated as
parameters. Examples of such operators are ubiquitous in harmonic anal-
ysis: multiplier operators, homogeneous singular integrals associated with
functions on the sphere, Littlewood-Paley operators, the Calderón commu-
tators, and the Cauchy integral along Lipschitz curves.

Of the aforementioned examples, we discuss the latter: The Cauchy inte-
gral along a Lipschitz curve Γ is given by

CΓ(h)(z) =
1

2πi
p.v.

∫

Γ

h(ζ)

ζ − z
dζ,

where h is a function on Γ, which is taken to be the graph of a Lipschitz
function A : R→ R, and z is a point on the curve Γ.

A. Calderón wrote

CΓ(h)(z) =
1

2πi

∞∑

m=0

(−i)mCm(f ;A)(x), (1)

2010 Mathematics Subject Classification. Primary 42B20. Secondary 42B15, 46B70,
47G30.

Key words and phrases. Calderón-Zygmund singular integrals, multilinear operators,
multipliers, interpolation, T1 Theorem.

Research partially supported by the NSF under grant DMS 0900946.

63

kniha_Institute_of_Mathematics_v71   71kniha_Institute_of_Mathematics_v71   71 7.9.2011   9:45:297.9.2011   9:45:29



64 LOUKAS GRAFAKOS

where z = x+ iA(x), f(y) = h(y + iA(y))(1 + iA′(y)), and

Cm(f ;A)(x) = p.v.

∫

R

(
A(x)−A(y)

x− y

)m
f(y)

x− y
dy.

The operators Cm(f ;A) are called the m-th Calderón commutators and they
provide examples of singular integrals whose action on the function 1 has
inspired the fundamental work on the T1 theorem [11].

Identity (1) reduces the boundedness of CΓ(h) to that of the operators
Cm(f ;A) (recall f(y) = h(y+iA(y))(1+iA′(y))); certainly for this approach
to bear fruit, one would also need to know that the operators Cm(f ;A) are
bounded with norms having moderate growth in m. At this point, it seems
that we reduced the boundedness of a linear operator to another operator
that contains powers of the function A and thus it is nonlinear in it. To adopt
a truly multilinear point of view, we introduce the (m+ 1)-linear operator

Em+1(f ;A1, . . . , Am)(x)

= p.v.

∫

R

(
A1(x)−A1(y)

x− y

)
. . .

(
Am(x)−Am(y)

x− y

)
f(y)

x− y
dy

and seek estimates for it. Any estimate for Em+1 from a product of function
spaces Z1 × Z2 × · · · × Zm+1, where Z2 = · · · = Zm+1 gives yield to an
estimate for Cm(f ;A) in terms of f and A. This point of view leads to the
following result:

Theorem 1 ([15]). Let 0 < 1/p =
∑m+1

j=1 1/pj. Then the (m + 1)-linear

operator Em+1 maps Lp1(R) × · · · × Lpm+1(R) to Lp,∞(R) whenever 1 ≤
p1, . . . , pm+1 ≤ ∞ and it also maps Lp1(R) × · · · × Lpm+1(R) to Lp(R)
when 1 < pj < ∞ for all j. In particular, it maps L1(R) × · · · × L1(R)
to L1/(m+1),∞(R).

The endpoint conclusion L1(R)× · · · ×L1(R) to L1/(m+1),∞(R) of Theo-
rem 1 has been obtained by C. P. Calderón [2] when m = 1 and Coifman
and Meyer [6] when m = 1, 2 while the case m ≥ 3 was completed by
Duong, Grafakos, and Yan [15].

The underlying idea in the proof of Theorem 1 is the simultaneous Calde-
rón-Zymgund decomposition on all functions that Em+1 acts on. This de-
composition resembles the classical linear Calderón-Zymgund decomposi-
tion, but is more complicated due to the presence of several tuples of com-
binations of good and bad functions. This decomposition is discussed in
Section 3. However, the proof contained in Section 3 does not directly apply
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MULTILINEAR HARMONIC ANALYSIS 65

to Theorem 1; the latter requires a more flexible version of the Calderón-
Zymgund decomposition, since the kernel of Em+1 does not obey the stan-
dard multilinear Calderón-Zymgund kernel conditions, see Section 3. Indeed
the kernel of Em+1 is the function of (m+ 1) variables

K(y0, . . . , ym+1) =
(−1)e(ym+1−y0)m

(y0 − ym+1)m+1

m∏

�=1

χ(min(y0,ym+1),max(y0,ym+1))(y�)

which contains characteristic functions. The proof of Theorem 1 is achieved
in [15] and is modeled after the approach devised by Duong and McIntosh
[16] for linear operators.

Another class of operators closely related to the commutators of Calderón
is the family

Hα1,α2
(f1, f2)(x) = p.v.

∫

R
f1(x− α1t)f2(x− α2t)

dt

t
, α1, α2, x ∈ R,

called today the bilinear Hilbert transforms. These were also introduced by
A. Calderón in an attempt to show that the commutator C1(f ;A) is bounded
on L2(R) when A(t) is a function on the line with bounded derivative. The
idea of this approach is that the linear operator f → C1(f ;A) can be ex-
pressed as the average

C1(f ;A)(x) =
∫ 1

0

H1,α(f,A
′)(x) dα, (2)

and thus the boundedness of C1(f ;A) can be reduced to the (uniform in α)
boundedness of H1,α. Naturally, the estimates for H1,α should depend (lin-
early) on both functions f and A′. This operator is discussed in Section 7.

The previous discussion leads to the conclusion that treating the function
A as a frozen parameter provides limited results in terms of its smoothness.
If we have estimates in terms of a few function space norms of both f and A,
we may use the power of multilinear interpolation, to deduce boundedness of
C1(f ;A) on various function spaces, of ranging degree of regularity. Certainly
this fact is not only pertinent to Calderón’s first commutator C1, but all
multilinear operators.

In summary, we advocate the following point of view in the study of mul-
tivariable operators: unfreeze the functions serving the roles of a parameter
and treat them as input variables. This approach often yields sharper results
in terms of the regularity of the input functions. In these notes we pursue
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66 LOUKAS GRAFAKOS

this idea in a systematic way. We present certain fundamental results con-
cerning linear (or sublinear) operators of several variables, henceforth called
multilinear (or multisublinear), that contain challenges that appear in their
study, despite the great resemblances with their linear analogues. The proofs
given in the next sections contain most necessary details but references are
provided for the sake of completeness in the exposition.

2. Examples of multivariable operators

We embark on the study of multilinear harmonic analysis with the class of
operators that extends the concept of Calderón-Zygmund operators in the
multilinear setting. These operators have kernels that satisfy standard esti-
mates and possess boundedness properties analogous to those of the classical
linear ones. This class of operators has been previously studied by Coif-
man and Meyer [6], [7], [8], [9], [34], assuming sufficient smoothness on
their symbols and kernels.

If an m-linear operator T commutes with translations in the sense that

T (f1, . . . , fm)(x+ t) = T
(
f1(·+ t), . . . , fm(·+ t)

)
(x) (3)

for all t, x ∈ Rn, then it incorporates a certain amount of homogeneity.
Indeed, if it maps Lp1 × · · · × Lpm to Lp, then one must necessarily have
1/p1 + · · · + 1/pm ≥ 1/p; this was proved in [25] for compactly supported
kernels but extended for general kernels in [13].

We use the following definition for the Fourier transform in n-dimensional
Euclidean space

f̂(ξ) =

∫

Rn

f(x) e−2πix·ξ dx,

while f∨(ξ) = f̂(−ξ) denotes the inverse Fourier transform. Multilinear op-
erators that commute with translations as in (3) are exactly the multilinear
multiplier operators that have the form

T (f1, . . . , fm)(x)

=

∫

(Rn)m
σ(ξ1, . . . , ξm)f̂1(ξ1) · · · f̂m(ξm) e2πix·(ξ1+···+ξm) dξ1 . . . dξm

(4)
for some bounded function σ.

Endpoint estimates for linear singular integrals are usually estimates of
the form L1 → L1 or L1 → L1,∞. The analogous m-linear estimates are
L1 × · · · × L1 → L1/m,∞. Although one expects some similarities with the
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MULTILINEAR HARMONIC ANALYSIS 67

linear case, there exist some differences as well. For example, if a linear
translation-invariant operator has a positive kernel and it maps L1 → L1,∞,
then it must have an integrable kernel and thus it actually maps L1 to L1. In
the multilinear case, it is still true that if a multilinear translation-invariant
operator has a positive kernel and maps L1 × · · · × L1 to L1/m,∞, then it
must have an integrable kernel, but having an integrable positive kernel does
not necessarily imply that the corresponding operator maps L1×· · ·×L1 to
L1/m. Results of this type have been obtained in [23].

We provide a few examples of mutlivariable (multilinear and multisublin-
ear) operators:

Example 1. The identity operator in the m-linear setting is the product
operator

T1(f1, . . . , fm)(x) = f1(x) · · · fm(x).

By Hölder’s inequality T1 maps Lp1 ×· · ·×Lpm → Lp whenever 1/p1+ · · ·+
1/pm = 1/p.

Example 2. The action of a linear operator L on the product f1 · · · fm gives
rise to a more general degenerate m-linear operator

T2(f1, . . . , fm)(x) = L(f1 · · · fm)(x)

that still maps Lp1 × · · · × Lpm → Lp whenever 1/p1 + · · · + 1/pm = 1/p,
provided L is a bounded operator on Lp.

Example 3. The previous example captures “the majority of interesting”
m-linear operators. Let L0 be a linear operator acting on functions defined
on Rmn. We define

T3(f1, . . . , fm)(x) = L0(f1 ⊗ · · · ⊗ fm)(x).

Here f1 ⊗ · · · ⊗ fm is the tensor product of these functions, defined as a
function on Rmn as follows: (f1⊗· · ·⊗fm)(x1, . . . , xm) = f1(x1) . . . fm(xm).
In particular, L0 could be a singular integral acting on functions on Rmn.
The boundedness of T3 from Lp1 × · · · × Lpm → Lp whenever 1/p1 + · · · +
1/pm = 1/p may not always be an easy task. It often requires a delicate
study aspects of which are investigated in this article for certain classes of
linear (and also sublinear) operators L0.

The situation where 1/p1 + · · · + 1/pm = 1/p will be referred to as the
singular integral case. This is because, it needs to be distinguished from the
fractional integral case in which 1/p < 1/p1 + · · ·+ 1/pm. This name is due
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68 LOUKAS GRAFAKOS

to the fact that most examples of multilinear operators bounded in this case
have fractional integral homogeneity, such as these:

(f1, . . . , fm)→
∫

Rmn

f1(x− y1) . . . fm(x− ym)(|x− y1|+ · · ·+ |x− ym|)−mn+α dy1 . . . dym.

Example 4. Taking L0 to be a linear multiplier operator on (Rn)m with
symbol σ, we obtain a multilinear multiplier operator of the form (4). Then
σ is called the symbol or multiplier of the m-linear multiplier.

Multilinear multipliers operators arise in many situations. For instance, to
prove the Kato-Ponce inequality [28] (Leibniz rule for fractional derivatives
Dα, α > 0)

‖Dα(fg)‖Lr ≤ Cp,q,r

[
‖Dαf‖Lp‖g‖Lq + ‖f‖Lp‖Dαg‖Lq

]
,

where 1/p+1/q = 1/r, one would have to study bilinear multiplier operators
with symbols

|ξ+η|α
∑

j

[
Ψ(2−jξ)Φ(2−jη)+Φ(2−jξ)Ψ(2−jη)+

∑

|j−k|≤2

Ψ(2−jξ)Ψ(2−kη)

]
.

(5)
Here Ψ and Φ are smooth functions supported in an annulus and in small
disjoint ball, both centered at the origin, respectively. The main idea is in
the first term in (5) we have |ξ+η| ≈ |ξ| and so |ξ+η|α could be replaced by
|ξ|α via some multiplier theorem. This would yield the term ‖Dαf‖Lp‖g‖Lq

in Lr norm. An analogous estimate with the roles of f and g interchanged
holds for the second term in (5), while the third term is easier. Such a
study requires a multiplier theory for multilinear operators. The topic of
multilinear multipliers will be addressed in Section 5.

Example 5. The maximal function

M(f1, . . . , fm)(x) = sup
Q�x

1

|Q|m
∫

Q

· · ·
∫

Q

|f1(y1)| . . . |fm(ym)| dy1 . . . dym,

where the supremum is taken over all cubes in Rn with sides parallel to
the axes. This was introduced in the work of Lerner, Ombrosi, Pérez,
Torres and Trujillo-González [32] and plays an important role in the
characterization of the class of multiple Ap weights.
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MULTILINEAR HARMONIC ANALYSIS 69

Example 6. A larger operator is the strong multilinear maximal function.
It is defined for x ∈ Rn as

MR(f1, . . . , fm)(x) = sup
R�x

1

|R|m
∫

R

· · ·
∫

R

|f1(y1)| . . . |fm(ym)| dy1 . . . dym,

where the supremum is taken over all rectangles R in Rn with sides parallel
to the axes. When m = 1, this operator reduces to the strong maximal
function on Rn.

3. Multilinear Calderón-Zygmund operators

In this section we set up the background of the theory of multilinear Calde-
rón-Zygmund operators. We will be working on n-dimensional space Rn. We
denote by S(Rn) the space of all Schwartz functions on Rn and by S ′(Rn)
its dual space, the set of all tempered distributions on Rn.

An m-linear operator T : S(Rn)×· · ·×S(Rn)→ S ′(Rn) is linear in every
entry and consequently it has m formal transposes. The first transpose T ∗1

of T is defined via

〈T ∗1(f1, f2, . . . , fm), h〉 = 〈T (h, f2, . . . , fm), f1〉,

for all f1, f2, . . . , fm, h in S(Rn). Analogously one defines T ∗j for j ≥ 2,
and we also set T ∗0 = T .

Let K(x, y1, . . . , ym) be a locally integrable function defined away from
the diagonal x = y1 = · · · = ym in (Rn)m+1, which satisfies the size estimate

|K(x, y1, . . . , ym)| ≤ A

(|x− y1|+ · · ·+ |x− ym|)mn
(6)

for some A > 0 and all (x, y1, . . . , ym) ∈ (Rn)m+1 with x 	= yj for some j.
Furthermore, assume that for some ε > 0 we have the smoothness estimates

|K(x, y1, . . . , ym)−K(x′, y1, . . . , ym)|

≤ A|x− x′|ε
(|x− y1|+ · · ·+ |x− ym|)mn+ε

(7)

whenever |x− x′| ≤ 1
2 max(|x− y1|, . . . , |x− ym|) and also that

|K(x, y1, y2, . . . , ym)−K(x, y′1, y2, . . . , ym)|

≤
A|yj − y′j |ε

(|x− y1|+ · · ·+ |x− ym|)mn+ε

(8)
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70 LOUKAS GRAFAKOS

whenever |y1 − y′1| ≤ 1
2 max(|x − y1|, . . . , |x − ym|) as well as a similar es-

timate with the roles of y1 and yj reversed. Kernels satisfying these condi-
tions are called multilinear Calderón-Zygmund kernels and are denoted by
m-CZK(A, ε). A multilinear operator T is said to be associated with K if

T (f1, . . . , fm)(x) =

∫

(Rn)m
K(x, y1, . . . , ym)f1(y1) . . . fm(ym) dy1 . . . dym,

whenever f1, . . . , fm are smooth functions with compact support and x does
not lie in the intersection of the support of fj .

Certain homogeneous distributions of order −mn are examples of kernels
in the class m-CZK(A, ε). For this reason, boundedness properties of oper-
ators T with kernels in m-CZK(A, ε) from a product Lp1 × · · · × Lpm into
another Lp space can only hold when

1

p1
+ · · ·+ 1

pm
=

1

p

as dictated by homogeneity. If such boundedness holds for a certain triple
of Lebesgue spaces, then the corresponding operator is called multilinear
Calderón-Zygmund.

A fundamental result concerning these operators is the multilinear exten-
sion of the classical Calderón-Zygmund [3]; the linear result states that if an
operator with smooth enough kernel is bounded on a certain Lr space, then
it is of weak type (1, 1) and is also bounded on all Lp spaces for 1 < p <∞.
A version of this theorem for operators with kernels in the classm-CZK(A, ε)
has been obtained by Grafakos and Torres [25]. A special case of this
result was also obtained by Kenig and Stein [29]; both approaches build
on previous work by Coifman and Meyer [6].

Theorem 2 ([25]). Let T be a multilinear operator with kernel K in
m-CZK(A, ε). Assume that for some 1 ≤ q1, . . . , qm ≤ ∞ and some 0 <
q <∞ with

1

q1
+ · · ·+ 1

qm
=

1

q
,

T maps Lq1 × · · · × Lqm → Lq,∞. Then T can be extended to a bounded
operator from L1 × · · · × L1 into L1/m,∞. Moreover, for some constant Cn

(that depends only on the parameters indicated) we have that

‖T‖L1×···×L1→L1/m,∞ ≤ Cn(A+ ‖T‖Lq1×···×Lqm→Lq,∞). (9)
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MULTILINEAR HARMONIC ANALYSIS 71

Proof. Set B = ‖T‖Lq1×···×Lqm→Lq,∞ . Fix an α > 0 and consider func-
tions fj ∈ L1 for 1 ≤ j ≤ m. Without loss of generality we may assume that
‖f1‖L1 = · · · = ‖fm‖L1 = 1. Set Eα = {x : |T (f1, . . . , fm)(x)| > α}. We
need to show that there is a constant C = Cm,n such that

|Eα| ≤ C(A+B)1/mα−1/m. (10)

Once (10) has been established for fj ’s with norm one, the general case
follows by replacing each fj by fj/‖fj‖L1 . Let γ be a positive real number
to be determined later. Apply the Calderón-Zygmund decomposition to the
function fj at height (αγ)1/m to obtain ‘good’ and ‘bad’ functions gj and
bj , and families of cubes {Qj,k}k with disjoint interiors such that

fj = gj + bj

and
bj =

∑

k

bj,k,

where

support(bj,k) ⊂ Qj,k,∫
bj,k(x) dx = 0,

∫
|bj,k(x)| dx ≤ C(αγ)1/m|Qj,k|,
∣∣∣
⋃

k

Qj,k

∣∣∣ ≤ C(αγ)−1/m,

‖bj‖L1 ≤ C,

‖gj‖Ls ≤ C(αγ)1/ms′

for all j = 1, 2, . . . ,m and any 1 ≤ s ≤ ∞. Define the sets

E1 = {x : |T (g1, g2, . . . , gm)(x)| > α/2m}
E2 = {x : |T (b1, g2, . . . , gm)(x)| > α/2m}
E3 = {x : |T (g1, b2, . . . , gm)(x)| > α/2m}

. . .

E2m = {x : |T (b1, b2, . . . , bm)(x)| > α/2m},
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72 LOUKAS GRAFAKOS

where each set Es has the form {x : |T (h1, h2, . . . , hm)(x)| > α/2m} with
hj ∈ {gj , bj} and all the sets Es are distinct. Since

|{x : |T (f1, . . . , fm)(x)| > α}| ≤
2m∑

s=1

|Es|,

it will suffice to prove estimate (10) for each one of the 2m sets Es.
Chebyshev’s inequality and the Lq1×· · ·×Lqm → Lq,∞ boundedness give

|E1| ≤
(2mB)q

αq
‖g1‖qLq1 . . . ‖gm‖qLqm ≤ CBq

αq

m∏

j=1

(αγ)
q

mq′
j

=
C ′Bq

αq
(αγ)(m−

1
q )

q
m = C ′Bqα−

1
m γq− 1

m .

(11)

Consider now a set Es defined above with 2 ≤ s ≤ 2m. Suppose that for
some 1 ≤ l ≤ m we have l bad functions and m− l good functions appearing
in T (h1, . . . , hm), where hj ∈ {gj , bj} and assume that the bad functions
appear at the entries j1, . . . , jl. We will show that

|Es| ≤ Cα−1/m
(
γ−1/m + γ−1/m(Aγ)1/l

)
. (12)

Let l(Q) denote the side-length of a cube Q and let Q∗ be a certain dimen-
sional dilate of Q with the same center. Fix an x /∈ ⋃m

j=1

⋃
k(Qj,k)

∗. Also
fix for the moment the cubes Qj1,k1

, . . . , Qjl,kl
and without loss of generality

suppose that Qj1,k1
has the smallest size among them. Let cj1,k1

be the
center of Qj1,k1

. For fixed yj2 , . . . , yjl ∈ Rn, the mean value property of the
function bj1,k1

gives

∣∣∣∣
∫

Qj1,k1

K(x, y1, . . . , yj1 , . . . , ym)bj1,k1
(yj1) dyj1

∣∣∣∣

=

∣∣∣∣
∫

Qj1,k1

(
K(x, y1, . . . , yj1 , . . . , ym)−K(x, y1, . . . , cj1,k1

, . . . , ym)
)

× bj1,k1
(yj1) dyj1

∣∣∣∣

≤
∫

Qj1,k1

|bj1,k1
(yj1)|

A|yj1 − cj1,k1
|ε

(|x− y1|+ · · ·+ |x− ym|)mn+ε
dyj1

≤
∫

Qj1,k1

|bj1,k1
(yj1)|

CAl(Qj1,k1
)ε

(|x− y1|+ · · ·+ |x− ym|)mn+ε
dyj1 ,
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MULTILINEAR HARMONIC ANALYSIS 73

where the previous to last inequality above is due to the fact that

|yj1 − cj1,k1
| ≤ cnl(Qj1,k1

) ≤ 1

2
|x− yj1 | ≤

1

2
max

1≤j≤m
|x− yj |.

Multiplying the just derived inequality

∣∣∣∣
∫

Qj1,k1

K(x, �y)bj1,k1
(yj1) dyj1

∣∣∣∣

≤
∫

Qj1,k1

CA|bj1,k1
(yj1)|l(Qj1,k1

)ε

(|x− y1|+ · · ·+ |x− ym|)mn+ε
dyj1

by
∏

i/∈{j1,...,jl}
|gi(yi)| and integrating over all yi with i /∈ {j1, . . . , jl}, we obtain

the estimate

∫

(Rn)m−l

∏

i/∈{j1,...,jl}
|gi(yi)|

∣∣∣∣
∫

Qj1,k1

K(x, �y)bj1,k1
(yj1) dyj1

∣∣∣∣
∏

i/∈{j1,...,jl}
dyi

≤
∏

i/∈{j1,...,jl}
‖gi‖L∞

∫

Qj1,k1

|bj1,k1
(yj1)|

ACl(Qj1,k1
)ε

(
∑l

j=1 |x− yj |)mn−(m−l)n+ε
dyj1

≤ CA
∏

i/∈{j1,...,jl}
‖gi‖L∞‖bj1,k1

‖L1

l(Qj1,k1
)ε

(∑l
j=1(l(Qi,ki

) + |x− ci,ki
|)
)nl+ε

≤ CA
∏

i/∈{j1,...,jl}
‖gi‖L∞‖bj1,k1

‖L1

l∏

i=1

l(Qji,ki
)

ε
l

(l(Qi,ki
) + |x− ci,ki

|)n+ ε
l
. (13)

The last but one inequality is due to the fact that for x /∈ ⋃m
j=1

⋃
k(Qj,k)

∗

and yj ∈ Qj,k we have that |x − yj | ≈ l(Qj,kj
) + |x − cj,kj

|, while the last
inequality is due to our assumption that the cube Qj1,k1

has the smallest side
length. It is now a simple consequence of (13) that for x /∈ ⋃m

j=1

⋃
k(Qj,k)

∗

we have

|T (h1, . . . , hm)(x)|

≤ CA

∫

(Rn)m−1

∏

i/∈{j1,...,jl}
|gi(yi)|

l∏

i=2

(∑

ki

|bji,ki
(yji)|

)

×
∣∣∣∣
∫

Qj1,k1

K(x, �y)bj1,k1
(yj1) dyj1

∣∣∣∣
∏

i�=j1

dyi
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≤ CA
∏

i/∈{j1,...,jl}
‖gi‖L∞

l∏

i=1

l(Qji,ki
)

ε
l

(l(Qi,ki
) + |x− ci,ki

|)n+ ε
l

×
∫

(Rn)l−1

l∏

i=2

(∑

ki

|bji,ki
(yji)|

)
dyi2 . . . dyil

≤ CA
∏

i/∈{j1,...,jl}
‖gi‖L∞

l∏

i=2

(∑

ki

‖bji,ki
‖L1 l(Qji,ki

)
ε
l

(l(Qi,ki
) + |x− ci,ki

|)n+ ε
l

)

≤ C ′A(αγ)
m−l
m

l∏

i=1

(∑

ki

(αγ)1/ml(Qji,ki
)n+

ε
l

(l(Qi,ki
) + |x− ci,ki

|)n+ ε
l

)

= C ′′Aαγ
l∏

i=1

Mi,ε/l(x),

where

Mi,ε/l(x) =
∑

ki

l(Qji,ki
)n+

ε
l

(l(Qi,ki
) + |x− ci,ki

|)n+ ε
l

is the Marcinkiewicz function associated with the union of the cubes {Qi,ki
}k.

It is a known fact (see for instance [36]) that

∫

Rn

Mi,ε/l(x) dx ≤ C
∣∣∣
⋃

ki

Qi,ki

∣∣∣ ≤ C ′(αγ)−1/m.

Now, since
∣∣∣
m⋃

j=1

⋃

k

(Qj,k)
∗
∣∣∣ ≤ C(αγ)−1/m,

inequality (12) will be a consequence of the estimate

∣∣∣
{
x /∈

m⋃

j=1

⋃

k

(Qj,k)
∗ : |T (h1, . . . , hm)(x)| > α/2m

}∣∣∣

≤ C(αγ)−1/m(Aγ)1/l.

(14)

We prove (13) using an L1/l estimate outside
⋃m

j=1

⋃
k(Qj,k)

∗; recall here
that we are considering the situation where l is not zero. Using the size
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estimate derived above for |T (h1, . . . , hm)(x)| outside the exceptional set,
we obtain

∣∣∣
{
x /∈

m⋃

j=1

⋃

k

(Qj,k)
∗ : |T (h1, . . . , hm)(x)| > α/2m

}∣∣∣

≤ Cα−1/l

∫

Rn\∪m
j=1∪k(Qj,k)∗

(
αγAM1,ε/l(x) . . .Ml,ε/l(x)

)1/l
dx

≤ C(γA)1/l
(∫

Rn

M1,ε/l(x) dx
)1/l

. . .
(∫

Rn

Ml,ε/l(x) dx
)1/l

≤ C ′(γA)1/l
(
(αγ)−1/m . . . (αγ)−1/m

)1/l

= C ′α−1/m(Aγ)1/lγ−1/m,

which proves (13) and thus (12).

We have now proved (12) for any γ > 0. Selecting γ = (A+B)−1 in both
(11) and (12) we obtain that all the sets Es satisfy (10). Summing over all
1 ≤ s ≤ 2m we obtain the conclusion of the theorem. �

Example. Let R1 be the bilinear Riesz transform in the first variable

R1(f1, f2)(x) = p.v.

∫

R

∫

R

x− y1
|(x− y1, x− y2)|3

f1(y1)f2(y2) dy1dy2.

Using an m-linear T1 theorem, it was shown in [25] that R1 maps Lp1(R)×
Lp2(R) to Lp(R) for 1/p1 + 1/p2 = 1/p, 1 < p1, p1 < ∞, 1/2 < p < ∞.
Thus by Theorem 2 it also maps L1 × L1 to L1/2,∞. However, it does
not map L1 × L1 to any Lorentz space L1/2,q for q < ∞. In fact, letting
f1 = f2 = χ[0,1], an easy computation shows that R1(f1, f2)(x) behaves at

infinity like |x|−2. This fact indicates that in Theorem 2 the space L1/2,∞ is
best possible and cannot be replaced by any smaller space, in particular, it
cannot be replaced by L1/2.

4. Endpoint estimates and interpolation for
multilinear Calderón-Zygmund operators

The theory of multilinear interpolation according to the real method is sig-
nificantly more complicated than the linear one. Early versions appeared in
the work of Janson [27] and Strichartz [37]. In this exposition we will
use a version of real multilinear interpolation appearing in [18]. This makes
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use of the notion of multilinear restricted weak type (p1, . . . , pm, p) estimates.
These are estimates of the form

sup
λ>0

λ
∣∣{x : |T (χA1

, . . . , χAm
)(x)| > λ

}∣∣1/p ≤M |A1|1/p1 . . . |Am|1/pm

and have a wonderful interpolation property: if an operator T satisfies re-
stricted weak type (p1, . . . , pm, p) and (q1, . . . , qm, q) estimates with con-
stants M0 and M1, respectively, then it also satisfies a restricted weak type
(r1, . . . , rm, r) estimate with constant M1−θ

0 Mθ
1 , where

(
1

r1
, . . . ,

1

rm
,
1

r

)
= (1− θ)

(
1

p1
, . . . ,

1

pm
,
1

p

)
+ θ

(
1

q1
, . . . ,

1

qm
,
1

q

)
.

More refined ideas can be employed to obtain the following multilinear in-
terpolation result; for a precise formulation and a proof see [18].

Theorem 3. Let 0 < pij , pi ≤ ∞, i = 1, . . . ,m+ 1, j = 1, . . . ,m, and sup-
pose that the points

(
1

p11
, . . . , 1

p1m

)
,
(

1
p21

, . . . , 1
p2m

)
, . . . ,

(
1

p(m+1)1
, . . . , 1

p(m+1)m

)

satisfy a certain nondegeneracy condition. Let
(

1
q1
, . . . , 1

qm

)
be in the interior

of the convex hull of these m+1 points. Suppose that a multilinear operator T
satisfies restricted weak type (pi1, . . . , pim, pi) estimates for i = 1, . . . ,m+1.
Then T has a bounded extension from Lq1 × · · · × Lqm → Lq whenever
1/q ≤ 1/q1 + · · ·+ 1/qm.

There is also an interpolation theorem saying that if a linear operator
(that satisfies a mild assumption) and its transpose are of restricted weak
type (1, 1), then the operator is L2 bounded. We prove here a multilinear
analogue of this result due to Grafakos and Tao [24]:

Theorem 4 ([24]). Let 1 < p1, . . . , pm <∞ be such that 1/p1+· · ·+1/pm =
1/p < 1. Suppose that an m-linear operator has the property that

sup
A0,A1,...,Am

|A0|−1/p′ |A1|−1/p1 . . . |Am|−1/pm

∣∣∣
∫

A0

T (χA1
, . . . , χAm

) dx
∣∣∣ <∞,

(15)
where the supremum is taken over all subsets A0, A1, . . . , Am of finite
measure. Also suppose that T ∗j, j = 0, 1, . . . ,m are of restricted weak type
(1, 1, . . . , 1/m); this means that these operators map L1×· · ·×L1 to L1/m,∞

when restricted to characteristic functions with constants B0, B1, . . . , Bm, re-
spectively. Then there is a constant Cp1,...,pm

such that T maps the product of
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Lorentz spaces Lp1,1×· · ·×Lpm,1 to weak Lp when restricted to characteristic
functions with norm at most

Cp1,...,pm
B

1/(2p)
0 B

1/(2p′1)
1 . . . B

1/(2p′m)
m .

Proof. We will make use of the following characterization of weak Lp (due
to Tao):

‖g‖Lp,∞ ≈ sup
|E|<∞

inf
E′⊂E

|E′|≥ 1
2 |E|

|E| 1p−1
∣∣∣
∫

E′
g(t) dt

∣∣∣. (16)

The easy proof of (16) is omitted.
Let M be the supremum in (15). We consider the following two cases:

Case 1: Suppose that |A0|√
B0

≥ max
(
|A1|√
B1

, . . . , |Am|√
Bm

)
. Since T maps

L1×· · ·×L1 to weak L1/m when restricted to characteristic functions, there
exists a subset A′0 of A0 of measure |A′0| ≥ 1

2 |A0| such that

∣∣∣
∫

A′0

T (χA1
, . . . , χAm

) dx
∣∣∣ ≤ CB0|A1| . . . |Am| |A0|1−

1
1/m

for some constant C. Then
∣∣∣
∫

A0

T (χA1
, . . . , χAm

) dx
∣∣∣

≤
∣∣∣
∫

A′0

T (χA1
, . . . , χAm

) dx
∣∣∣+

∣∣∣
∫

A0\A′0
T (χA1

, . . . , χAm
) dx

∣∣∣

≤ CB0|A1| . . . |Am||A0|−m+1 +M |A1|
1
p1 . . . |A2|

1
p2

(
1

2
|A0|

) 1
p′

≤ CB0|A1|
1
p1

(√
B1√
B0

) 1
p′
1
. . . |Am|

1
pm

(√
Bm√
B0

) 1
p′m |A0|

m
s=1

1
p′s
−m+1

+M2
− 1

p′ |A1|
1
p1 . . . |Am|

1
pm |A0|

1
p′ .

It follows that M has to be less than or equal to

CB0

(√
B1√
B0

)1/p′1

. . .

(√
Bm√
B0

)1/p′m

+M2−1/p′

and consequently

M ≤ C

1− 2−1/p′
B

1/(2p)
0 B

1/(2p′1)
1 . . . B

1/(2p′m)
m .
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Case 2: Suppose that
|Aj |√
Bj

≥ max
(
|A0|√
B0

, . . . , |Am|√
Bm

)
for some j ≥ 1. To

simplify notation, let us take j = 1. Here we use that T ∗1 maps L1×· · ·×L1

to weak L1/m when restricted to characteristic functions. Then there exists
a subset A′1 of A1 of measure |A′1| ≥ 1

2 |A1| such that

∣∣∣
∫

A′1

T ∗1(χA0
, . . . , χAm

) dx
∣∣∣ ≤ CB1|A0| |A2| . . . |Am| |A1|−m+1

for some constant C. Equivalently, we write this statement as

∣∣∣
∫

A0

T (χA′1 , χA2
. . . , χAm

) dx
∣∣∣ ≤ CB1|A0| |A2| . . . |Am| |A1|−m+1

by the definition of the first dual operator T ∗1. Therefore we obtain

∣∣∣
∫

A0

T (χA1
, . . . ) dx

∣∣∣

≤
∣∣∣
∫

A0

T (χA′1 , χA2
, . . . ) dx

∣∣∣+
∣∣∣
∫

A0

T (χA1\A′1 , χA2
, . . . ) dx

∣∣∣

≤ CB1|A0|
( m∏

s=2

|As|
)
|A1|−m+1 +M |A0|

1
p′

m∏

s=2

|As|
1
ps

(
1

2
|A1|

) 1
p1

≤ CB1|A1|−m+1+ 1
p+

m
s=2

1
p′s

(√
B0√
B1

) 1
p

|A0|
1
p′

m∏

s=2

|As|
1
ps

(√
Bs√
B1

) 1
p′s

+M 2−1/p1 |A1|
1
p1 |A2|

1
p2 . . . |Am|

1
pm |A0|

1
p′ .

By the definition of M , it follows that

M ≤ C

1− 2−1/p1
B

1/(2p)
0 B

1/(2p′1)
1 . . . B

1/(2p′m)
m .

Then the statement of the theorem follows with

Cp1,...,pm
= Cmax

( 1

1− 2−1/p1
, . . . ,

1

1− 2−1/pm
,

1

1− 2−1/p′

)
.

�
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Assumption (15) is not as restrictive as it looks. To apply this theorem
for m-linear Calderón-Zygmund operators, one needs to consider the family
of operators whose kernels are truncated near the origin, i.e.,

Kδ(x, y1, . . . , ym) = K(x, y1, . . . , ym)ζ
(
(|x− y1|+ · · ·+ |x− ym|)/δ

)
,

where ζ is a smooth function that is equal to 1 on [2,∞) and vanishes on [0, 1].
The kernels Kδ are essentially in the same Calderón-Zygmund kernel class as
K, that is if K lies in m-CZK(A, ε), then Kε lie in m-CZK(A′, ε), where A′

is a multiple of A. Using Hölder’s inequality with exponents p1, . . . , pm, p′,
it is easy to see that for the operators Tδ with kernels Kδ, assumption (15)
holds with constants depending on δ.

Theorem 4 provides an interpolation machinery needed to pass from
bounds at one point to bounds at every point for multilinear Calderón-
Zygmund operators. (An alternative interpolation technique was described
in [25].) We have:

Theorem 5. Suppose that an operator T with kernel in m-CZK(A, δ) and
all of its truncations Tδ map Lr1×· · ·×Lrm → Lr for a single tuple of indices
r1, . . . , rm, r satisfying 1/r1 + · · · + 1/rm = 1/r and 1 < r1, . . . , rm, r < ∞
uniformly in δ. Then T is bounded from Lp1×· · ·×Lpm → Lp for all indices
p1, . . . , pm, p satisfying 1/p1 + · · · + 1/pm = 1/p and 1 < p1, . . . , pm < ∞,
1/m < p <∞.

Proof. Since Tδ maps Lr1 × · · · × Lrm → Lr and r > 1, duality gives
that T ∗1δ maps Lr′ × Lr2 × · · · × Lrm → Lr′1 and likewise for the remaining
adjoints (uniformly in δ). It follows from Theorems 4 and 3 that Tδ are
bounded from Lp1 × · · · × Lpm → Lp for all indices p1, . . . , pm, p satisfying
1/p1 + · · · + 1/pm = 1/p and 1 < p1, . . . , pm < ∞, 1/m < p < ∞. Passing
to the limit, using Fatou’s lemma, the same conclusion may be obtained for
the non truncated operator T . �

This approach has the drawback that it uses the redundant assumption
that if T is bounded from Lr1 ×Lr2 → Lr, then so are all its truncations Tδ

(uniformly in δ > 0). This is hardly a problem in concrete applications since
the kernels of T and Tδ satisfy equivalent estimates (uniformly in δ > 0)
and the method used in the proof of the boundedness of the former almost
always applies for the latter.

5. The m-linear Mikhlin-Hörmander multiplier theorem

In this section, we focus on an analogue of a classical linear multiplier the-
orem in the multilinear case. We first note that the Marcinkiewicz multi-
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plier theorem fails for multilinear operators, see [19]. However, the Mikhlin-
Hörmander multiplier theorem (see [35], [26]) has a multilinear extension,
which we discuss below.

The multilinear Fourier multiplier operator Tσ associated with a symbol
σ is defined by

Tσ(f1, . . . , fm)(x)

=

∫

(Rn)m
e2πix·(ξ1+···+ξm)σ(ξ1, . . . , ξm)f̂1(ξ1) · · · f̂m(ξm) dξ1 · · · dξm

for fi ∈ S(Rn), i = 1, . . . ,m.
Coifman and Meyer [8] proved that if σ is a bounded function on

Rmn \ {0} that satisfies

|∂α1

ξ1
· · · ∂αm

ξm
σ(ξ1, . . . , ξm)| ≤ Cα(|ξ1|+ · · ·+ |ξm|)−(|α1|+···+|αm|) (17)

away from the origin for all sufficiently large multiindices αj , then Tσ is
bounded from the product Lp1(Rn) × · · · × Lpm(Rn) to Lp(Rn) for all
1 < p1, . . . , pm, p <∞ satisfying 1

p1
+ · · ·+ 1

pm
= 1

p . Their proof is based on

the idea of writing the Fourier multiplier σ as a rapidly convergent sum
of products of functions of the variables ξj . The multiplier theorem of
Coifman and Meyer was extended to indices p < 1 (and larger than 1/m)
by Grafakos and Torres [25] and Kenig and Stein [29] (when m = 2).

A different approach was taken by Tomita [38] who extended the proof
of the Hörmander multiplier theorem in [14] to obtain the following result
in the m-linear case:

Theorem A ([38]). Let σ ∈ L∞(Rmn). Let Ψ be a Schwartz function whose

Fourier transform is supported in the set {�ξ ∈ (Rn)m : 1/2 ≤ |�ξ| ≤ 2} and
satisfies ∑

j∈Z
Ψ̂(�ξ/2j) = 1 (18)

for all �ξ ∈ (Rn)m\{0}. Suppose that for some s > mn/2, the function
σ ∈ L∞(Rmn) satisfies

sup
k∈Z

‖σkΨ̂‖L2
s
<∞,

where for k ∈ Z, σk is defined as

σk(ξ1, . . . , ξm) = σ(2kξ1, . . . , 2
kξm). (19)
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Then Tσ is bounded from Lp1(Rn) × · · · × Lpm(Rn) to Lp(Rn), whenever
1 < p1, p2, . . . , pm, p <∞ and 1/p1 + · · ·+ 1/pm = 1/p.

Let S1(Rd) be the set of all Schwartz functions Ψ on Rd, whose Fourier
transform is supported in an annulus of the form {ξ : c1 < |ξ| < c2}, is
nonvanishing in a smaller annulus {ξ : c′1 ≤ |ξ| ≤ c′2} (for some choice of
constants 0 < c1 < c′1 < c′2 < c2 <∞), and satisfies

∑

j∈Z
Ψ̂(2−jξ) = constant, ξ ∈ Rd \ {0}. (20)

Theorem A has an extension to the case where the target space is Lp for
p ≤ 1:

Theorem 6 ([22]). Let 1 < r ≤ 2. Suppose that σ is a function on Rnm

and Ψ is a function in S1(Rnm) that satisfies for some γ > mn
r

sup
k∈Z

‖σkΨ̂‖Lr
γ(Rmn) = K <∞, (21)

where σk is defined in (19). Then there is a number δ = δ(mn, γ, r) satisfying
0 < δ ≤ r − 1, such that the m-linear operator Tσ, associated with the
multiplier σ, is bounded from Lp1(Rn)×· · ·×Lpm(Rn) to Lp(Rn), whenever
r − δ < pj <∞ for all j = 1, . . . ,m, and p is given by

1

p
=

1

p1
+ · · ·+ 1

pm
. (22)

In the rest of this section, we prove Theorem 6.

5.1. Preliminary material. We develop some preliminary material needed
in the proof of Theorem 6. For s ∈ R we denote by ws the weight

ws(x) = (1 + 4π2|x|2)s/2.

Definition 1. For 1 ≤ p < ∞, the weighted Lebesgue space Lp(ws) is
defined as the set of all measurable functions f on Rd such that

‖f‖Lp(ws) =
(∫

Rd

|f(x)|p ws(x) dx
)1/p

<∞.
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We note that for 1 < r ≤ 2 one has

‖ĝ‖Lr′ (ws)
=

(∫

Rd

|ĝ|r′ws dξ
) 1

r′

=
(∫

Rd

|ĝws/r′ |r
′
dξ
) 1

r′

=
(∫

Rd

∣∣[(I −Δ)
s

2r′ g
]̂∣∣r′ dξ

) 1
r′

≤
(∫

Rd

∣∣(I −Δ)
s

2r′ g
∣∣r dx

) 1
r

= ‖g‖Lr
s/r′

,

(23)

via the Hausdorff-Young inequality.

Lemma 1. Let 1 ≤ p < q <∞. Then for every s ≥ 0 there exists a constant
C = C(p, q, s, d) > 0 such that for all functions g supported in a ball of a
fixed finite radius in Rd we have

‖g‖Lp
s(Rd) ≤ C‖g‖Lq

s(Rd).

Proof. Since g is supported in a ball of finite fixed radius, then g = gϕ for
some compactly supported smooth function ϕ that is equal to one on the
support of g. Pick r such that

1

p
=

1

q
+

1

r
.

The Kato-Ponce rule [28] gives the estimate

‖g‖Lp
s(Rd) = ‖(I −Δ)s/2(gϕ)‖Lp

≤ C
[
‖(I −Δ)s/2g‖Lq‖ϕ‖Lr + ‖g‖Lq‖(I −Δ)s/2ϕ‖Lr

]

= Cϕ

[
‖(I −Δ)s/2g‖Lq + ‖g‖Lq

]
.

Now the Bessel potential operator Js = (I −Δ)−s/2 is bounded from Lq to
itself for all s > 0. This implies that

‖g‖Lq ≤ C ′‖(I −Δ)s/2g‖Lq .

Combining this estimate with the one previously obtained, we deduce that

‖g‖Lp
s(Rd) ≤ 2CϕC

′‖(I −Δ)s/2g‖Lq(Rd) = C‖g‖Lq
s(Rd).

�
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Lemma 2. Suppose that s ≥ 0 and 1 < r < ∞. Assume that ϕ lies in
S(Rd). Then there is a constant cϕ such that for all g ∈ Lr

s(Rd) we have

‖gϕ‖Lr
s
≤ cϕ‖g‖Lr

s
.

Proof. We write

(I −Δ)s/2(gϕ) =

∫

Rd

ϕ̂(τ)(I −Δ)s/2(g e2πiτ ·(·)) dτ.

It will suffice to show that the Lr norm of (I−Δ)s/2(g e2πiτ ·(·)) is controlled
by CM (1 + |τ |)M times the Lr norm of (I −Δ)s/2g, for some M > 0. This
statement is equivalent to showing that the function

(
1 + |ξ − τ |2
1 + |ξ|2

) s
2

is an Lr Fourier multiplier with norm at most a multiple of (1 + |τ |)M . But
this is an easy consequence of the Mihlin multiplier theorem. �
Lemma 3. Let Δk be the Littlewood-Paley operator given by Δk(g) (̂ξ) =

ĝ(ξ)Ψ̂(2−kξ), k ∈ Z, where Ψ is a Schwartz function whose Fourier trans-
form is supported in the annulus {ξ : 2−b < |ξ| < 2b} for some b ∈ Z+ and

satisfies
∑

k∈Z Ψ̂(2−kξ) = c0, for some constant c0. Let 0 < p < ∞. Then
there is a constant c = c(n, p, c0,Ψ), such that for Lp functions f we have

‖f‖Lp ≤ c
∥∥∥
(∑

k∈Z
|Δk(f)|2

)1/2∥∥∥
Lp

.

Proof. Let Φ be a Schwartz function with integral one. Then the following
quantity provides a characterization of the Hp norm:

‖f‖Hp ≈
∥∥sup
t>0

|f ∗ Φt|
∥∥
Lp .

It follows that for f in Hp ∩ L2, which is a dense subclass of Hp, one has
the estimate

|f | ≤ sup
t>0

|f ∗ Φt|,

since the family {Φt}t>0 is an approximate identity. Thus

‖f‖Lp ≤ c ‖f‖Hp
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whenever f is a function in Hp.
Keeping this observation in mind we can write:

‖f‖Lp ≤ c ‖f‖Hp

≤
∥∥∥
(∑

j∈Z
|Δj(f)|2

)1/2∥∥∥
Lp

= c
∥∥∥
(∑

j∈Z

∣∣∣Δj

(∑

k∈Z
Δk(f)

)∣∣∣
2)1/2∥∥∥

Lp

≤ c′
∥∥∥
(∑

k∈Z
|Δk(f)|2

)1/2∥∥∥
Lp

in view of the fact that ΔjΔk = 0 unless |j − k| ≤ b. �

5.2. The proof of Theorem 6. Having disposed of the preliminary ma-
terial, we now prove Theorem 6.

Proof. For each j = 1, . . . ,m, we let Rj be the set of points (ξ1, . . . , ξm)
in (Rn)m such that |ξj | = max{|ξ1|, . . . , |ξm|}. For j = 1, . . . ,m, we intro-
duce nonnegative smooth functions φj on [0,∞)m−1 that are supported in
[0, 11

10 ]
m−1 such that

1 =

m∑

j=1

φj

( |ξ1|
|ξj |

, . . . ,
|̃ξj |
|ξj |

, . . . ,
|ξm|
|ξj |

)

for all (ξ1, . . . , ξm) 	= 0, with the understanding that the variable with the
tilde is missing. These functions introduce a partition of unity of (Rn)m\{0}
subordinate to a conical neighborhood of the region Rj .

Each region Rj can be written as the union of sets

Rj,k = {(ξ1, . . . , ξm) ∈ Rj : |ξk| ≥ |ξs| for all s 	= j}

over k = 1, . . . ,m. We need to work with a finer partition of unity, subordi-
nate to each Rj,k. To achieve this, for each j, we introduce smooth functions
φj,k on [0,∞)m−2 supported in [0, 11

10 ]
m−2 such that

1 =

m∑

k=1
k �=j

φj,k

( |ξ1|
|ξk|

, . . . ,
|̃ξk|
|ξk|

, . . . ,
|̃ξj |
|ξk|

, . . . ,
|ξm|
|ξk|

)
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for all (ξ1, . . . , ξm) in the support of φj with ξk 	= 0 (with missing k-th and
j-th entries).

We now have obtained the following partition of unity of (Rn)m \ {0}:

1 =
m∑

j=1

m∑

k=1
k �=j

φj(. . . )φj,k(. . . ),

where the dots indicate the variables of each function.
We introduce a nonnegative smooth bump ψ supported in [(10m)−1, 2]

and equal to 1 on the interval [(5m)−1, 12
10 ], and we decompose the identity

on (Rn)m \ {0} as follows

1 =

m∑

j=1

m∑

k=1
k �=j

[Φj,k +Ψj,k],

where

Φj,k(ξ1, . . . , ξm) = φj(. . . )φj,k(. . . )

(
1− ψ

( |ξk|
|ξj |

))

and

Ψj,k(ξ1, . . . , ξm) = φj(. . . )φj,k(. . . )ψ
( |ξk|
|ξj |

)
.

This partition of unity induces the following decomposition of σ:

σ =
m∑

j=1

m∑

k=1
k �=j

[σΦj,k + σΨj,k].

We will prove the required assertion for each piece of this decomposition,
i.e., for the multipliers σΦj,k and σΨj,k for each pair (j, k) in the previous
sum. In view of the symmetry of the decomposition, it suffices to consider
the case of a fixed pair (j, k) in the previous sum. To simplify notation,
we fix the pair (m,m − 1), thus, for the rest of the proof we fix j = m
and k = m− 1 and we prove boundedness for the m-linear operators whose
symbols are σ1 = σΦm,m−1 and σ2 = σΨm,m−1. These correspond to the
m-linear operators Tσ1

and Tσ2
, respectively. The important thing to keep

in mind is that σ1 is supported in the set where

max(|ξ1|, . . . , |ξm−2|) ≤ 11
10 |ξm−1| ≤ 11

10 · 1
5m |ξm|
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and σ2 is supported in the set where

max(|ξ1|, . . . , |ξm−2|) ≤ 11
10 |ξm−1|

and
1

10m ≤ |ξm−1|
|ξm| ≤ 2.

We first consider Tσ1
(f1, . . . , fm), where fj are fixed Schwartz functions.

We fix a Schwartz radial function η whose Fourier transform is supported in
the annulus 1− 1

25 ≤ |ξ| ≤ 2 and satisfies
∑

j∈Z
η̂(2−jξ) = 1, ξ ∈ Rn \ {0}.

Associated with η we define the Littlewood-Paley operator Δj(f) = f ∗η2−j ,
where ηt(x) = t−nη(t−1x) for t > 0. We decompose the function fm as∑

j∈Z Δj(fm) and we note that the spectrum (i.e. the Fourier transform) of

Tσ1
(f1, . . . , fm−1,Δj(fm)) is contained in the set

{
ξ1 : |ξ1| ≤ 3·2j

5m

}
+· · ·+

{
ξm−1 : |ξm−1| ≤ 3·2j

5m

}
+
{
ξm : 24

25 ·2j ≤ |ξm| ≤ 2·2j
}
.

This algebraic sum of these sets is contained in the annulus

{z ∈ Rn : 9
25 · 2j ≤ |z| ≤ 65

25 · 2j}.
We now introduce another bump that is equal to 1 on the annulus {z ∈
Rn : 9

25 ≤ |z| ≤ 65
25} and vanishes in the complement of the larger annulus

{z ∈ Rn : 8
25 < |z| < 66

25}. We call Δ̃j the Littlewood-Paley operators
associated with this bump and we note that

Δ̃j(Tσ1
(f1, . . . ,Δj(fm))) = Tσ1

(f1, . . . ,Δj(fm)).

Finally, we define an operator Sj by setting

Sj(g) = g ∗ ζ2−j ,

where ζ is a smooth function whose Fourier transform is equal to 1 on the
ball |z| < 3/5m and vanishes outside the double of this ball. Using this
notation, we may write

Tσ1
(f1, . . . , fm−1, fm) =

∑

j

Tσ1

(
f1, . . . , fm−1,Δj(fm)

)

=
∑

j

Tσ1

(
Sj(f1), . . . , Sj(fm−1),Δj(fm)

)

=
∑

j

Δ̃j

(
Tσ1

(Sj(f1), . . . , Sj(fm−1),Δj(fm))
)
.
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Since the Fourier transforms of Δ̃j

(
Tσ1

(Sj(f1), . . . , Sj(fm−1),Δj(fm))
)

have bounded overlap, Lemma 3 yields that

‖Tσ1
(f1, . . . , fm)‖Lp ≤ C

∥∥∥
[∑

j

∣∣Tσ1

(
Sj(f1), . . . , Sj(fm−1),Δj(fm)

)∣∣2
] 1

2
∥∥∥
Lp

.

Obviously, we have

Tσ1

(
Sj(f1), . . . , Sj(fm−1),Δj(fm)

)
(x)

=

∫

(Rn)m
e2πix·(ξ1+···+ξm)σ1(ξ1, . . . , ξm)

×
m−1∏

k=1

Ŝj(fk)(ξk) Δ̂j(fm)(ξm) dξ1 · · · dξm.

A simple calculation yields that the support of the integrand in the previous
integral is contained in the annulus

{
(ξ1, . . . , ξm) ∈ (Rn)m : 7

10 · 2j < |(ξ1, . . . , ξm)| < 21
10 · 2j

}
,

so one may introduce in the previous integral the factor Ψ̂(2−jξ1, . . . , 2
−jξm),

where Ψ is a radial function in S1((Rn)m) whose Fourier transform is sup-
ported in some annulus and is equal to 1 on the annulus

{
(z1, . . . , zm) ∈ (Rn)m : 7

10 ≤ |(z1, . . . , zm)| ≤ 21
10

}
.

Inserting this factor and taking the inverse Fourier transform, we obtain that

Tσ1

(
Sj(f1), . . . , Sj(fm−1),Δj(fm)

)
(x)

is equal to

∫

(Rn)m
2mnj(σj

1Ψ̂)∨(2j(x− y1), . . . , 2
j(x− ym))

m−1∏

i=1

Sj(fi)(yi)Δj(fm)(ym) d�y,

where d�y = dy1 . . . dym, the check indicates the inverse Fourier transform in
all variables, and

σj
1(ξ1, ξ2, . . . , ξm) = σ1(2

jξ1, . . . , 2
jξm).
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We pick a ρ such that 1 < ρ < r ≤ 2 and γ > mn/ρ. This is possible
since γ > mn/r; for instance ρ = mn

γ + 1
1000 (r− mn

γ ) is a good choice if this

number is bigger than 1, otherwise we set ρ = 1+r
2 . We define δ = r−ρ. We

now have:

|Tσ1
(Sj(f1), . . . , Sj(fm−1),Δj(fm))(x)|

≤
∫

(Rn)m
wγ(2

j(x− y1), . . . , 2
j(x− ym))

∣∣(σj
1Ψ̂)∨(2j(x− y1), . . . , 2

j(x− ym))
∣∣

× 2mnj |Sj(f1)(y1) · · ·Sj(fm−1)(ym−1)Δj(fm)(ym)|
wγ(2j(x− y1), . . . , 2j(x− ym))

d�y

≤
[∫

(Rn)m

∣∣(wγ(σ
j
1Ψ̂)∨

)
(2j(x− y1), . . . , 2

j(x− ym))
∣∣ρ′d�y

] 1
ρ′

× 2mnj

(∫

(Rn)m

|Sj(f1)(y1) · · ·Sj(fm−1)(ym−1)Δj(fm)(ym)|ρ
wγρ(2j(x− y1), . . . , 2j(x− ym))

d�y

) 1
ρ

≤ C
(∫

(Rn)m
wγρ′(y1, . . . , ym)

∣∣(σj
1Ψ̂)∨(y1, . . . , ym)|ρ′ d�y

) 1
ρ′

×
(∫

(Rn)m

2mnj |Sj(f1)(y1) · · ·Sj(fm−1)(ym−1)Δj(fm)(ym)|ρ
(1 + 2j |x− y1|)γρ/m · · · (1 + 2j |x− ym|)γρ/m

d�y

) 1
ρ

≤ ‖(σj
1Ψ̂)∨‖Lρ′ (wγρ′ )

m−1∏

i=1

(∫

Rn

2jn|Sj(fi)(yi)|ρ
(1 + 2j |x− yi|)γρ/m

dyi

) 1
ρ

×
(∫

Rn

2jn|Δj(fm)(ym)|ρ
(1 + 2j |x− ym|)γρ/m

dym

) 1
ρ

≤ ‖(σj
1Ψ̂)∨‖Lρ′ (wγρ′ )

cm/ρ
m−1∏

i=1

(M(M(fi)
ρ)(x))

1
ρ (M(|Δj(fm)|ρ)(x)) 1

ρ ,

where we used that

∫

Rn

2jn|h(y)|
(1 + 2j |x− y|)γρ/m dy ≤ cM(h)(x),

a consequence of the fact that γρ/m > n.
We now have the sequence of inequalities:

‖(σj
1Ψ̂)∨‖Lρ′ (wγρ′ )

≤ ‖σj
1 Ψ̂‖Lρ

γ
≤ C ′′‖σj

1Ψ̂‖Lr
γ
≤ C ′‖σjΨ̂‖Lr

γ
< CK,
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justified by the result in the calculation (23) for the first, Lemma 1 together

with the facts that 1 < ρ < r and σj
1 is supported in a ball of a fixed

radius for the second inequality, Lemma 2 for the third, and the hypothesis
of Theorem 6 for the last inequality.

Thus we have obtained the estimate:

|Tσ1
(Sj(f1), . . . , Sj(fm−1),Δj(fm))|

≤ CK
m−1∏

i=1

(M(M(fi)
ρ))

1
ρ (M(|Δj(fm)|ρ)) 1

ρ .

We now square the previous expression, we sum over j ∈ Z and we take
square roots. Since r − δ = ρ, the hypothesis pj > r − δ implies pj > ρ,and

thus each term (M(M(fi)
ρ))

1
ρ is bounded on Lpj (Rn). We obtain

‖Tσ1
(f1, . . . , fm−1, fm)‖Lp(Rn)

≤ CK
∥∥∥
{∑

j

|Tσ1
(Sj(f1), . . . , Sj(fm−1),Δj(fm))|2

} 1
2
∥∥∥
Lp(Rn)

≤ C ′K
∥∥∥
{∑

j

M(|Δj(fm)|ρ) 2
ρ

} 1
2
∥∥∥
Lpm (Rn)

m−1∏

i=1

‖(M(M(fi)
ρ))

1
ρ ‖Lpi (Rn)

≤ C ′′K
∥∥∥
{∑

j

M(|Δj(fm)|ρ) 2
ρ

} ρ
2
∥∥∥

1
ρ

Lpm/ρ(Rn)

m−1∏

i=1

‖fi‖Lpi (Rn)

≤ C ′′K
m∏

i=1

‖fi‖Lpi (Rn)

in view of the Fefferman-Stein vector-valued inequality for the Hardy-Little-
wood maximal function [17] and the Littlewood-Paley theorem.

Next we deal with σ2. Using the notation introduced earlier, we write

Tσ2
(f1, . . . , fm−1, fm) =

∑

j∈Z
Tσ2

(f1, . . . , fm−1,Δj(fm)).

The key observation in this case is that

Tσ2
(f1, . . . , fm−1,Δj(fm)) = Tσ2

(
S′j(f1), . . . , S

′
j(fm−2),Δ

′
j(fm−1),Δj(fm)

)

for some other Littlewood-Paley operator Δ′j which is given on the Fourier

transform by multiplication with a bump Θ̂(2−jξ), where Θ̂ is equal to one
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on the annulus {ξ ∈ Rn : 24
25 · 1

10m ≤ |ξ| ≤ 4} and vanishes on a larger
annulus. Also, S′j is given by convolution with ζ ′2−j , where ζ ′ is a smooth

function whose Fourier transform is equal to 1 on the ball |z| < 22
10 and

vanishes outside the double of this ball.
As in the previous case, one has that in the support of the integral

Tσ2

(
S′j(f1), . . . , S

′
j(fm−2),Δ

′
j(fm−1),Δj(fm)

)
(x)

=

∫

(Rn)m
e2πix·(ξ1+···+ξm)σ2(�ξ)

m−2∏

t=1

Ŝ′j(ft)(ξt)
̂Δ′j(fm−1)(ξm−1)Δ̂j(fm)(ξm) d�ξ

we have that
|ξ1|+ · · ·+ |ξm| ≈ 2j ,

thus one may insert in the integrand the factor Ψ̂(2−jξ1, . . . , 2
−jξm), for

some Ψ in S1((Rn)m) that is equal to one on a sufficiently wide annulus.
A calculation similar to the one in the case for σ1 yields the estimate

|Tσ2
(S′j(f1), . . . , S

′
j(fm−2),Δ

′
j(fm−1),Δj(fm))|

≤ CK

m−2∏

i=1

(M(M(fi)
ρ))

1
ρ (M(|Δ′j(fm−1)|ρ))

1
ρ (M(|Δj(fm)|ρ)) 1

ρ .

Summing over j and taking Lp norms yields

‖Tσ2
(f1, . . . , fm−1, fm)‖Lp(Rn)

≤ CK
∥∥∥
m−2∏

i=1

(M(M(fi)
ρ))

1
ρ

∑

j∈Z
(M(|Δ′j(fm−1)|ρ))

1
ρ (M(|Δj(fm)|ρ)) 1

ρ

∥∥∥
Lp

≤ CK
∥∥∥
m−2∏

i=1

(M(M(fi)
ρ))

1
ρ

{ m∏

i=m−1

∑

j∈Z

∣∣M(|Δj(fi)|ρ)
∣∣ 2
ρ

} 1
2
∥∥∥
Lp(Rn)

,

where the last step follows by the Cauchy-Schwarz inequality and we omitted
the prime from the term with i = m − 1 for matters of simplicity. Apply-
ing Hölder’s inequality and using that ρ < 2 and Lemma B we obtain the
conclusion that the expression above is bounded by

C ′K‖f1‖Lp1 (Rn) · · · ‖fm‖Lpm (Rn).

This concludes the proof of the theorem. �
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6. The multilinear strong maximal function

In this section we study the maximal functionMR introduced in Example 6
of Section 2. It turns out that this operator can be used to characterize
the class of multiple Ap weights introduced in [32] suitably modified for
rectangles, see [21]. Here, we will be concerned with endpoint boundedness
properties of MR. This will require a quick review of some facts from the
theory of Orlicz spaces.

A Young function is a continuous, convex, increasing function Φ: [0,∞)→
[0,∞) with Φ(0) = 0 and such that Φ(t) → ∞ as t → ∞. The properties
of Φ easily imply that for 0 < ε < 1 and t ≥ 0

Φ(εt) ≤ εΦ(t). (24)

The Φ-norm of a function f over a set E with finite measure is defined by

‖f‖Φ,E = inf
{
λ > 0 :

1

|E|

∫

E

Φ
( |f(x)|

λ

)
dx ≤ 1

}
. (25)

It follows from this definition that

‖f‖Φ,E > 1 if and only if
1

|E|

∫

E

Φ(|f(x)|)dx > 1. (26)

Associated with each Young function Φ, there is its complementary Young
function

Φ̄(s) = sup
t>0
{st− Φ(t)} (27)

for s ≥ 0. Such Φ̄ is also a Young function and has the property that

st ≤ C
[
Φ(t) + Φ̄(s)

]
(28)

for all s, t ≥ 0. Also the Φ̄-norms are related to the LΦ-norms via the the
generalized Hölder inequality, namely

1

|E|

∫

E

|f(x)g(x)| dx ≤ 2‖f‖Φ,E‖g‖Φ̄,E . (29)

In this section we will work with the pair of Young functions

Φn(t) := t[ log(e + t)]n−1 and Φ̄n(t) ≈ Ψn(t) := exp
(
t

1
n−1

)
− 1, t ≥ 0.

It is the case that the pair Φn, Ψn satisfies (28), see the article by Bagby
[1, page 887]. Observe that the above function Φn is submultiplicative, that
is, for s, t > 0

Φn(st) ≤ cΦn(s)Φn(t).

We introduce the function Φ(m) :=

m times︷ ︸︸ ︷
Φ ◦ Φ ◦ · · · ◦ Φ which is increasing with

respect to the input variable and also with respect to m ∈ N.
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6.1. Some Lemmas. We begin by proving some useful general lemmas
about averaging functions and Orlicz spaces.

Lemma 4. Let Φ be any Young function, then for any f ≥ 0 and any
measurable set E

1 < ‖f‖Φ,E =⇒ ‖f‖Φ,E ≤
1

|E|

∫

E

Φ(f(x)) dx.

Proof. Indeed, by homogeneity this is equivalent to

∥∥∥ f

λf,E

∥∥∥
Φ,E

≤ 1,

where

λf,E =
1

|E|

∫

E

Φ(f(x)) dx.

But this is the same as

1

|E|

∫

E

Φ
(f(x)
λf,E

)
dx ≤ 1

by definition of the norm (25). In view of property (24), it would be enough
to show that

λf,E =
1

|E|

∫

E

Φ(f(x)) dx ≥ 1.

But this is exactly the case in view of property (26). �

Lemma 5. Let Φ be a submultiplicative Young function, let m ∈ N and let
E be any set. Then there is a constant c such that whenever

1 <

m∏

i=1

‖fi‖Φ,E (30)

holds, then
m∏

i=1

‖fi‖Φ,E ≤ c

m∏

i=1

1

|E|

∫

E

Φ(m)(fi(x)) dx. (31)

Proof. a) The case m = 1. This is the content of Lemma 4.
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b) The case m = 2. Fix functions for which (30) holds:

1 <
2∏

i=1

‖fi‖Φ,E .

Without loss of generality we may assume that

‖f1‖Φ,E ≤ ‖f2‖Φ,E .

Observe that by (30) we must have ‖f2‖Φ,E > 1.
Suppose first that 1 ≤ ‖f1‖Φ,E , then (31) follows from Lemma 4:

1 <
2∏

i=1

‖fi‖Φ,E ≤
2∏

i=1

1

|E|

∫

E

Φ(fi(x)) dx

with m = 1 and c = 1.
Assume now

‖f1‖Φ,E ≤ 1 ≤ ‖f2‖Φ,E .

Then we have by Lemma 4, submultiplicativity and Jensen’s inequality

1 <

2∏

i=1

‖fi‖Φ,E

= ‖f1‖Φ,E‖f2‖Φ,E

=
∥∥f1‖f2‖Φ,E

∥∥
Φ,E

≤ c
1

|E|

∫

E

Φ(f1(x)‖f2‖Φ,E) dx

≤ c
1

|E|

∫

E

Φ(f1(x)) dxΦ(‖f2‖Φ,E)

≤ c
1

|E|

∫

E

Φ(f1(x)) dxΦ
(
c

1

|E|

∫

E

Φ(f2(x)) dx
)

≤ c
1

|E|

∫

E

Φ(f1(x)) dx
1

|E|

∫

E

Φ(2)(f2(x)) dx

≤ c

2∏

i=1

1

|E|

∫

E

Φ(2)(fi(x)) dx,

which is exactly (31).
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c) The case m ≥ 3. By induction, assuming that the result holds for the
integer m−1 ≥ 2, we will prove it for m. Fix functions for which (30) holds:

1 <

m∏

i=1

‖fi‖Φ,E ,

and without loss of generality assume that

‖f1‖Φ,E ≤ ‖f2‖Φ,E ≤ · · · ≤ ‖fm‖Φ,E .

Observe that we must have ‖fm‖Φ,E > 1.
If we suppose that 1 ≤ ‖f1‖Φ,E , then (31) follows directly from Lemma 4:

1 <

m∏

i=1

‖fi‖Φ,E ≤
m∏

i=1

1

|E|

∫

E

Φ(fi(x)) dx

with c = 1 and Φ instead of Φ(2).
Assume now that for some integer k ∈ {1, 2, . . . ,m− 1} we have

‖f1‖Φ,E ≤ ‖f2‖Φ,E ≤ · · · ≤ ‖fk‖Φ,E ≤ 1 ≤ ‖fk+1‖Φ,E ≤ · · · ≤ ‖fm‖Φ,E .

Since

1 <

m∏

i=1

‖fi‖Φ,E = ‖f1‖Φ,E

m∏

i=2

‖fi‖Φ,E ,

we must have
∏m

i=2 ‖fi‖Φ,E > 1. Using the induction hypothesis we have

‖f1‖Φ,E

m∏

i=2

‖fi‖Φ,E ≤ c ‖f1‖Φ,E

m∏

i=2

1

|E|

∫

E

Φ(m−1)(fi(x)) dx

= ‖f1 R‖Φ,E ,

(32)

where R =
∏m

i=2
1
|E|

∫
E
Φ(m−1)(fi(x)) dx. Applying Lemma 4 to the function

f1R we obtain by submultiplicativity and Jensen’s inequality

‖f1R‖Φ,E ≤ c
1

|E|

∫

E

Φ(f1(x)R) dx

≤ c
1

|E|

∫

E

Φ(f1(x)) dxΦ(R)

≤ c
1

|E|

∫

E

Φ(f1(x)) dx
m∏

i=2

Φ
( 1

|E|

∫

E

Φ(m−1)(fi(x)) dx
)

≤ c
1

|E|

∫

E

Φ(f1(x)) dx

m∏

i=2

1

|E|

∫

E

Φ(m)(fi(x)) dx.
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Combining this result with (32) we deduce

m∏

i=1

‖fi‖Φ,E ≤ c

m∏

i=1

1

|E|

∫

E

Φ(m)(fi(x)) dx,

thus proving (31). �
6.2 The main result. The previous lemmas are used in the proof of the
following result due to Grafakos, Liu, Pérez and Torres.

Theorem 7 ([21]). There exists a positive constant C depending only on m
and n such that for all λ > 0,

∣∣{x ∈ Rn :MR(�f)(x) > λm
}∣∣ ≤ C

{ m∏

i=1

∫

Rn

Φ(m)
n

( |fi(x)|
λ

)
dx

}1/m

(33)

for all fi on Rn and for all i = 1, . . . ,m. Furthermore, the theorem is sharp

in the sense that we cannot replace Φ
(m)
n by Φ

(k)
n for k ≤ m− 1.

Proof. By homogeneity, positivity of the operator, and the doubling prop-
erty of Φn, it is enough to prove

∣∣{x ∈ Rn :MR(�f)(x) > 1
}∣∣ ≤ C

{ m∏

j=1

∫

Rn

Φ(m)
n

(
fj(x)

)
dx

}1/m

, (34)

for a constant C independent of the nonnegative functions �f = (f1, . . . , fm).

Let E = {x ∈ Rn : MR(�f)(x) > 1}, then by the continuity property of
the Lebesgue measure we can find a compact set K such that K ⊂ E and

|K| ≤ |E| ≤ 2|K|.

Such a compact set K can be covered with a finite collection of rectangles
{Rj}Nj=1 such that

m∏

i=1

1

|Rj |

∫

Rj

fi(y) dy > 1, j = 1, . . . , N. (35)

We will use the following version of the Córdoba-Fefferman rectangle cov-
ering lemma [10] due to Bagby ([1] Theorem 4.1 (C)): there are dimensional

positive constants δ, c and a subfamily {R̃j}�j=1 of {Rj}Nj=1 satisfying

∣∣∣∣
N⋃

j=1

Rj

∣∣∣∣ ≤ c

∣∣∣∣
�⋃

j=1

R̃j

∣∣∣∣
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and
∫

	
j=1 Rj

exp

(
δ

�∑

j=1

χRj
(x)

) 1
n−1

dx ≤ 2

∣∣∣∣
�⋃

j=1

R̃j

∣∣∣∣.

Setting Ẽ =
⋃�

j=1 R̃j and recalling that Ψn(t) = exp(t
1

n−1 ) − 1 the latter
inequality is

1

|Ẽ|

∫

E

Ψn

(
δ

�∑

j=1

χRj
(x)

)
dx ≤ 1

which is equivalent to
∥∥∥∥

�∑

j=1

χRj

∥∥∥∥
Ψn,E

≤ 1

δ
(36)

by the definition of the norm. Now, since

|E| ≤ 2|K| ≤ C|Ẽ|

we can use (35) and Hölder’s inequality as follows

|Ẽ| =
∣∣∣∣

�⋃

j=1

R̃j

∣∣∣∣

≤
�∑

j=1

|R̃j |

≤
�∑

j=1

( m∏

i=1

∫

Rj

fi(y) dy
) 1

m

≤
( m∏

i=1

�∑

j=1

∫

Rj

fi(y) dy

) 1
m

≤
( m∏

i=1

∫

	
j=1 Rj

�∑

j=1

χRj
(y)fi(y) dy

) 1
m

=

( m∏

i=1

∫

E

�∑

j=1

χRj
(y)fi(y) dy

) 1
m

.
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By this inequality and (29), we deduce

1 ≤
m∏

i=1

1

|Ẽ|

∫

E

�∑

j=1

χRj
(y)fi(y) dy

≤
m∏

i=1

∥∥∥∥
�∑

j=1

χRj

∥∥∥∥
Ψn,E

‖fi‖Φn,E

≤
m∏

i=1

1

δ
‖fi‖Φn,E

=

m∏

i=1

∥∥∥fi
δ

∥∥∥
Φn,E

.

Finally, it is enough to apply Lemma 5 and that Φ
(m)
n is submultiplicative

to conclude the proof of (34).

Finally, we turn to the claimed sharpness that one cannot replace Φ
(m)
n

by Φ
(k)
n for k ≤ m − 1 in (33). In the case m = n = 2, we show that the

estimate (E)∣∣{x ∈ R2 :MR(f, g)(x) > α2
}∣∣

≤ C

{∫

R2

Φ2

( |f(x)|
α

)
dx

∫

R2

Φ2

( |g(x)|
α

)
dx

} 1
2

cannot hold for α > 0 and functions f, g with a constant C independent of
these parameters.

For N = 1, 2, . . . , consider the functions

f = χ[0,1]2 and gN = Nχ[0,1]2

and the parameter α = 1
10 . Then the left-hand side of (E) reduces to

∣∣∣
{
x ∈ R2 :MR(f, gN )(x) >

1

100

}∣∣∣ =
∣∣∣
{
x ∈ R2 :MR(χ[0,1]2)(x) >

1

10
√
N

}∣∣∣

≈
√
N(logN),

where the last estimate is a simple calculation concerning the strong maximal
function. However, the right-hand side of (E) is equal to

C(Φ2(1/α))
1/2(Φ2(N/α))1/2 = C(Φ2(10))

1/2(Φ2(10N))1/2 ≈
√

N logN

and obviously it cannot control the left-hand side of (E) for N large.

For general m, the vector �f = (f1, . . . , fm) with

f1 = f2 = · · · = fm−1 = χ[0,1]2 and fm = Nχ[0,1]2

also provides a counterexample. �
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7. The bilinear Hilbert transform
and the method of rotations

It is a classical result obtained by Calderón and Zygmund [4] using the
method of rotations, that homogeneous linear singular integrals with odd
kernels are always Lp bounded for 1 < p < ∞. We indicate what happens
if the method of rotations is used in the multilinear setting. For an inte-
grable function Ω on S2n−1 with vanishing integral, we consider the bilinear
operator

TΩ(f1, f2)(x)

=

∫∫

R2n

Ω((y1, y2)/|(y1, y2)|)
|(y1, y2)|2n

f1(x− y1)f2(x− y2) dy1dy2.
(37)

Suppose that Ω is an odd function on S2n−1. Using polar coordinates in R2n

we express

TΩ(f1, f2)(x) =

∫

S2n−1

Ω(θ1, θ2)
{∫ +∞

0

f1(x− tθ1)f2(x− tθ2)
dt

t

}
d(θ1, θ2).

Replacing (θ1, θ2) by −(θ1, θ2), changing variables, and using that Ω is odd
we obtain

TΩ(f1, f2)(x) =

∫

S2n−1

Ω(θ1, θ2)
{∫ +∞

0

f1(x+ tθ1)f2(x+ tθ2)
dt

t

}
d(θ1, θ2)

and averaging these identities we deduce that

TΩ(f1, f2)(x) =
1

2

∫

S2n−1

Ω(θ1, θ2)
{∫ +∞

−∞
f1(x− tθ1)f2(x− tθ2)

dt

t

}
d(θ1, θ2).

The method of rotations gives rise to the operator inside the curly brackets
above and one would like to know that this operator is bounded from a
product of two Lebesgue spaces into another Lebesgue space (and preferably)
uniformly bounded in θ1, θ2. Motivated by this calculation, for vectors
u, v ∈ Rn we introduce the family of operators

Hu,v(f1, f2)(x) = p.v.

∫ +∞

−∞
f1(x− tu)f2(x− tv)

dt

t
.

We call this operator the directional bilinear Hilbert transform (in the direc-
tion indicated by the vector (u, v) in R2n). In the special case n = 1, we use
the notation

Hα,β(f, g)(x) = p.v.

∫ +∞

−∞
f(x− αt)g(x− βt)

dt

t
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for the bilinear Hilbert transform defined for functions f, g on the line and
x, α, β ∈ R.

We mention results concerning the boundedness of these operators. The
operator Hα,β was first shown to be bounded by Lacey and Thiele [30],
[31] in the range

1 < p, q ≤ ∞,
2

3
< r <∞,

1

p
+

1

q
=

1

r
. (38)

Uniform Lr bounds (in α, β) for Hα,β were obtained by Grafakos and Li
[20] in the local L2 case, (i.e. the case when 2 < p, q, r′ <∞) and extended
by Li [33] in the hexagonal region

1 < p, q, r <∞,
∣∣∣1
p
− 1

q

∣∣∣ < 1

2
,

∣∣∣1
p
− 1

r′

∣∣∣ < 1

2
,

∣∣∣1
q
− 1

r′

∣∣∣ < 1

2
. (39)

We use an idea similar to that Calderón used to express the first commu-
tator C1 as an average of the bilinear Hilbert transforms as in (2), to obtain
new bounds for a higher dimensional commutator introduced byChrist and
Journé [5]. The n-dimensional commutator is defined as

C(n)1 (f, a)(x) = p.v.

∫

Rn

K(x− y)

∫ 1

0

f(y)a((1− t)x+ ty) dt dy, (40)

where K(x) is a Calderón-Zygmund kernel in dimension n and f , a are

functions on Rn. Christ and Journé [5] proved that C(n)1 is bounded from
Lp(Rn) × L∞(Rn) to Lp(Rn) for 1 < p < ∞. Here we discuss some off-
diagonal bounds Lp ×Lq → Lr, whenever 1/p+ 1/q = 1/r and 1 < p, q, r <
∞.

As the operator C(n)1 (f, a) is n-dimensional, we will need to “transfer”
Hα,β in higher dimensions. To achieve this we use rotations. We have the
following lemma:

Lemma 6. Suppose that K is kernel in R2n (which may be a distribution)
and let TK be the bilinear singular integral operator associated with K

TK(f, g)(x) =

∫∫
K(x− y, x− z)f(y)g(z) dy dz.

Assume that TK is bounded from Lp(Rn) × Lq(Rn) → Lr(Rn) with norm
‖T‖ when 1/p + 1/q = 1/r. Let M be a n × n invertible matrix. Define a
2n× 2n invertible matrix

M̃ =

(
M O
O M

)
,
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where O is the zero n× n matrix. Then the operator T
K◦M is also bounded

from Lp(Rn)× Lq(Rn)→ Lr(Rn) with norm at most ‖T‖.
Proof. To prove the lemma we note that

T
K◦M (f, g)(x) = TK(f ◦M−1, g ◦M−1)(Mx)

from which it follows that

‖T
K◦M (f, g)‖Lr = (detM)−1/r‖TK(f ◦M−1, g ◦M−1)‖Lr

≤ (detM)−1/r‖T‖ ‖f ◦M−1‖Lp‖g ◦M−1‖Lq

= ‖T‖(detM)−1/r‖T‖ ‖f‖Lp(detM)1/p‖g‖Lq (detM)1/p

= ‖T‖ ‖f‖Lp‖g‖Lq .

�
We apply Lemma 6 to the bilinear Hilbert transform. Let e1 = (1, 0, . . . , 0)

be the standard coordinate vector on Rn. We begin with the observation
that the operator Hαe1,βe1(f, g) defined for functions f, g on Rn is bounded
from Lp(Rn) × Lq(Rn) to Lr(Rn) for the same range of indices as the bi-
linear Hilbert transform. Indeed, the operator Hαe1,βe1 can be viewed as
the classical one-dimensional bilinear Hilbert transform in the coordinate x1

followed by the identity operator in the remaining coordinates x2, . . . , xn,
where x = (x1, . . . , xn). By Lemma 6, for an invertible n× n matrix M and
x ∈ Rn we have

Hαe1,βe1(f ◦M−1, g ◦M−1)(Mx)

= p.v.

∫ +∞

−∞
f(x− αtM−1e1)g(x− βtM−1e1)

dt

t

maps Lp(Rn)×Lq(Rn)→ Lr(Rn) with norm the same as the one-dimensional
bilinear Hilbert transform Hα,β whenever the indices p, q, r satisfy (38). If
M is a rotation (i.e. an orthogonal matrix), then M−1e1 can be any unit
vector in Sn−1. We conclude that the family of operators

Hαθ,βθ(f, g)(x) = p.v.

∫ +∞

−∞
f(x− αtθ)g(x− βtθ)

dt

t
, x ∈ Rn

is bounded from Lp(Rn) × Lq(Rn) to Lr(Rn) with a bound independent
of θ ∈ Sn−1 whenever the indices p, q, r satisfy (38). This bound is also
independent of α, β whenever the indices p, q, r satisfy (39).
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It remains to express the higher dimensional commutator C(n)1 in terms
of the operators Hαθ,βθ. Here we make the assumption that K is an odd
homogeneous singular integral operator on Rn, such as a Riesz transform.
For a fixed x ∈ Rn we apply polar coordinates centered at x by writing
y = x−rθ. Then we can express the higher dimensional commutator in (40)
as ∫

Sn−1

∫ ∞

0

K(θ)

rn

∫ 1

0

f(x− rθ)a(x− trθ) dt rn−1 dr dθ. (41)

Changing variables from θ → −θ, r → −r and using that K(θ) is odd we
write this expression as

∫

Sn−1

∫ 0

−∞
K(θ)

∫ 1

0

f(x− rθ)a(x− trθ) dt
dr

r
dθ. (42)

Averaging the (41) and (42) we arrive at the identity

C(n)1 (f, a)(x) =
1

2

∫

Sn−1

K(θ)

∫ 1

0

Hθ,tθ(f, a)(x) dt dθ.

This identity implies the boundedness of C(n)1 from Lp(Rn) × Lq(Rn) to
Lr(Rn) whenever the indices p, q, r satisfy (39). Interpolation with the
known Lp × L∞ → Lp bounds yield the following result due to Duong,
Grafakos, and Yan [15]:

Theorem 8 ([15]). Let K be an odd homogeneous singular integral on Rn.

Then the n-dimensional commutator C(n)1 associated with K maps Lp(Rn)×
Lq(Rn) → Lr(Rn) whenever 1/p + 1/q = 1/r and (1/p, 1/q, 1/r) lies in the
open convex hull of the pentagon with vertices (0, 1/2, 1/2), (0, 0, 0), (1, 0, 1),
(1/2, 1/2, 1), and (1/6, 4/6, 5/6).

Finally, we briefly discuss the situation in which the function Ω in (37) is
even. The following result was recently obtained by Diestel, Grafakos,
Honźık, Si and Terwilleger [12]:

Theorem 9. Let Ω ∈ L logL(S1) be an even function with mean zero. Then
the bilinear operator TΩ defined in (37) is bounded from Lp(R) × Lq(R) →
Lr(R) for all 2 < p, q, r′ <∞ satisfying 1/p+ 1/q = 1/r.

The proof of this result also relies on expressing the operator TΩ as an
average of the operators Hα,β . The details are omitted.
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8. Closing Remarks

The topics discussed in these lectures by no means exhaust the full rich-
ness and broadness of multilinear harmonic analysis. However, they provide
representative results of current research interests in this rapidly developing
subject. I hope that investigators will find inspiration in these results to
pursue further research in the area. The author would also like to thank
the organizers of School on Nonlinear Analysis, Function Spaces and Appli-
cations 9 for their invitation to deliver these lectures and for providing an
inspiring environment for mathematical interaction and research during the
meeting.
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