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CALDERÓN-ZYGMUND THEORY

WITH NON DOUBLING MEASURES

Xavier Tolsa

Abstract. In this notes we review and prove some results on Calderón-
Zygmund theory in Rd for non doubling measures. To study the behavior
of n-dimensional Calderón-Zygmund operators in Rd, instead of the usual
doubling condition for a measure μ in Rd, we ask the growth condition
μ(B(x, r)) ≤ c rn for all x ∈ Rd, r > 0. Some of the results that we
review are the following: the Calderón-Zygmund decomposition, the weak
(1, 1) boundedness of Calderón-Zygmund operators, Cotlar’s inequality, the
T (1) theorem, and the definitions of BMO and Hardy spaces. We also de-
scribe the relationship between the Cauchy transform and Menger curvature
and show its applications to the study of analytic capacity and the so called
Painlevé problem.

1. Introduction

In these lecture notes we explain some results on Calderón-Zygmund theory
with non doubling measures (also known as non homogeneous Calderón-
Zygmund theory) in Rd. We also show the application of these results to the
so called Painlevé problem.

In recent years it was shown that many results on Calderón-Zygmund
theory remain valid if one does not assume that the underlying measure of
the space is doubling. Recall that a Borel measure μ on Rd is said to be
doubling if there exists some constant C > 0 such that

μ(B(x, 2r)) ≤ Cμ(B(x, r)) for all x ∈ supp(μ), r > 0.
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218 XAVIER TOLSA

One of the main motivations for extending the classical theory to the non
doubling context was the solution of several questions related to analytic ca-
pacity, like Vitushkin’s conjecture [Dd4] or Painlevé’s problem [To8]. Other
applications of non homogeneous Calderón-Zygmund theory have to do with
geometric measure theory and quasiconformal mappings [LSU], [ACTUV].

To study n-dimensional Calderón-Zygmund operators (CZO’s) in Rd, with
0 < n ≤ d, we will consider measures μ satisfying the growth condition of
degree n

μ(B(x, r)) ≤ C0r
n for all x ∈ Rd, r > 0 (1)

(when n = 1, we say that μ has linear growth). Let us remark that this is
a quite natural condition, because it is necessary for the L2(μ) boundedness
of any CZO whose kernel k(x, y) satisfies |k(x, y)| ≈ C|x− y|−n.

One of the main difficulties that arises when one deals with a non doubling
measure μ is due to the fact that the non centered maximal Hardy-Littlewood
operator

Mnc
μ f(x) := sup

{
1

μ(B)

∫

B

|f | dμ : B closed ball, x ∈ B

}

may fail to be of weak type (1, 1) (the superindex “nc” stands for non cen-
tered). Sometimes the centered version of the operator, that is

Mμf(x) = sup
r>0

1

μ(B(x, r))

∫

B(x,r)

|f | dμ,

is a good substitute of Mnc
μ f , because using Besicovitch’s covering theorem

one can show that Mμ is bounded from L1(μ) into L1,∞(μ), and in Lp(μ),
for 1 < p ≤ ∞. However, one cannot always use the centered maximal
Hardy-Littlewood operator instead of the non centered one. In these cases
other arguments are required.

In these lecture notes, we will focus our attention on some basic results of
Calderón-Zygmund theory: the weak (1, 1) boundedness of CZO’s which are
bounded in L2(μ), using a Calderón-Zygmund type decomposition adapted
to the non doubling context; Cotlar’s inequality; BMO type spaces; and the
T (1) and T (b) theorems. We will give the detailed proofs of the Calderón-
Zygmund type decomposition in Section 3, the weak (1, 1) boundedness of
CZO’s in Section 4, and Cotlar’s inequality in Section 5. On the other hand,
Section 6, which deals with the T (1) theorem, BMO, and H1, is purely ex-
pository. The Cauchy kernel is a very important Calderón-Zygmund kernel,
because of its central role in complex analysis. It is also a special kernel
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CALDERÓN-ZYGMUND THEORY 219

due to its relationship with Menger curvature, discovered by Melnikov. In
Section 7 we explain in detail this relationship, and we give a (new) short
prove of the T (1) theorem for the particular case of the Cauchy transform,
using a good λ inequality and the connection with Menger curvature. Sec-
tion 8 consists of a brief introduction to analytic capacity, where we explain
the connection between this notion and the weak (1, 1) estimates for Cauchy
transform. Finally, in Section 9 we show how the results obtained previously
are applied to study the Painlevé problem and to prove the semiadditivity
of analytic capacity. In particular, we give a detailed proof of the semiad-
ditivity of the capacity γ+ and its characterization in terms of curvature.
However, we do not prove the comparability between the analytic capacity
γ and the capacity γ+. The detailed arguments would lead us too far, out
from the scope of these lecture notes.

These notes are not intended to be a survey neither on Calderón-Zygmund
theory with non doubling measures nor on the Painlevé problem. We just
only describe in some detail, and sometimes prove, some of the results that
are important, in our opinion, in connection with Calderón-Zygmund theory
with non doubling measures and its applications to the Painlevé problem.
Moreover we will concentrate our attention on basic results that can be
explained in a rather short minicourse. For this reason, for the sake of
simplicity, we will only touch quite superficially some results such as the
important T (b) type theorems ofNazarov, Treil andVolberg in [NTV3],
[NTV4] and [NTV5].

Let us remark that some parts of these lecture notes follow quite closely
some previous surveys such as [To12] and [To10]. However, the present notes
contain more information and details, such as a somewhat new proof of the
T (1) theorem for the Cauchy transform in Section 7.

2. Preliminaries

An open ball centered at x with radius r is denoted by B(x, r), and a closed
ball by B̄(x, r). By a cube Q we mean a closed cube with sides parallel to
the axes. We denote its side length by �(Q) and its center by xQ.

A Radon measure μ on Rd has growth of degree n (or is of degree n) if
there exists some constant C0 such that μ(B(x, r)) ≤ C0r

n for all x ∈ Rd,
r > 0. When n = 1, we say that μ has linear growth. If there exists some
constant C such that

C−1rn ≤ μ(B(x, r)) ≤ Crn for all x ∈ supp(μ), 0 < r ≤ diam(supp(μ)),

then we say that μ is n-dimensional AD-regular.
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220 XAVIER TOLSA

The space of finite complex Radon measures on Rd is denoted by M(Rd).
This is a Banach space with the norm of the total variation: ‖μ‖ = |μ|(Rd).

We say that k(·, ·) : Rd × Rd \ {(x, y) ∈ Rd × Rd : x = y} → C is an
n-dimensional Calderón-Zygmund kernel if there exist constants C > 0 and
η, with 0 < η ≤ 1, such that the following inequalities hold for all x, y ∈ Rd,
x 	= y:

|k(x, y)| ≤ C

|x− y|n , and

|k(x, y)−k(x′, y)|+ |k(y, x)−k(y, x′)| ≤ C|x−x′|η
|x−y|n+η

if |x−x′|≤|x−y|/2.
(2)

Given a positive or complex Radon measure ν on Rd, we define

Tν(x) :=

∫
k(x, y) dν(y), x ∈ Rd \ supp(ν). (3)

We say that T is an n-dimensional Calderón-Zygmund operator (CZO) with
kernel k(·, ·). The integral in the definition may not be absolutely conver-
gent if x ∈ supp(μ). For this reason, we consider the following ε-truncated
operators Tε, ε > 0:

Tεν(x) :=

∫

|x−y|>ε

k(x, y) dν(y), x ∈ Rd.

Observe that now the integral on the right-hand side converges absolutely
if, for instance, |ν|(Rd) <∞.

Given a fixed positive Radon measure μ on Rd and f ∈ L1
loc(μ), we denote

Tμf(x) := T (f dμ)(x), x ∈ Rd \ supp(f dμ),

and
Tμ,εf(x) := Tε(f dμ)(x).

The last definition makes sense for all x ∈ Rd if, for example, f ∈ L1(μ).
We say that Tμ is bounded on L2(μ) if the operators Tμ,ε are bounded on
L2(μ) uniformly on ε > 0. Analogously, with respect to the boundedness
from L1(μ) into L1,∞(μ). We also say that T is bounded from M(Rd) into
L1,∞(μ) if there exists some constant C such that for all ν ∈M(Rd) and all
λ > 0,

μ{x ∈ Rd : |Tεν| > λ} ≤ C‖ν‖
λ

uniformly on ε > 0.
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CALDERÓN-ZYGMUND THEORY 221

The Cauchy transform is the CZO on C originated by the kernel

k(x, y) :=
1

y − x
, x, y ∈ C.

It is denoted by C. That is to say,

Cμ(x) :=
∫

1

y − x
dμ(y), x ∈ C \ supp(μ).

As usual, in the paper the letter ‘C’ stands for an absolute constant which
may change its value at different occurrences. On the other hand, constants
with subscripts, such as C1, retain its value at different occurrences. The
notation A � B means that there is a positive absolute constant C such that
A ≤ CB. Also, A ≈ B is equivalent to A � B � A.

3. Calderón-Zygmund decomposition

3.1. Doubling cubes. Given α > 1 and β > αn, we say that a cube Q is
(α, β)-doubling if μ(αQ) ≤ βμ(Q), where αQ is the cube concentric with Q
with side length α�(Q). For definiteness, if α and β are not specified, by a
doubling cube we mean a (2, 2d+1)-doubling cube.

Because μ satisfies the growth condition (1), there are a lot of “big”
doubling cubes. To be precise, given any point x ∈ supp(μ) and c > 0, there
exists some (α, β)-doubling cube Q centered at x with l(Q) ≥ c. This follows
easily from (1) and the fact that β > αn. Indeed, if there are no doubling
cubes centered at x with l(Q) ≥ c, then μ(αmQ) > βmμ(Q) for each m, and
letting m→∞ one sees that (1) cannot hold.

Next lemma states that there are a lot of “small” doubling cubes too:

Lemma 1. Let β > αd. If μ is a Radon measure in Rd, then for μ-a.e.
x ∈ Rd there exists a sequence of (α, β)-doubling cubes {Qk}k centered at x
with �(Qk)→ 0 as k →∞.

Notice that the statement of the lemma is valid for any Radon measure
on Rd. In particular, it is not necessary to assume the growth condition (1).

Proof. Let Z ⊂ Rd be the set of points x such that there does not exist
a sequence of (α, β)-doubling cubes {Qk}k≥0 centered at x with side length
decreasing to 0; and let Zj ⊂ Rd be the set of points x such that there
does not exist any (α, β)-doubling cube Q centered at x with �(Q) ≤ 2−j .
Clearly, Z =

⋃
j≥0 Zj . Thus, proving the lemma is equivalent to showing

that μ(Zj) = 0 for every j ≥ 0.
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222 XAVIER TOLSA

Let Q0 be a fixed cube with side length 2−j and let k ≥ 1 be some integer.
For each z ∈ Q0 ∩ Zj , let Qz be a cube centered at z with side length
α−k�(Q0). Since the cubes α

hQz are not (α, β)-doubling for h = 0, . . . , k−1
and αkQz ⊂ 2Q0, we have

μ(Qz) ≤ β−1μ(αQz) ≤ · · · ≤ β−kμ(αkQz) ≤ β−kμ(2Q0). (4)

By the Besicovitch theorem, there exists a subfamily {zm} ⊂ Q0 ∩ Zj

such that Q0 ∩ Zj ⊂
⋃

m Qzm and moreover
∑

m χQzm
≤ Cd. This is a

finite family and the number N of points zm can be easily bounded above
as follows: if L stands for the Lebesgue measure on Rd,

N(α−k�(Q0))
d =

N∑

m=1

L(Qzm) ≤ CdL(2Q0) = Cd(2�(Q0))
d.

Thus,
N ≤ Cd2

dαkd.

As a consequence, since the family {Qzm}1≤m≤N covers Q0 ∩ Zj , by (4),

μ(Q0 ∩ Zj) ≤
N∑

m=1

μ(Qz) ≤ Nβ−kμ(2Q0) ≤ Cd2
dαkdβ−kμ(2Q0).

Since β > αd, the right-hand side tends to 0 as k → ∞. Therefore μ(Q0 ∩
Zj) = 0, and since the cube Q0 is arbitrary, we are done. �
Remark 2. Given f ∈ L1

loc(μ), by the Lebesgue differentiation theorem,
for μ-almost all x ∈ Rd, every sequence of (2, 2d+1)-doubling cubes {Qk}k
centered at x with �(Qk)→ 0 satisfies

lim
k→∞

1

μ(Qk)

∫

Qk

f dμ = f(x). (5)

By the preceding lemma, for μ-a.e. x ∈ Rd, there exists a sequence of
(2, 2d+1)-doubling cubes {Qk}k with �(Qk) → 0 satisfying (5). In partic-
ular, for any fixed λ > 0, for μ-almost all x ∈ Rd such that |f(x)| > λ, there
exists a sequence of cubes {Qk}k centered at x with �(Qk)→ 0 such that

lim sup
k→∞

1

μ(2Qk)

∫

Qk

|f | dμ >
λ

2d+1
.
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CALDERÓN-ZYGMUND THEORY 223

3.2. Calderón-Zygmund decomposition.

Lemma 3 (Calderón-Zygmund decomposition, [To3]). Assume that μ sat-
isfies (1). For any f ∈ L1(μ) and any λ > 0 (with λ > 2d+1‖f‖L1(μ)/‖μ‖ if
‖μ‖ <∞) we have:

(a) There exists a family of almost disjoint cubes {Qi}i (i.e.,
∑

i χQi
≤C)

such that
1

μ(2Qi)

∫

Qi

|f | dμ >
λ

2d+1
, (6)

1

μ(2ηQi)

∫

ηQi

|f | dμ ≤ λ

2d+1
for η > 2, (7)

|f | ≤ λ a.e. μ on Rd \
⋃

i

Qi. (8)

(b) For each i, let Ri be a (6, 6n+1)-doubling cube concentric with Qi,
with l(Ri) > 4l(Qi) and denote wi =

χQi

k χQk
. Then, there exists a

family of functions ϕi with supp(ϕi) ⊂ Ri and with constant sign
satisfying ∫

ϕi dμ =

∫

Qi

fwi dμ, (9)

∑

i

|ϕi| ≤ Bλ (10)

(where B is some constant), and

‖ϕi‖L∞(μ)μ(Ri) ≤ C

∫

Qi

|f | dμ. (11)

Proof. (a) Recall that, by Remark 2, for μ-almost all x ∈ Rd such that
|f(x)| > λ, there exists some cube Qx satisfying

1

μ(2Qx)

∫

Qx

|f | dμ >
λ

2d+1
(12)

and such that if Q′x is centered at x with l(Q′x) > 2l(Qx), then

1

μ(2Q′x)

∫

Q′x

|f | dμ ≤ λ

2d+1
.
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224 XAVIER TOLSA

Now we can apply Besicovitch’s covering theorem (see Remark 4 below) to
get an almost disjoint subfamily of cubes {Qi}i ⊂ {Qx}x satisfying (6), (7)
and (8).

(b) Assume first that the family of cubes {Qi}i is finite. Then we may
suppose that this family of cubes is ordered in such a way that the sizes of
the cubes Ri are non decreasing (i.e. l(Ri+1) ≥ l(Ri)). The functions ϕi that
we will construct will be of the form ϕi = αiχAi

, with αi ∈ R and Ai ⊂ Ri.
We set A1 = R1 and ϕ1 = α1χR1

, where the constant α1 is chosen so that∫
Q1

fw1 dμ =
∫
ϕ1 dμ.

Suppose that ϕ1, . . . , ϕk−1 have been constructed, satisfy (9) and

k−1∑

i=1

|ϕi| ≤ Bλ,

where B is some constant which will be fixed below.
LetRs1 , . . . , Rsm be the subfamily ofR1, . . . , Rk−1 such thatRsj∩Rk 	= ∅.

As l(Rsj ) ≤ l(Rk) (because of the non decreasing sizes of Ri), we have
Rsj ⊂ 3Rk. Taking into account that for i = 1, . . . , k − 1,

∫
|ϕi| dμ ≤

∫

Qi

|f | dμ

by (9), and using that Rk is (6, 6n+1)-doubling and (7), we get

∑

j

∫
|ϕsj | dμ ≤

∑

j

∫

Qsj

|f | dμ

≤ C

∫

3Rk

|f | dμ ≤ Cλμ(6Rk) ≤ C2λμ(Rk).

Therefore,

μ
{∑

j |ϕsj | > 2C2λ
}
≤ μ(Rk)

2
.

So we set
Ak = Rk ∩

{∑
j |ϕsj | ≤ 2C2λ

}
,

and then μ(Ak) ≥ μ(Rk)/2.
The constant αk is chosen so that for ϕk = αkχAk

we have
∫
ϕk dμ =∫

Qk
fwk dμ. Then we obtain

|αk| ≤
1

μ(Ak)

∫

Qk

|f | dμ ≤ 2

μ(Rk)

∫

1
2Rk

|f | dμ ≤ C3λ
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CALDERÓN-ZYGMUND THEORY 225

(this calculation also applies to k = 1). Thus,

|ϕk|+
∑

j

|ϕsj | ≤ (2C2 + C3)λ.

If we choose B = 2C2 + C3, (10) follows.
Now it is easy to check that (11) also holds. Indeed we have

‖ϕi‖L∞(μ)μ(Ri) ≤ C|αi|μ(Ai) = C
∣∣∣
∫

Qi

fwi dμ
∣∣∣ ≤ C

∫

Qi

|f | dμ.

Suppose now that the collection of cubes {Qi}i is not finite. For each
fixed N we consider the family of cubes {Qi}1≤i≤N . Then, as above, we
construct functions ϕN

1 , . . . , ϕN
N with supp(ϕN

i ) ⊂ Ri satisfying

∫
ϕN
i dμ =

∫

Qi

fwi dμ,

N∑

i=1

|ϕN
i | ≤ Bλ

and

‖ϕN
i ‖L∞(μ)μ(Ri) ≤ C

∫

Qi

|f | dμ.

Notice that the sign of ϕN
i equals the sign of

∫
fwi dμ and so it does not

depend on N .
Then there is a subsequence {ϕk

1}k∈I1 which is convergent in the weak ∗
topology of L∞(μ) to some function ϕ1 ∈ L∞(μ). Now we can consider a
subsequence {ϕk

2}k∈I2 with I2 ⊂ I1 which is also convergent in the weak ∗
topology of L∞(μ) to some function ϕ2 ∈ L∞(μ). In general, for each j
we consider a subsequence {ϕk

j }k∈Ij with Ij ⊂ Ij−1 that converges in the
weak ∗ topology of L∞(μ) to some function ϕj ∈ L∞(μ). It is easily checked
that the functions ϕj satisfy the required properties. �
Remark 4. Recall that Besicovitch’s covering theorem asserts that if Ω ⊂
Rd is a bounded set and for each x ∈ Ω there is a cube Qx centered at x, then
there exists a family of cubes {Qxi

}i with finite overlap, that is
∑

i χQi
≤ C,

which covers Ω.
In (a) of the preceeding proof we have applied Besicovitch’s covering the-

orem to Ω = {x : |f(x)| > λ}. However this set may be unbounded, and the
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226 XAVIER TOLSA

boundedness property is a necessary assumption in Besicovitch’s theorem
(example: take Ω = [0,+∞) ⊂ R and consider Qx = [0, 2x] for all x ∈ Ω).

We can solve this problem using different arguments. Let us sketch a
possible solution to this little trouble. Consider a cube Q0 centered at 0 big
enough so that 2d+1‖f‖L1(μ)/μ(Q0) < λ. So for any cube Q containing Q0

we will have

2d+1‖f‖L1(μ)/μ(Q) < λ. (13)

For m ≥ 0 we set Qm :=
(
5
4

)m
Q0. For each m we can apply Besicovitch’s

covering theorem to the annulus Qm \Qm−1 (we take Q−1 := ∅), with cubes
Qx centered at x ∈ supp(μ) ∩ (Qm \ Qm−1) as in (a) of the proof above,
satisfying (12).

In this argument we have to be careful with the overlapping among the
cubes belonging to coverings of different annuli. Indeed, there exist some
fixed constants N andN ′ such that ifm ≥ N ′, for x ∈ supp(μ)∩(Qm\Qm−1)
we have

Qx ⊂ Qm+N \Qm−N . (14)

Otherwise, it is easily seen that �(Qx) > 3
4�(Qm), choosing N big enough.

It follows that Q0 ⊂ 2Qx since �(Q0)� �(Qm) for N ′ big enough too. This
cannot happen because then 2Qx satisfies (13), which contradicts (12).

Because of (14), the covering made up of squares belonging to the Besi-
covitch coverings of different annuli Qm \ Qm−1, m ≥ 0, will have finite
overlap.

Notice that in this argument, it is essential the fact that in (12) we are
not dividing by μ(Qx), but by μ(2Qx).

In the next lemma we prove a very useful estimate involving non doubling
squares which relies on the idea that the mass μ which lives on non doubling
squares must be small.

Lemma 5. If Q ⊂ R are concentric cubes such that there are no (α, β)-
doubling cubes (with β > αn) of the form αkQ, k ≥ 0, with Q ⊂ αkQ ⊂ R,
and xQ stands for the center of Q, then

∫

R\Q

1

|x− xQ|n
dμ(x) ≤ C1,

where C1 depends only on α, β, n, d and C0.

Proof. Let N be the least integer such that R ⊂ αNQ. For 0 ≤ k ≤ N we
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CALDERÓN-ZYGMUND THEORY 227

have μ(αkQ) ≤ μ(αNQ)/βN−k. Then,

∫

R\Q

1

|x− xQ|n
dμ(x) ≤

N∑

k=1

∫

αkQ\αk−1Q

1

|x− xQ|n
dμ(x)

≤ C
N∑

k=1

μ(αkQ)

�(αkQ)n

≤ C

N∑

k=1

βk−Nμ(αNQ)

α(k−N)n�(αNQ)n

≤ C
μ(αNQ)

�(αNQ)n

∞∑

j=0

(αn

β

)j

≤ C.

�

4. Weak (1,1) boundedness of Calderón-Zygmund operators

Theorem 6. Let μ be a Radon measure on Rd satisfying the growth con-
dition (1). If T is an n-dimensional Calderón-Zygmund operator which is
bounded in L2(μ), then it is also bounded from M(Rd) into L1,∞(μ). In
particular, Tμ is of weak type (1, 1).

The preceding result was first obtained in [NTV2], although a previous
proof valid only for the Cauchy transform appeared in [To1]. The proof
below is from [To4].

Proof. We will show that Tμ is of weak type (1, 1). By similar arguments,
one gets that T is bounded from M(Rd) into L1,∞(μ). In this case, one has
to use a version of the Calderón-Zygmund decomposition in the lemma above
suitable for complex measures (see the end of the proof for more details).

Let f ∈ L1(μ) and λ > 0. It is straightforward to check that we may
assume λ > 2d+1‖f‖L1(μ)/‖μ‖. Let {Qi}i be the almost disjoint family of

cubes of Lemma 3. Let Ri be the smallest (6, 6n+1)-doubling cube of the
form 6kQi, k ≥ 1. Then we can write f = g + b, with

g = fχRd\ i Qi
+
∑

i

ϕi

and
b =

∑

i

bi :=
∑

i

(wif − ϕi),
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where the functions ϕi satisfy (9), (10) (11) and wi =
χQi

k χQk
.

By (6) we have

μ
(⋃

i

2Qi

)
≤ C

λ

∑

i

∫

Qi

|f | dμ ≤ C

λ

∫
|f | dμ.

So we have to show that

μ
{
x ∈ Rd \

⋃

i

2Qi : |Tμ,εf(x)| > λ
}
≤ C

λ

∫
|f | dμ. (15)

Since
∫
bi dμ = 0, supp(bi) ⊂ Ri and ‖bi‖L1(μ) ≤ C

∫
Qi
|f | dμ, using con-

dition 2 in the definition of a Calderón-Zygmund kernel (which implies
Hörmander’s condition), we get

∫

Rd\2Ri

|Tμ,εbi| dμ ≤ C

∫
|bi| dμ ≤ C

∫

Qi

|f | dμ.

Let us see that ∫

2Ri\2Qi

|Tμ,εbi| dμ ≤ C

∫

Qi

|f | dμ, (16)

too. On the one hand, by (11) and using the L2(μ) boundedness of T and
that Ri is (6, 6

n+1)-doubling we get

∫

2Ri

|Tμ,εϕi| dμ ≤
(∫

2Ri

|Tμ,εϕi|2 dμ
)1/2

μ(2Ri)
1/2

≤ C

(∫
|ϕi|2 dμ

)1/2

μ(Ri)
1/2

≤ C

∫

Qi

|f | dμ.

On the other hand, since supp(wif) ⊂ Qi, if x ∈ 2Ri \ 2Qi, then

|Tμ,ε(ωif)(x)| ≤ C

∫

Qi

|f |
|x− xQi

|n dμ,

and so
∫

2Ri\2Qi

|Tμ,ε(wif)| dμ ≤ C

∫

2Ri\2Qi

1

|x− xQi
|n dμ(x)

∫

Qi

|f | dμ.
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By Lemma 5, the first integral on the right-hand side is bounded by some
constant independent of Qi and Ri, since there are no (6, 6n+1)-doubling
cubes of the form 6kQi between 6Qi and Ri. Therefore, (16) holds.

Then we have

∫

Rd\ k 2Qk

|Tμ,εb| dμ ≤
∑

i

∫

Rd\ k 2Qk

|Tμ,εbi| dμ

≤ C
∑

i

∫

Qi

|f | dμ ≤ C

∫
|f | dμ.

Therefore,

μ
{
x ∈ Rd \

⋃

i

2Qi : |Tμ,εb(x)| > λ
}
≤ C

λ

∫
|f | dμ. (17)

The corresponding integral for the function g is easier to estimate. Taking
into account that |g| ≤ Cλ, we get

μ
{
x ∈ Rd \

⋃

i

2Qi : |Tμ,εg(x)| > λ
}
≤ C

λ2

∫
|g|2 dμ ≤ C

λ

∫
|g| dμ. (18)

Also, we have

∫
|g| dμ ≤

∫

Rd\ i Qi

|f | dμ+
∑

i

∫
|ϕi| dμ

≤
∫
|f | dμ+

∑

i

∫

Qi

|f | dμ

≤ C

∫
|f | dμ.

Now, by (17) and (18) we get (15).
If we want to show that T is bounded from M(Rd) into L1,∞(μ), then in

Lemma 3 and in the arguments above f dμ must be substituted by dν, with
ν ∈ M(Rd), and |f | dμ by d|ν|. Also, condition (8) of Lemma 3 should be
stated as “on Rd \⋃i Qi, ν is absolutely continuous with respect to μ, that
is ν = f dν, and moreover |f(x)| ≤ λ a.e. (μ) x ∈ Rd \⋃i Qi”. With other
minor changes, the arguments and estimates above work in this situation
too. �
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5. Cotlar’s inequality

This inequality involves some maximal operators which we proceed to define.
The centered maximal Hardy-Littlewood operator applied to ν ∈ M(Rd) is,
as usual,

Mμν(x) = sup
r>0

1

μ(B(x, r))

∫

B(x,r)

d|ν|.

A useful variant of this operator is the following:

M̃μν(x)

= sup
{ 1

μ(B(x, r))

∫

B(x,r)

d|ν| : r > 0, μ(B(x, 5r)) ≤ 5d+1μ(B(x, r))
}
.

The non centered version of M̃μ is

Nμν(x) = sup
{ 1

μ(B)

∫

B

d|ν| : B closed ball, x ∈ B, μ(5B) ≤ 5d+1μ(B)
}
.

For f ∈ L1
loc(μ) we set Mμf ≡ Mμ(fdμ), M̃μf ≡ M̃μ(fdμ), and Nμf ≡

Nμ(fdμ). The operatorsMμ and M̃μ are bounded in Lp(μ), and fromM(Rd)
into L1,∞(μ). This fact can be proved using Besicovitch’s covering theorem

for Mμ and M̃μ, and Vitali’s covering theorem with balls B(x, 5r) in the case
of Nμ.

If T is a CZO, the maximal operator T∗ is

T∗ν(x) = sup
ε>0

|Tεν(x)| for ν ∈M(Rd), x ∈ Rd,

and the δ-truncated maximal operator T∗,δ is

T∗,δν(x) = sup
ε>δ

|Tεν(x)| for ν ∈M(Rd), x ∈ Rd.

We also set Tμ,∗f ≡ T∗(f dμ) and Tμ,∗,δf ≡ T∗,δ(f dμ) for f ∈ L1
loc(μ).

Theorem 7 (Cotlar’s inequality). Let μ be a positive Radon measure on Rd

with growth of degree n. If the T is an n-dimensional CZO bounded from
M(Rd) into L1,∞(μ), then for 0 < s ≤ 1 we have

T∗,δν(x) ≤ Cs

((
M̃μ(|Tδν|s)(x)

)1/s
+Mμν(x)

)
for ν ∈M(Rd), x ∈ Rd, (19)
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where Cs depends only on the constant C0 in (1), s, n, d, and the norm of
the Tδ from M(Rd) into L1,∞(μ).

If we assume that that there exists Tν defined in a reasonable sense (for
instance, as a principal value, or as a some kind of weak limit), then we get
the more classical version of Cotlar’s inequality

T∗ν(x) ≤ Cs

((
M̃μ(|Tν|s)(x)

)1/s
+Mμν(x)

)
.

Cotlar’s inequality with non doubling measures is due toNazarov, Treil
and Volberg [NTV2], although not in the form stated above, which is from
[To2].

To prove Theorem 7 we will need some lemmas. The first one is Kolmo-
gorov’s inequality whose proof can be found in [Ma2, p. 299], for example.

Lemma 8. Let μ be a positive Radon measure on Rd and f : Rd → C a
Borel function in L1,∞(μ). Then for 0 < s < 1 and for any μ-measurable
set A ⊂ Rd with μ(A) <∞,

(
1

μ(A)

∫

A

|f |sdμ
)1/s

≤ (1− s)−1/s ‖f‖L1,∞(μ)

μ(A)
.

Also, we will need the following result (notice the resemblances with
Lemma 5).

Lemma 9. Let 0 < r < R, with R = 5Nr, and take β > 5n. If

βμ(B(x, 5kr)) ≤ μ(B(x, 5k+1r)) for k = 1, . . . , N − 1,

then we have

|TRν(x)− Trν(x)| ≤
μ(B(x,R))

Rn
Mμν(x),

for each ν ∈M(Rd).

Proof. We set Bk = B(x, 5kr). Then,

|TRν(x)− Trν(x)| =
∣∣∣
∫

r<|y−x|≤5Nr

k(x, y) dν(y)
∣∣∣

�
N∑

k=1

∫

5k−1r<|y−x|≤5kr

1

|y − x|n d|ν|(y)

�
N∑

k=1

|ν|(Bk)

(5kr)n
�

N∑

k=1

μ(Bk)

(5kr)n
Mμν(x).

(20)
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We have

μ(B1) ≤
1

β
μ(B2) ≤ · · · ≤

1

βN−1
μ(BN ).

Thus
μ(B1)

(5r)n
≤ 5n

β

μ(B2)

(52r)n
≤ · · · ≤

(5n
β

)N−1 μ(BN )

(5Nr)n
.

Since 5n

β < 1, we get

N∑

k=1

μ(Bk)

(5kr)n
≤ C

μ(BN )

(5Nr)n
,

and the lemma follows from (20). �

Combining Lemma 9 with the usual arguments we are going to prove
Cotlar’s inequality (19).

Proof of Theorem 7. Let ε > δ and x ∈ Rd. Since μ has growth of
degree n, there exists some k ≥ 1 such that

μ(B(x, 5mε)) ≤ 5d+1μ(B(x, 5m−1ε)) (21)

(see Subsection 3.1). We assume that m is the least integer ≥ 1 such that
(21) holds. Set ε′ = 5mε. By Lemma 9,

|Tεν(x)− Tε′/5ν(x)| ≤ CMμν(x).

Also, it is straightforward to check that |Tε′/5ν(x) − Tε′ν(x)| ≤ CMμν(x).
Therefore,

|Tεν(x)− Tε′ν(x)| ≤ CMμν(x).

Thus it only remains to show that

|Tε′ν(x)| ≤ Cs

((
M̃μ(|Tδν|s)(x)

)1/s
+Mμν(x)

)
. (22)

Since

μ(B(x, ε′)) ≤ 5d+1μ(B(x, ε′/5)), (23)

we can apply the usual argument, as in [Ma2, pp. 299–300], to prove (22).
We set

dν1 = χB(x,ε′) dν, dν2 = dν − dν1.
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For y ∈ B(x, ε′/5), since ε′ > 5δ we have Tε′ν2(x) = Tδν2(x) = Tν2(x) and
Tδν2(y) = Tν2(y). Using (1) it is easy to check that |Tδν2(y) − Tδν2(x)| ≤
CMμν(x). Therefore,

|Tε′ν(x)| = |Tδν2(x)| ≤ |Tδν2(y)|+ C2Mμν(x)

≤ |Tδν1(y)|+ |Tδν(y)|+ C2Mμν(x).
(24)

Assume first s = 1. If Tε′ν(x) 	= 0, let 0 < λ < |Tε′ν(x)|. For y ∈
B(x, ε′/5), by (24) either C2Mμν(x) > λ/3 or |Tδν(y)| > λ/3 or |Tδν1(y)| >
λ/3. Therefore, either

λ < 3C2Mμν(x),

or

B(x, ε′/5) = {y ∈ B(x, ε′/5) : |Tδν(y)| > λ/3}
∪ {y ∈ B(x, ε′/5) : |Tδν1(y)| > λ/3}.

We have

μ{y ∈ B(x, ε′/5) : |Tδν(y)| > λ/3} ≤ 3

λ

∫

B(x,ε′/5)
|Tδν| dμ

≤ 3

λ
μ(B(x, ε′/5))M̃μ(Tδν)(x),

and by the boundedness of Tδ from M(Rd) into L1,∞(μ) and (23),

μ{y ∈ B(x, ε′/5) : |Tδν1(y)| > λ/3} � ‖ν1‖
λ

=
|ν|(B(x, ε′))

λ

� μ(B(x, ε′/5))
λ

Mμν(x).

In any case we obtain λ < 3M̃μ(Tδν)(x) + CMμν(x). Since this holds for
0 < λ < |Tε′ν(x)|, (22) follows when s = 1.

Assume now 0 < s < 1. From (24) we get

|Tε′ν(x)|s ≤ |Tδν1(y)|s + |Tδν(y)|s + CMμν(x)
s.
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Integrating with respect to μ and y ∈ B(x, ε′/5), dividing by μ(B(x, ε′/5))
and raising to the power 1/s we obtain

|Tε′ν(x)| ≤ Cs

[(
1

μ(B(x, ε′/5))

∫

B(x,ε′/5)
|Tδν1|s dμ

)1/s

+

(
1

μ(B(x, ε′/5))

∫

B(x,ε′/5)
|Tδν|s dμ

)1/s

+Mμν(x)

]
.

(25)

By (23), the second term on the right-hand side of (25) can be estimated

by M̃μ(|Tδν|s)(x)1/s. On the other hand, the first term is estimated using
Kolmogorov’s inequality, the boundedness of Tδ from M(Rd) into L1,∞(μ),
and (23):

( 1

μ(B(x, ε′/5))

∫

B(x,ε′/5)
|Tδν1|s dμ

)1/s

�
‖Tδν1‖L1,∞(μ)

μ(B(x, ε′/5))

� ‖ν1‖
μ(B(x, ε′/5))

� Mμν(x).

Now (22) follows. �
As in the classical doubling case, a direct consequence of Cotlar’s inequal-

ity and Theorem 6 is the following result.

Theorem 10. Let μ be a Radon measure on Rd of degree n. If Tμ is
an n-dimensional CZO bounded in L2(μ), then Tμ,∗ is bounded in Lp(μ),
p ∈ (1,∞), and from M(Rd) into L1,∞(μ).

Proof. By Theorem 6, interpolation, and duality, Tμ is bounded in Lp(μ),
p ∈ (1,∞), and from M(Rd) into L1,∞(μ). Then, by Cotlar’s inequality it is
clear that T∗,δ is bounded in Lp(μ), p ∈ (1,∞), uniformly on δ > 0. Hence,
by monotone convergence, T∗ is also bounded in Lp(μ), p ∈ (1,∞). The
boundedness of T∗ from M(Rd) into L1,∞(μ), as in the classical doubling
case, requires some additional work. By monotone convergence, it is enough
to show that

μ{x : T∗,δν(x) > λ} ≤ ‖ν‖
λ

. (26)

By Cotlar’s inequality (19) for s = 1/2, we have for λ > 0

μ{x : T∗,δν(x) > λ} ≤ μ
{
x : Mμν(x) >

λ

2C1/2

}

+ μ
{
x :

(
M̃μ(|Tδν|1/2)(x)

)2
>

λ

2C1/2

}
.

(27)
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The first term on the right-hand side of (27) satisfies

μ
{
x : Mμν(x) >

λ

2C1/2

}
≤ C

‖ν‖
λ

,

by the boundedness ofMμ fromM(Rd) into L1,∞(μ). To estimate the second
term on the right-hand side of (27) we introduce the non-centered restricted
maximal Hardy-Littlewood operator Nμ introduced above. Obviously,

μ
{
x :

(
M̃μ(|Tδν|1/2)(x)

)2
>

λ

2C1/2

}

≤ μ
{
x : Nμ(|Tδν|1/2)(x) >

λ1/2

(2C1/2)1/2

}
.

(28)

Recall that, by the doubling condition on the balls B(y, r), the operator
Nμ is bounded from M(Rd) into L1,∞(μ). In fact, for any σ ∈ M(Rd), the
following sharper condition holds:

μ{x : Nμσ(x) > λ} ≤ C
1

λ

∫

{x:Nμσ(x)>λ}
d|σ|. (29)

This inequality follows from the usual arguments, using the 5r-covering the-
orem, as in [Ma2, pp. 40–42]. Notice that an estimate such as (29) does not

hold for the centered operator M̃μ, in general.
Now, if we denote

A =
{
x : Nμ(|Tδν|1/2)(x) >

λ1/2

(2C1/2)1/2

}
,

applying (29) to g = |Tδν|1/2 and by Kolmogorov’s inequality, we obtain

μ(A) ≤ C
1

λ1/2

∫

A

|Tδν|1/2 dμ

≤ C
1

λ1/2
μ(A)1/2‖Tδν‖1/2L1,∞(μ)

≤ C
1

λ1/2
μ(A)1/2‖ν‖1/2.

Therefore,

μ(A) ≤ C
‖ν‖
λ

,

and by (28),

μ
{
x :

(
M̃μ(|Tδν|1/2)(x)

)2
>

λ

2C1/2

}
≤ C

‖ν‖
λ

,

and so (26) holds. �
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6. The T (1) theorem, RBMO, and H1

Let us introduce some notation and definitions. Given ρ > 1, we say that
f ∈ L1

loc(μ) belongs to the space BMOρ(μ) if

sup
Q

1

μ(ρQ)

∫

Q

|f −mQ(f)| dμ <∞,

where the supremum is taken over all the squares in Rd and mQ(f) is the
μ-mean of f over Q.

A Calderón-Zygmund operator Tμ is said to be weakly bounded if

∣∣〈Tμ,εχQ, χQ〉
∣∣ ≤ Cμ(Q) for all the cubes Q ⊂ Rd, uniformly on ε > 0.

Notice that if Tμ is antisymmetric, then the left-hand side above equals zero
and so Tμ is weakly bounded.

Now we are ready to state the T (1) theorem:

Theorem 11. Let μ be a Radon measure on Rd of degree n, and let T be
an n-dimensional Calderón-Zygmund operator. The following conditions are
equivalent:

(a) Tμ is bounded on L2(μ).
(b) Tμ is weakly bounded and, for some ρ > 1, we have that Tμ,ε(1),

T ∗μ,ε(1) ∈ BMOρ(μ) uniformly on ε > 0.
(c) There exists some constant C5 such that for all ε > 0 and all the

cubes Q ⊂ Rd,

‖Tμ,εχQ‖L2(μ|Q) ≤ C5μ(Q)1/2 and ‖T ∗μ,εχQ‖L2(μ|Q) ≤ C5μ(Q)1/2.

The classical way of stating the T (1) theorem is the equivalence (a)⇔ (b).
However, for some applications it is sometimes more practical to state the
result in terms of the L2 boundedness of Tμ and T ∗μ over characteristic func-
tions of cubes, i.e. (a)⇔ (c).

Theorem 11 is the extension of the classical T (1) theorem of David and
Journé to measures of degree n which may be non doubling. The result was
proved by Nazarov, Treil and Volberg in [NTV1], although not exactly
in the form stated above. An independent proof for the particular case of
the Cauchy transform was obtained simultaneously in [To1].

Let us remark that the boundedness of Tμ on L2(μ) does not imply the
boundedness of Tμ from L∞(μ) into BMO(μ) (this is the space BMOρ(μ)
with parameter ρ = 1), and Tμ,ε(1), T

∗
μ,ε(1) 	∈ BMO(μ) uniformly on ε > 0,
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in general. On the contrary, one can show that if Tμ is bounded on L2(μ),
then it is also bounded from L∞(μ) into BMOρ(μ), for ρ > 1, by arguments
similar to the classical ones for homogeneous spaces. However, the space
BMOρ(μ) has some drawbacks. For example, it depends on the parameter
ρ and it does not satisfy the John-Nirenberg inequality. To solve these
problems, in [To3] a new space called RBMO(μ) has been introduced. The
precise definition is the following: we say that f ∈ RBMO(μ) if it belongs
to BMO2(μ) (i.e. satisfies (30) with ρ = 2), and moreover, for all (2, 2d+1)-
doubling cubes Q ⊂ R,

|mQf −mRf | ≤ CfKQ,R,

where

KQ,R = 1 +

∫

2R\Q

1

|x− xQ|n
dμ(x).

Let us remark that the definition ofRBMO(μ) does not depend on the choice
of the parameter ρ = 2. Moreover, RBMO(μ) is a subspace of BMOρ(μ) for
all ρ > 1, and it coincides with BMO(μ) when μ is an AD-regular measure.
Further, RBMO(μ) satisfies a John-Nirenberg type inequality, and all CZO’s
which are bounded on L2(μ) are also bounded from L∞(μ) into RBMO(μ).
For these reasons RBMO(μ) seems to be a good substitute of the classical
space BMO for non doubling measures of degree n.

One can also show that the statement (b) in Theorem 11 is equivalent to

(b’) Tμ is weakly bounded and we have that Tμ,ε(1)T
∗
μ,ε(1) ∈ RBMO(μ)

uniformly on ε > 0.

See [To3] for all the details.

The predual of RBMO(μ) is a Hardy type space, which we proceed to
define. For a fixed ρ > 1, a function b ∈ L1

loc(μ) is called an atomic block if

1. there exists some cube R such that supp(b) ⊂ R,

2.

∫
b dμ = 0,

3. there are functions a1, a2 supported on cubes Q1, Q2 ⊂ R and num-
bers λ1, λ2 ∈ R such that b = λ1a1 + λ2a2, and

‖aj‖L∞(μ) ≤
(
μ(ρQj)KQj ,R

)−1
for j = 1, 2.

We denote
|b|H1(μ) = |λ1|+ |λ2|
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(to be rigorous, we should think that b is not only a function, but a ‘structure’
formed by the function b, the cubes R and Qj , the functions aj , etc.). Then,
we say that f ∈ H1(μ) if there are atomic blocks bi such that

f =
∞∑

i=1

bi, (31)

with
∑

i |bi|H1(μ) < ∞ (notice that this implies that the sum in (31) con-

verges in L1(μ)). The H1(μ) norm of f is

‖f‖H1(μ) = inf
∑

i

|bi|H1(μ),

where the infimum is taken over all the possible decompositions of f in
atomic blocks.

One can check that the definition of H1(μ) does not depend on the con-
stant ρ > 1. The H1(μ) norms for different choices of ρ > 1 are equivalent.
As mentioned above,

(H1(μ))∗ = RBMO(μ).

Moreover, it is not difficult to show that if an n-dimensional Calderón-Zyg-
mund operator is bounded in L2(μ), then it is also bounded from H1(μ)
into L1(μ). See [To3] for the detailed arguments and other related results,
such as an interpolation theorem between the pairs (L∞(μ), RBMO(μ))
and (H1(μ), L1(μ)). Let us also remark that the space H1(μ) admits a
characterization in terms of a grand maximal function. See [To5].

Many more results on Calderón-Zygmund theory with non doubling mea-
sures have been proved recently. For example, several T (b) type theorems
have been obtained in [DM], [Dd4], [NTV3], [NTV4], [NTV5]. There are also
results concerning weights [GCM1], [HY], [MM], [OP], [To13]; commutators
[CS], [HMY3], [MY], [To3]; multilinear commutators [HMY1], [HMY2]; frac-
tional integrals [GCM2], [GCG1]; Lipschitz spaces [GCG2]; maximal singular
integrals [HMY4], and more on Hardy spaces [CMY]; etc.

7. The Cauchy transform

Recall that the Cauchy transform is the CZO on C originated by the kernel

k(x, y) :=
1

y − x
, x, y ∈ C.
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It is denoted by C. That is to say,

Cμ(x) :=
∫

1

y − x
dμ(y), x ∈ C \ supp(μ).

As is well know, the Cauchy transform plays a fundamental role in complex
analysis, because of Cauchy reproducing formula. When μ is fixed, we set
Cμ(f) = C(f dμ).

Of course, the results and techniques of Calderón-Zygmund theory ex-
plained in the preceding sections apply to the Cauchy transform (with the
parameters n = 1, d = 2). Moreover, because of the relationship of the
Cauchy kernel with Menger curvature, discovered by Melnikov [Me], some
results (such as the T (1) theorem) are easier to prove for the Cauchy trans-
form than for general CZO’s.

In this section we will describe in detail the relationship between the
Cauchy transform and Menger curvature, and using this, we will give a
rather simple proof of the T (1) theorem for the Cauchy singular integral
operator, i.e. for Cμ.
7.1. The curvature of a measure. Given three pairwise different points
x, y, z ∈ C, their Menger curvature is

c(x, y, z) =
1

R(x, y, z)
,

where R(x, y, z) is the radius of the circumference passing through x, y, z
(with R(x, y, z) = ∞, c(x, y, z) = 0 if x, y, z lie on a same line). If two
among these points coincide, we let c(x, y, z) = 0. For a positive Radon
measure μ, we set

c2μ(x) =

∫∫
c2(x, y, z) dμ(y) dμ(z),

and we define the curvature of μ as

c2(μ) =

∫
c2μ(x) dμ(x) =

∫∫∫
c2(x, y, z) dμ(x) dμ(y) dμ(z). (32)

The notion of curvature of measures was introduced by Melnikov [Me]
when he was studying a discrete version of analytic capacity, and it is one
of the ideas which is responsible of the big recent advances in connection
with analytic capacity. The notion of curvature is connected to the Cauchy
transform by the following result, proved by Melnikov and Verdera.
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Proposition 12. Let μ be a Radon measure on C with linear growth. We
have

‖Cεμ‖2L2(μ) =
1

6
c2ε(μ) +O(μ(C)), (33)

where c2ε(μ) is the ε-truncated version of c2(μ) (defined as in the right-hand
side of (32), but with the triple integral over {x, y, z ∈ C : |x − y|, |y − z|,
|x− z| > ε}), and |O(μ(C))| ≤ Cμ(C).

The identity (33) is remarkable because it relates an analytic notion (the
Cauchy transform of a measure) with a metric-geometric one (curvature). It
played a key role in many of the recent results on analytic capacity.

Proof. We have

‖Cεμ‖2L2(μ) =

∫ ∣∣∣∣
∫

|y−x|>ε

1

y − x
dμ(y)

∣∣∣∣
2

dμ(x)

=

∫∫∫
|x−y|>ε
|x−z|>ε

1

(y − x)(z − x)
dμ(y) dμ(z) dμ(x)

=

∫∫∫
|x−y|>ε
|x−z|>ε
|y−z|>ε

1

(y − x)(z − x)
dμ(y) dμ(z) dμ(x)

+

∫∫∫
|x−y|>ε
|x−z|>ε
|y−z|≤ε

1

(y − x)(z − x)
dμ(y) dμ(z) dμ(x)

=: I1 + I2.

(34)

Consider first the integral I1. By Fubini, permuting x, y, z, we get,

I1 =
1

6

∫∫∫ ∑

s∈S3

1

(zs2 − zs1)(zs3 − zs1)
dμ(z1) dμ(z2) dμ(z3),

where S3 is the group of permutations of three elements. An elementary
calculation shows that

∑

s∈S3

1

(zs2 − zs1)(zs3 − zs1)
= c2(z1, z2, z3).

So we get

I1 =
1

6
c2ε(μ).
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To estimate the integral I2 in (34), notice that, by the conditions in the
domain of integration, the side with vertices y, z is the shortest in the triangle
formed by the vertices x, y, z. Thus, |x− y| ≈ |x− z|, and so

|I2| �
∫∫∫

|x−y|>ε
|x−z|>ε
|y−z|≤ε

1

|y − x|2 dμ(y) dμ(z) dμ(x).

Integrating with respect to z, by the linear growth of μ, we derive

|I2| � ε

∫∫

|x−y|>ε

1

|y − x|2 dμ(y) dμ(x).

Using again the linear growth of μ, splitting the domain {y : |x − y| > ε}
into annuli, it is easy to check that

∫

y:|x−y|>ε

1

|y − x|2 dμ(y) � 1

ε
.

Thus we get,

|I2| � μ(C),

and the proposition follows. �

Lemma 13. Let μ be a Radon measure on C with linear growth and let
f ∈ L2(μ) be a non negative real function. Then we have

4

∫
|Cε(f dμ)|2 dμ =

∫∫∫
|x−y|>ε
|x−z|>ε
|y−z|>ε

c2(x, y, z)f(x)f(y) dμ(x) dμ(y) dμ(z)

− 2Re

∫
(Cεμ)Cε(f dμ)f dμ+O(‖f‖2L2(μ)).

The proof is similar to the one of Proposition 12. We leave it as an exercise
for the reader. Otherwise, see [Ve2, Lemma 1] for the details, for example.

7.2. The T (1) theorem for the Cauchy singular integral opera-
tor. We will prove the following version of the T (1) theorem for the Cauchy
singular integral operator:
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Theorem 14. Let μ be a Radon measure on C with linear growth. The
following conditions are equivalent:

(a) Cμ is bounded on L2(μ).
(b) For all ε > 0 and all the squares Q ⊂ C,

‖Cμ,εχQ‖L2(μ|Q) ≤ Cμ(Q)1/2,

with C independent of ε.
(c) For all the squares Q ⊂ C,

c2(μ|Q) ≤ Cμ(Q).

To prove this theorem we will exploit the relationship between the Cauchy
transform and Menger curvature, and we will use a good λ inequality, as
in the proofs of the same result in [To1] and [Ve2]. The proof below is
new although it has some resemblaces with the ones in the references just
mentioned, especially with [Ve2].

Notice that the equivalence (b) ⇔ (c) follows by a direct application of
(33) to the measure μ|Q, for all the squares Q ⊂ C. So we only have to prove
(b)⇒ (a). To this end, we need the following key lemma:

Lemma 15. Let μ be a finite measure with linear growth on C, that is,

μ(B(x, r)) ≤ C0r for all x ∈ C, r > 0.

Suppose that ‖Cεμ‖2L2(μ) ≤ C1μ(C) for all ε > 0. Then there exists a subset

G ⊂ C with μ(G) ≥ μ(C)/4 such that Cμ|G : L2(μ|G) → L2(μ|G) is bounded
with norm bounded above by some constant depending only on C0 and C1.

Proof. From the assumptions in the lemma and Proposition 13, we deduce

c2(μ) ≤ C6μ(C).

Given C7 > 0, let

Aε :=
{
x ∈ C : |Cεμ(x)| ≤ C7 and c2μ(x) ≤ C2

7

}
.

Since
∫
c2μ(x) dμ(x) = c2(μ) ≤ C6μ(C) and

∫
|Cεμ|2 dμ ≤ Cμ(C), we infer

that μ(Aε) ≥ μ(C)/2 if C7 is chosen big enough, by Chebyshev.
We want to show that the Cauchy integral operator Cμ|Aε ,ε

is bounded on

L2(μ|Aε
). To this end we introduce an auxiliary “curvature operator”: for
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x, y ∈ Aε, consider the kernel k(x, y) :=
∫
c2(x, y, z) dμ(z), and let T be the

operator

Tf(x) =

∫
k(x, y)f(y) dμ(y).

By Schur’s lemma, T is bounded on Lp(μ|Aε
) for all p ∈ [1,∞], because for

all x ∈ Aε,

∫
k(x, y) dμ|Aε

(y) =

∫
k(y, x) dμ|Aε

(y)

=

∫

y∈Aε

c2(x, y, z) dμ(y) dμ(z) ≤ c2μ(x) ≤ C2
7 .

Recall that given a non negative (real) function f supported on Aε, by
Lemma 13 we have

4

∫
|Cε(f dμ)|2 dμ =

∫∫∫
|x−y|>ε
|x−z|>ε
|y−z|>ε

c2(x, y, z)f(x)f(y) dμ(x) dμ(y) dμ(z)

− 2Re

∫
(Cεμ)Cε(f dμ)f dμ+O(‖f‖2L2(μ)).

Thus,

∫
|Cε(f dμ)|2 dμ ≤ 1

4

∣∣〈Tf, f〉
∣∣+ 1

2

∫ ∣∣(Cεμ)Cε(f dμ)f
∣∣ dμ+C‖f‖2L2(μ). (35)

To estimate the first term on the right side we use the L2(μ|Aε
) boundedness

of T (recall that supp(f) ⊂ Aε):

∣∣〈Tf, f〉
∣∣ ≤ ‖Tf‖L2(μ)‖f‖L2(μ) ≤ C‖f‖2L2(μ).

To deal with the second integral on the right side of (35), notice that |Cεμ| ≤
C7 on the support of f , and so

∫ ∣∣(Cεμ)Cε(f dμ)f
∣∣ dμ ≤ C7

∫ ∣∣Cε(f dμ)f
∣∣ dμ ≤ C7‖Cε(f dμ)‖L2(μ)‖f‖L2(μ).

By (35) we get

‖Cε(f dμ)‖2L2(μ) ≤ C‖f‖2L2(μ) +
C7

2
‖Cε(f dμ)‖L2(μ)‖f‖L2(μ),
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which implies that ‖Cε(f dμ)‖L2(μ) ≤ C‖f‖L2(μ).

So far we have proved the L2(μ|Aε
) boundedness of Cμ|Aε ,ε

. If Aε were in-
dependent of ε, we would set ν := μ|Aε

and we would be done. Unfortunately
this is not the case and we have to work a little more. We set

Gε :=
{
x ∈ C : |Cε,∗μ(x)| ≤ C8 and c2μ(x) ≤ C2

8

}
,

where C8 is some constant big enough (with C8 > C7) to be chosen below.
By Theorem 10 and the discussion above, we know that Cε,∗ is bounded from
M(C) into L1,∞(μ|Aε

) (with constants independent of ε). Thus,

μ
{
x ∈ Aε : |Cε,∗μ(x)| > C8

}
≤ Cμ(C)

C8
.

If C8 is big enough, the right-hand side of the preceding inequality is
≤ μ(C)/4 ≤ μ(Aε)/2. Thus, μ(Gε) ≥ μ(C)/4.

We set
G :=

⋂

ε>0

Gε.

Notice that, by definition, Gε ⊂ Gδ if ε > δ and so we have

μ(G) = lim
ε→0

μ(Gε) ≥
1

4
μ(C).

By the same argument used for Aε, it follows that Cμ|Gε ,ε
is bounded on

L2(μ|Gε
) (with constant independent of ε), and thus Cμ|G is bounded on

L2(μ|G). �

Proof of Theorem 14. As remarked above, we only have to prove (b)⇒
(a). We will use a good λ inequality : we will show that there exist some
absolute constant η > 0 such that for all ε > 0 there exists δ = δ(ε) > 0
such that

μ
{
x : Cμ,∗f(x) > (1 + ε)λ, Mμf(x) ≤ δλ

}

≤ (1− η)μ
{
x : Cμ,∗f(x) > λ

} (36)

for f ∈ L1(μ) (with compact support, say). It is easy to check that this
implies that Cμ is bounded in L2(μ), by standard arguments.

To prove (36), consider a Whitney decomposition of the open set

Ωλ =
{
x : Cμ,∗f(x) > λ

}
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into a family of dyadic squares {Qi}i∈I with disjoint interior such that 5Qi ⊂
Ωλ and 20Qi ∩ Ωc

λ 	= ∅ for each i ∈ I, and so that, moreover,

∑

i∈I
χ5Qi

≤ C9χΩλ
. (37)

That is, the family {5Qi}i∈I has bounded overlap.
Consider a square Qi, i ∈ I. We claim that if x ∈ Qi satisfies Cμ,∗f(x) >

(1 + ε)λ and Mμf(x) ≤ δλ, then

Cμ,∗(χ2Qi
f)(x) > ελ/2, (38)

assuming that δ is small enough. To show that this holds, take z ∈ 20Qi\Ωλ,
so that Cμ,∗f(z) ≤ λ. Since x, z ∈ 20Qi, using the linear growth of μ, by
standard arguments it follows easily that

∣∣Cμ,∗(χC\40Qi
f)(x)− Cμ,∗(χC\40Qi

f)(z)
∣∣ ≤ CMμf(x).

By straightforward estimates, since x ∈ Qi, it is also easy to check that
Cμ,∗(χ40Qi\2Qi

f)(x) ≤ CMμf(x). Therefore,

Cμ,∗(χC\2Qi
f)(x) ≤ Cμ,∗(χ40Qi\2Qi

f)(x) + Cμ,∗(χC\40Qi
f)(x)

≤ Cμ,∗(χ40Qi\2Qi
f)(x) + Cμ,∗(χC\40Qi

f)(z)

+
∣∣Cμ,∗(χC\40Qi

f)(x)− Cμ,∗(χC\40Qi
f)(z)

∣∣
≤ CMμf(x) + λ+ CMμf(x) ≤ (1 + C10δ)λ,

and thus

Cμ,∗(χ2Qi
f)(x) ≥ Cμ,∗f(x)− Cμ,∗(χC\2Qi

f)(x) > (1 + ε)λ− (1 + C10δ)λ.

So the claim follows if we choose C10δ ≤ ε/2.
Now, since for all ε > 0 we have ‖Cμ,ε(χQi

)‖2L2(μ|Qi
) ≤ Cμ(Qi), by

Lemma 15 applied to the measure μ|Qi
, there exists some subset Gi ⊂

Qi with μ(Gi) ≥ μ(Qi)/4 such that the Cauchy transform is bounded in
L2(μ|Gi

). By Theorem 11, we infer that Cμ,∗ is bounded from M(C) into

L1,∞(μ|Gi
). Together with (38) this implies that

μ{x ∈ Gi : Cμ,∗f(x) > (1 + ε)λ, Mμf(x) ≤ δλ}
≤ μ{x ∈ Gi : Cμ,∗(χ2Qi

f)(x) > ελ/2}

≤ C

ελ
‖χ2Qi

f‖L1(μ).
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Notice that, if Qi contains some point x such that Mμf(x) ≤ δλ, then

‖χ2Qi
f‖L1(μ) ≤

∫

B(x,2�(Qi))

|f | dμ

≤ μ(B(x, 2�(Qi)))Mμf(x)

≤ μ(5Qi)Mμf(x)

≤ δλμ(5Qi).

Thus,

μ{x ∈ Gi : Cμ,∗f(x) > (1 + ε)λ,Mμf(x) ≤ δλ} ≤ C11δ

ε
μ(5Qi).

Using the preceding estimate for all the squares Qi, i ∈ I, and the fact
that μ(Gi) ≥ μ(Qi)/4, we get

μ
{
x : Cμ,∗f(x) > (1 + ε)λ,Mμf(x) ≤ δλ

}

≤
∑

i∈I
μ(Qi \Gi) +

∑

i∈I
μ
{
x ∈ Gi : Cμ,∗f(x) > (1 + ε)λ, Mμf(x) ≤ δλ

}

≤
∑

i∈I

3

4
μ(Qi) +

∑

i∈I

C11δ

ε
μ(5Qi)

By the bounded overlap (37), we obtain

μ
{
x : Cμ,∗f(x) > (1 + ε)λ,Mμf(x) ≤ δλ

}
≤ 3

4
μ(Ωλ) +

C9C11δ

ε
μ(Ωλ).

Therefore, if we choose δ ≤ C−1
9 C−1

11 ε/8, the right-hand side is bounded
above by 7

8μ(Ωλ), and so (36) follows with η = 1/8. We are done. �

8. Analytic capacity

8.1. Definition. The analytic capacity of a compact set E ⊂ C is

γ(E) := sup |f ′(∞)|,

where the supremum is taken over all analytic functions f : C \E → C with
|f | ≤ 1 on C \ E, and f ′(∞) = limz→∞ z(f(z)− f(∞)).

The notion of analytic capacity was introduced by Ahlfors [Ah] in the
1940’s in order to study the removability of singularities of bounded analytic
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CALDERÓN-ZYGMUND THEORY 247

functions. A compact set E ⊂ C is removable for bounded analytic functions
if for any open set Ω containing E, every bounded function analytic on Ω\E
has an analytic extension to Ω. Ahlfors showed that E is removable if and
only if γ(E) = 0.

Painlevé’s problem consists of characterizing removable singularities for
bounded analytic functions in a metric/geometric way. By Ahlfors’ result
this is equivalent to describe compact sets with positive analytic capacity in
metric/geometric terms.

Vitushkin in the 1950’s and 1960’s showed that analytic capacity plays a
central role in problems of uniform rational approximation on compact sets of
the complex plane. Many results obtained by Vitushkin in connection with
uniform rational approximation are stated in terms of γ. See [Vi2], or [Ve1]
for a more modern approach, for example. Further, because its applications
to this type of problems he raised the question of the semiadditivity of γ.
Namely, does there exist an absolute constant C such that

γ(E ∪ F ) ≤ C(γ(E) + γ(F )) ?

This was shown to be true in [To8].
Proving the semiadditivity of analytic capacity is out of the scope of these

lecture notes. However, below we will show that the so called capacity γ+
is semiadditive. The semidditivity of the analytic capacity γ follows then
from the comparability of γ and γ+, as shown in [To8]. As we will see,
the Calderón-Zygmund theory with non doubling measures that we have
developed in the previous sections will play a fundamental role.

8.2. Basic properties of analytic capacity. One should keep in mind
that, in a sense, analytic capacity measures the size of a set as a non remov-
able singularity for bounded analytic functions. A direct consequence of the
definition is that

E ⊂ F =⇒ γ(E) ≤ γ(F ).

Moreover, it is also easy to check that analytic capacity is translation invari-
ant:

γ(z +E) = γ(E) for all z ∈ C.
Concerning dilations, we have

γ(λE) = |λ|γ(E) for all λ ∈ C.
Further, if E is connected, then

diam(E)/4 ≤ γ(E) ≤ diam(E).

The second inequality follows from the fact that the analytic capacity of a
closed disk coincides with its radius, and the first one is a consequence of
Koebe’s 1/4 theorem (see [Ga, Chapter VIII] for the details, for example).
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8.3. Relationship with Hausdorff measure. The relationship between
Hausdorff measure and analytic capacity is the following:

• If dimH(E) > 1 (here dimH stands for the Hausdorff dimension), then
γ(E) > 0. This result follows easily from Frostman’s Lemma.

• γ(E) ≤ H1(E), where H1 is the one dimensional Hausdorff measure,
or length. This follows from Cauchy’s integral formula, and it was
proved by Painlevé about one hundred years ago. Observe that, in
particular we deduce that if dimH(E) < 1, then γ(E) = 0.

By the statements above, it turns out that dimension 1 is the critical
dimension in connection with analytic capacity. Moreover, a natural question
arises: is it true that γ(E) > 0 if and only if H1(E) > 0?

Vitushkin showed that the answer is no. Indeed, he constructed a com-
pact set in C with positive length and vanishing analytic capacity. This set
was purely unrectifiable. That is, it intersects any rectifiable curve at most
in a set of zero length. Motivated by this example (and others, I guess) Vi-
tushkin conjectured that pure unrectifiability is a necessary and sufficient
condition for vanishing analytic capacity, for sets with finite length.

Guy David [Dd4] showed in 1998 that Vitushkin’s conjecture is true:

Theorem 16. Let E ⊂ C be compact with H1(E) <∞. Then, γ(E) = 0 if
and only if E is purely unrectifiable.

Let us remark that the “if” part of the theorem is not due to David (it
follows from Calderón’s theorem on the L2 boundedness of the Cauchy
transform on Lipschitz graphs). The “only if” part of the theorem, which is
more difficult, is the one proved by David. See also [MMV], [DM] and [Lé]
for some preliminary contributions to the proof.

Theorem 16 is the solution of Painlevé’s problem for sets with finite length.
The analogous result is false for sets with infinite length. For this type of sets
there is no such a nice geometric solution of Painlevé’s problem, and we have
to content ourselves with a characterization such as the one in Corollary 23
below (at least, for the moment).

8.4. The capacity γ+ and the Cauchy transform. The capacity γ+ of
a compact set E ⊂ C is

γ+(E) := sup{μ(E) : supp(μ) ⊂ E, ‖Cμ‖L∞(C) ≤ 1}. (40)

That is, γ+ is defined as γ in (39) with the additional constraint that f
should coincide with Cμ, where μ is some positive Radon measure supported
on E (observe that (Cμ)′(∞) = −μ(C) for any Radon measure μ). To be
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precise, there is another little difference: in (39) we asked ‖f‖L∞(C\E) ≤ 1,
while in (40) ‖f‖L∞(C) ≤ 1 (for f = Cμ). Trivially, we have γ+(E) ≤ γ(E).

The following lemma relates weak (1, 1) estimates for the Cauchy integral
operator with L∞ estimates (which in its turn are connected with γ+ and γ).

Lemma 17. Let μ be a Radon measure with linear growth on C. The fol-
lowing statements are equivalent:

(a) The Cauchy transform is bounded from M(C) into L1,∞(μ).
(b) For any set A ⊂ C there exists some function h supported on A, with

0 ≤ h ≤ 1, such that
∫
h dμ ≥ C−1μ(A) and ‖Cε(h dμ)‖L∞(C) ≤ C

for all ε > 0.

The constant C in (b) depends only on the norm of the Cauchy transform
bounded from M(C) into L1,∞(μ), and conversely.

This lemma is a particular case of a result which applies to more general
linear operators. The statement (b) should be understood as a weak substi-
tute of the L∞(μ) boundedness of the Cauchy integral operator, which does
not hold in general.

We will prove the easy implication of the lemma, that is, (b)⇒ (a). For
the other implication, which is due toDavie and Øksendal [DØ] the reader
is referred to [Ch, Chapter VII] and [To1].

Proof of (b)⇒(a). It is enough to show that for any complex measure
ν ∈M(C) and any λ > 0,

μ{x ∈ C : Re(Cεν(x)) > λ} ≤ C‖ν‖
λ

.

To this end, let us denote by A the set on the left side above, and let h be a
function supported on A fulfilling the properties in the statement (b) of the
lemma. Then we have

μ(A) ≤ C

∫
h dμ ≤ C

λ
Re

(∫
(Cεν)h dμ

)

=
−C
λ

Re
(∫

Cε(h dμ) dν
)
≤ C‖ν‖

λ
.

�
Remark 18. Notice that if E supports a non zero Radon measure μ with
linear growth such that the Cauchy integral operator Cμ is bounded on
L2(μ), then there exists some nonzero function h with 0 ≤ h ≤ χE such
that ‖Cε(h dμ)‖L∞(C) ≤ C uniformly on ε, by Theorem 6 and the preceding
lemma. Letting ε → 0, we infer that |C(h dμ)(z)| ≤ C for all z 	∈ E, and so
γ(E) > 0.

A more precise result will be proved in Theorem 19 below.
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9. The Painlevé problem and the semiadditivity
of analytic capacity

9.1. Semiadditivity of γ+ and its characterization in terms of cur-
vature. We denote by Σ(E) the set of Radon measures supported on E
such that μ(B(x, r)) ≤ r for all x ∈ C, r > 0.

Theorem 19. For any compact set E ⊂ C we have

γ+(E) ≈ sup
{
μ(E) : μ ∈ Σ(E), ‖Cεμ‖L∞(μ) ≤ 1 ∀ε > 0

}

≈ sup
{
μ(E) : μ ∈ Σ(E), ‖Cεμ‖2L2(μ) ≤ μ(E) ∀ε > 0

}

≈ sup
{
μ(E) : μ ∈ Σ(E), c2(μ) ≤ μ(E)

}

≈ sup
{
μ(E) : μ ∈ Σ(E), ‖Cμ‖L2(μ),L2(μ) ≤ 1

}
.

In the statement above, ‖Cμ‖L2(μ),L2(μ) stands for the operator norm of

Cμ on L2(μ). That is, ‖Cμ‖L2(μ),L2(μ) = supε>0 ‖Cμ,ε‖L2(μ),L2(μ).

Proof. We denote

S1 := sup
{
μ(E) : μ ∈ Σ(E), ‖Cεμ‖L∞(μ) ≤ 1 ∀ε > 0

}
,

S2 := sup
{
μ(E) : μ ∈ Σ(E), ‖Cεμ‖2L2(μ) ≤ μ(E) ∀ε > 0

}
,

S3 := sup
{
μ(E) : μ ∈ Σ(E), c2(μ) ≤ μ(E)

}
,

S4 := sup
{
μ(E) : μ ∈ Σ(E), ‖Cμ‖L2(μ),L2(μ) ≤ 1

}
.

We will show that γ+(E) � S1 � S2 ≈ S3 � S4 � γ+(E). We will give two
proofs of S3 � S4. One uses the T (1) theorem and the other not (and so it
is more elementary).

Proof of γ+(E) � S1. Let μ be supported on E such that ‖Cμ‖L∞(C) ≤ 1
with γ+(E) ≤ 2μ(E). It is enough to show that μ has linear growth and
‖Cεμ‖L∞(μ) ≤ C uniformly on ε > 0.

First we will prove the linear growth of μ. For any fixed x ∈ C, by Fubini
it turns out that for almost all r > 0,

∫

|z−x|=r

1

|z − x| dμ(z) <∞.

For this r we have

μ(B(x, r)) = −
∫

|z−x|=r

Cμ(z) dz
2πi

≤ r.
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Now the linear growth of μ follows easily.
To deal with the L∞(μ) norm of Cε we use a standard technique: we

replace Cε by the regularized operator C̃ε, defined as

C̃εμ(x) =
∫

rε(y − x) dμ(y),

where rε is the kernel

rε(z) =

⎧
⎪⎨
⎪⎩

1

z
if |z| > ε,

z

ε2
if |z| ≤ ε.

Then, C̃εμ is the convolution of the complex measure μ with the uniformly

continuous kernel rε and so C̃εμ is a continuous function. Also, we have

rε(z) =
1

z
∗ χε

πε2
,

where χε is the characteristic function of B(0, ε). Since μ is compactly
supported, we have the following identity:

C̃εμ =
1

z
∗ χεπε

2 ∗ μ =
χε

πve2
∗ Cμ.

This equality must be understood in the sense of distributions, with Cμ
being a function of L1

loc(C) with respect to Lebesgue planar measure. As a

consequence, if ‖Cμ‖L∞(C) ≤ 1, we infer that ‖C̃εμ‖L∞(μ) ≤ 1 for all ε > 0.
Since μ has linear growth, we have

|C̃εμ(x)− Cεμ(x)| =
1

ε2

∣∣∣
∫

|y−x|<ε

(y − x) dμ(y)
∣∣∣ ≤ C,

and so ‖Cεμ‖L∞(μ) ≤ C uniformly on ε > 0.

Proof of S1 � S2. Trivial.

Proof of S2 ≈ S3. This is a direct consequence of Proposition 12.

Proof of S3 � S4 using the T (1) theorem. Let μ supported on E with
linear growth such that c2(μ) ≤ μ(E) and S3 ≤ 2μ(E). We set

A :=
{
x ∈ E : c2μ(x) ≤ 2

}
.
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By Chebyshev μ(A) ≥ μ(E)/2. Moreover, for any set B ⊂ C,

c2(μ|B∩A) ≤
∫∫∫

x∈B∩A
c2(x, y, z) dμ(x)dμ(y)dμ(z)

=

∫

x∈B∩A
c2μ(x) dμ(x) ≤ 2μ(B).

In particular, this estimate holds when B is any square in C, and so Cμ|A is

bounded on L2(μ|A), by Theorem 14. Thus S4 � μ(A) ≈ S3.

Proof of S3 � S4 using Lemma 15. Take μ supported on E with linear
growth such that c2(μ) ≤ μ(E) and S3 ≤ 2μ(E). By Proposition 12, we
deduce that ‖Cεμ‖2L2(μ) ≤ Cμ(E) uniformly on ε > 0. By Lemma 15, there

exists G ⊂ E with μ(G) ≥ μ(E)/4 and such that Cμ|G : L2(μ|G)→ L2(μ|G)
is bounded with norm bounded above by some absolute constant. Thus,
the measure ν = μ|G is supported on E, has linear growth, and satisfies
ν(E) ≥ μ(E)/4 and ‖Cν‖L2(ν),L2(ν) ≤ C.

Proof of S4 � γ+(E). This is a direct consequence of Lemma 17 and the
fact that the L2(μ) boundedness of Cμ implies its boundedness from M(C)
into L1,∞(μ), as shown in Theorem 6. �

From the preceding theorem, since the term

sup
{
μ(E) : μ ∈ Σ(E), ‖Cμ‖L2(μ),L2(μ) ≤ 1

}

is countably semiadditive, we deduce that γ+ is also countably semiadditive.

Corollary 20. The capacity γ+ is countably semiadditive. That is, if Ei,
i = 1, 2, . . . , is a countable (or finite) family of compact sets, we have

γ+

( ∞⋃

i=1

Ei

)
≤ C

∞∑

i=1

γ+(Ei).

The semiadditivity of γ+ and its characterization in terms of curvature
were proven in [To1], via the T (1) theorem for the Cauchy transform.

Another consequence of Theorem 19 is that the capacity γ+ can be char-
acterized in terms of the following potential, introduced by Verdera [Ve2]:

Uμ(x) = sup
r>0

μ(B(x, r))

r
+ c2μ(x)

1/2. (42)

The precise result is the following.
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Corollary 21. For any compact set E ⊂ C we have

γ+(E) ≈ sup
{
μ(E) : μ ∈ Σ(E), Uμ(x) ≤ 1 ∀x ∈ C

}
.

The proof of this corollary follows easily from the fact that

γ+(E) ≈ sup
{
μ(E) : μ ∈ Σ(E), c2(μ) ≤ μ(E)

}
,

using Chebyshev. The details are left for the reader.
Let us remark that the preceding characterization of γ+ in terms of Uμ

is interesting because it suggests that some techniques of potential theory
could be useful to study γ+. See [To7] and [Ve2].

9.2. Comparability between γ and γ+. In [To8] the following result
has been proved.

Theorem 22. There exists an absolute constant C such that for any com-
pact set E ⊂ C we have

γ(E) ≤ Cγ+(E).

As a consequence, γ(E) ≈ γ+(E).

An obvious corollary of the preceding result and the characterization of
γ+ in terms of curvature obtained in Theorem 19 is the following.

Corollary 23. Let E ⊂ C be compact. Then, γ(E) > 0 if and only if E
supports a non zero Radon measure with linear growth and finite curvature.

Since we know that γ+ is countably semiadditive, the same happens
with γ:

Corollary 24. Analytic capacity is countably semiadditive. That is, if Ei,
i = 1, 2, . . . , is a countable (or finite) family of compact sets, we have

γ

( ∞⋃

i=1

Ei

)
≤ C

∞∑

i=1

γ(Ei).

Notice that, by Theorem 19, to prove Theorem 22 it is enough to show that
there exists some measure μ supported on E with linear growth, satisfying
μ(E) ≈ γ(E), and such that the Cauchy transform Cμ is bounded on L2(μ)
with absolute constants. To implement this argument, the main tool used
in [To8] is the T (b) theorem of Nazarov, Treil and Volberg [NTV3].
To apply this theorem, one has to construct a suitable measure μ and a
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function b ∈ L∞(μ) fulfilling some suitable para-accretivity conditions. The
construction of μ and b is the main difficulty which is overcome in [To8], by
means of a bootstrapping argument which involves the potential Uμ of (42)
and an induction on scales.

Let us remark that the comparability between γ and γ+ had been pre-
viously proved by P. Jones for compact connected sets by geometric argu-
ments, very different from the ones in [To8] (see [Pa, Chapter 3]). On the
other hand, the case of Cantor sets was studied in [MTV1]. The proof of
[To8] is inspired in part by the ideas in [MTV1].

Corollary 23 yields a characterization of removable sets for bounded an-
alytic functions in terms of curvature of measures. Although this result
has a definite geometric flavour, it is not clear if this is a really good geo-
metric characterization. Nevertheless, in [To11] it has been shown that the
characterization is invariant under bilipschitz mappings, using a corona type
decomposition for non doubling measures. See also [GV] for an analogous
result for some Cantor sets.

9.3. Analytic capacity, the Cauchy transform, and rectifiability. In
this subsection we will give a brief summary of the relationship between the
Cauchy transform, analytic capacity and rectifiability.

A set is called rectifiable if it is H1-almost all contained in a countable
union of rectifiable curves. Recall thatH1 stands for the 1-dimensional Haus-
dorff measure. On the other hand, it is purely unrectifiable if it intersects
any rectifiable curve at most in a set of zero length.

David and Léger [Lé] proved the following nice result:

Theorem 25. Let E ⊂ C be compact with H1(E) < ∞. If c2(H1
|E) < ∞,

then E is rectifiable.

The proof of Theorem 25 in [Lé] uses geometric techniques, in the spirit
of the ones used by P. Jones in [Jo] and by David and Semmes in [DS].

As a corollary of the preceding theorem, using Proposition 12, one in-
fers that if the Cauchy transform is bounded in L2(H1

|E), then E is rec-

tifiable. A more quantitative version of this result proved by Mattila,
Melnikov and Verdera [MMV] asserts that if E is AD-regular (i.e.,
H1(E ∩ B(x, r)) ≈ r for x ∈ E and 0 < r ≤ diam(E)) and the Cauchy
transform is bounded on L2(H1

|E), then E is contained in an AD regular

curve Γ.
Recall that David’s Theorem 16 (the solution of Vitushkin’s conjecture)

asserts if E ⊂ C has finite length then, γ(E) = 0 if and only if E is purely
unrectifiable. To prove Vitushkin’s conjecture, David proved a suitable
T (b) type theorem valid for non doubling measures (using a preliminary
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result from [DM]). Using this theorem, he was able to show that if E has
finite length and positive analytic capacity, then it contains a subset F with
positive length such that the Cauchy transform is bounded in L2(H|F ). As
noticed above, this implies that F is rectifiable.

9.4. Other capacities. In [To9], some results analogous to Theorems 19
and 22 have been obtained for the continuous analytic capacity α. This
capacity, introduced by Vitushkin (see [Vi2]), is defined like γ in (39), with
the additional requirement that the functions f considered in the sup should
extend continuously to the whole complex plane. In particular, in [To9] it
is shown that α is semiadditive. This result has some nice consequences for
the theory of uniform rational approximation on the complex plane. For
example, it implies the so called inner boundary conjecture.

Volberg [Vo] has proved the natural generalization of Theorem 22 to
higher dimensions. In this case, one should consider the Lipschitz harmonic
capacity instead of the analytic capacity (see [MP] for the definition and
properties of Lipschitz harmonic capacity). The main difficulty arises from
the fact that in this case one does not have any good substitute of the no-
tion of curvature of measures, and then one has to argue with a potential
very different from the one defined in (42). By combining the arguments in
[To9] and [Vo] one can prove the semiadditivity of the so called C1 harmonic
capacity, introduced by Paramonov [Par] because its application to prob-
lems of C1 harmonic approximation (see [RT]). See also [MT] and [To14] for
related results which avoid the use of any notion similar to curvature.

The techniques in Theorem 22 have also been used by Prat [Pr1], [Pr2],
and Mateu, Prat and Verdera [MPV] to study the capacities γα associ-
ated to α-dimensional signed Riesz kernels with α non integer:

k(x, y) =
y − x

|y − x|α+1
.

In [Pr2], it is shown that these capacities are semiadditive and comparable to
their positive versions γα,+, analogously to analytic capacity. However, there
are some big differences between the behavior of analytic capacity and the
capacities γα, α 	∈ Z. For instance, in [Pr1] it is shown that sets with finite α-
dimensional Hausdorff measure have vanishing capacity γα when 0 < α < 1.
Moreover, for these α’s it is proved in [MPV] that γα is comparable to one
of the non linear Wolff’s capacities. The case of non integer α with α > 1
seems much more difficult to study, although in the AD-regular situation
some results have been obtained [Pr1]. The results in [Pr1] and [MPV] show
that the behavior of γα with α non integer is very different from the one
with α integer.
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