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Abstract

Scalar parameter values as well as initial condition values are to be identified
in initial value problems for ordinary differential equations (ODE). To achieve this
goal, computer algebra tools are combined with numerical tools in the MATLAB R©

environment. The best fit is obtained through the minimization of the summed squares
of the difference between measured data and ODE solution. The minimization is based
on a gradient algorithm where the gradient of the summed squares is calculated either
numerically or via auxiliary initial value problems. In the latter case, the MATLAB R©

Symbolic Math Toolbox
TM

is used to derive the expressions that define the auxiliary
problems and to transform them into MATLAB R© routines.

1. Introduction

This work was initiated by [3], where parameter identification is performed by
an artificial neural network algorithm. A question arose, whether a more traditional
method could be effective in solving the identification problem. By a more traditional
method, we mean the minimization of a relevant cost function by a gradient-based
minimization algorithm.

Parameter identification is a common task in chemistry, biology, and engineering.
If the underlying problem is not ill-posed, parameters can be identified by a straight-
forward method, see, for instance, [5], a short report providing the reader with an
easy introduction to the subject, or a more advanced applications [1, 6]. Let us
emphasize that we do not consider data polluted by noise, though it is a common
difficulty in practice, see [4].
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2. Identification problems

Cement hydration. The cement hydration process is modeled by the following initial
value problem (IVP) presented in [3]

dα

dt
(t) = B1

(
B2

α∞

+ α(t)

)
(α∞ − α(t)) exp

(
η

α∞

α(t)

)
C, (1)

α(0) = 0, (2)

where α is the time dependent degree of hydration and α∞ stands for its limit
value, B1 and B2 are coefficients dependent on the cement chemical composition,
η represents the microdiffusion of free water, and C ≈ 2× 10−7 is a known constant,
see [3].

It is assumed that

(α∞, B1, B2, η) ∈ Iα = [0.7, 1.0]× [106, 107]× [10−6, 10−3]× [−12,−2]. (3)

Generalized Van der Pol oscillator. Let us consider the following nonlinear IVP

d2y

dt2
= (c1 − c2y

2)
dy

dt
− c3y, (4)

y(0) = c4,
dy

dt
(0) = c5, (5)

where c1, c2, and c3 are positive parameters, and c4, c5 are real parameters. If
c1 = c2 = c3 = 1, then we get the Van der Pol oscillator. It is assumed

(c1, c2, c3, c4, c5) ∈ IC = [0.5, 3]3 × [1, 3]× [−1, 1]. (6)

In both IVPs, the values of parameters are to be identified through mi, that is,
the measurements of either the hydration at time points ti ∈ [0, Tα], i = 1, 2, . . . , nα,
or the measurements of the position y(ti) at ti ∈ [0, TC], i = 1, 2, . . . , nC .

The identification problem: Find p̂ ∈ I such that

p̂ = argmin
p∈I

Ψ(p), (7)

where

Ψ(p) =
n∑

i=1

wi(mi − u(ti))
2 (8)

and either I ≡ Iα, n ≡ nα, and u ≡ α solves (1)–(2), or I ≡ IC , n ≡ nC , and u ≡ y
solves (4)–(5). The positive weighting factors wi are also problem dependent and
enable to increase or decrease the importance of some measurements.
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3. Sensitivity analysis

To employ a gradient method for the minimization of Ψ, the gradient of Ψ with
respect to the components of p ∈ I is necessary. The partial derivatives of Ψ can be
approximated by the numerical differentiation of Ψ, or by solving auxiliary problems.
In the latter case, since

∂Ψ

∂pj
= 2

n∑

i=1

wi (mi − u(ti))u
′
pj
(ti), (9)

where pj is a component of p and u′
pj

stands for the derivative of the state solution
with respect to pj, we have to find functions u′

pj
as the solutions of auxiliary IVPs.

According to [2], the derivatives of the state solution α with respect to α∞, B1, B2,
and η exist and they are solutions of

dv

dt
(t) = g(t)v(t) + q(t), (10)

v(0) = 0, (11)

where the function g originates from the right-hand side of the state equation (1)
differentiated w.r.t. the symbol α, whereas the derivative w.r.t. a parameter from
the set {α∞, B1, B2, η} results in the function q.

To arrive at an IVP analogous to (10)–(11), we rewrite (4)–(5) into a system of
first order equations

dy1
dt

= y2, (12)

dy2
dt

= (c1 − c2y
2
1)y2 − c3y1, (13)

y1(0) = c4, y2(0) = c5. (14)

By differentiating (12)–(14) w.r.t. y1, y2 and the parameters, we obtain the following
parallel to (10)–(11)

(
dv1/dt
dv2/dt

)
=

(
0 1

−2c2y1y2 − c3 c1 − c2y
2
1

)(
v1
v2

)
+

(
0
ω

)
, (15)

v1(0) = θ1, v2(0) = θ2, (16)

where θ1 = 0 = θ2 and ω = y2 if the derivative of the state solution y ≡ y1 w.r.t. c1 is
to be calculated, ω = −y21y2 and ω = −y1 if we differentiate w.r.t. c2 and c3, re-
spectively. If the derivative of y with respect to the initial conditions is sought, then
ω = 0 in (15) and θ1 = 1, θ2 = 0 in (16) if we differentiate w.r.t. c4, or θ1 = 0, θ2 = 1
if we are interested in the sensitivity to c5. Details in [2, Chapter 13 and 14].

To summarize, let us recall that for each parameter α∞, B1, B2, η (or c1, . . . , c5),
we infer and solve (10)–(11) (or (15)–(16)). After substituting v (or v1) for u

′
pj
in (9),

we obtain one component of the gradient of Ψ.
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The derivation of the expressions appearing on the right-hand side of (10) is
easy for the generalized Van der Pol equation, see (15), but more laborious for the
hydration problem. Nevertheless, it is effortlessly performed by the MATLABR©

Symbolic Math Toolbox
TM

(we used its R2012b version), namely by its functions
diff and matlabFunction. The latter converts symbolic expressions to MATLABR©

functions.

4. Minimization

To minimize (8), the MATLABR© R2012b Optimization Toolbox
TM

fmincon func-
tion was used. It is designed for constrained minimization, see (3) and (6). The cost
function gradient can be calculated by a black-box numerical differentiation, or by
a code delivered by the user. We tried both approaches, and applied the sensitivity
analysis approach explained in Section 3 in the latter.

Since parameter identification is a global minimization problem and fmincon is
a tool for local minimization, optimization runs starting from different initial points
belonging to Iα or Ic, see (3) and (6), were necessary to increase the chance of finding
a global minimum.

5. Results, observations, and conclusions

In both problems, the weights wi were chosen as equal.
Cement hydration. Figure 1 shows the graphs of the derivatives of the state

solution α determined by (0.7, 5 × 106, 5 × 10−4,−2.5) ∈ Iα with respect to the pa-
rameters. We observe a high sensitivity to B2 and a low sensitivity to B1. Moreover,
the peak sensitivity occurs in a neighborhood of t = 25 and is, except for the case
of α∞, strongly localized. We deduce that the most important measurements are
those made in between, say, t = 5 and t = 50 or t = 100. The state solution rapidly
increases in [0, 50], see Figure 2 (left), where the best fit to a set of 23719 real-world
measurements of the cement hydration process (1)–(2) is depicted (time, t, in hours).

Generalized Van der Pol oscillator. Examples of the derivatives of y ≡ y1, see
(4) and (12), at c1 = c2 = c3 = 1, c4 = 2, and c5 = 0 are depicted in Figure 3.
The state solution y as well as some of its derivatives are periodic for a range of
parameters, but the amplitude of the other derivatives is increasing, which might
decrease the accuracy of the approximate expansion of y (w.r.t. the parameters) at
times far from the initial time. Figure 2 (right) shows the initial solution y for the
above values c1, . . . , c5, also seven points obtained via “measurements” derived from
the state solution determined by parameters that are to be re-identified, and the
state solution determined by the identified parameters.

Let us present a few observations and conclusions. The coupling of symbolic and
numerical computation substantially reduces the amount of problem-dependent user-
written code. Although the derivatives of the state solution w.r.t. the parameters
reveal the sensitivity of the state solution to the perturbation of the parameters and
are beneficial in the evaluation of (9) and, if possible, in the placement of the times of
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Figure 1: The derivative of α w.r.t. α∞ (top left), B1 (top right), B2 (bottom left),
η (bottom right).
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Figure 2: Identified solution to (1)–(2) (left), and to (4)–(5) (right).

measurements, their calculation slows the minimization process. Indeed, numerical
differentiation turned out to be quite fast and accurate and might be considered the
method of first choice in fmincon if the parameter identification is the only goal of
calculation. In any case, however, the adjoint equation technique is worth considering
to speed up the minimization process.
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Figure 3: The derivative of y w.r.t. c3 (left) and c4 (right).
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Karel Hájek and Ondřej Petĺık for their assistance in the project and an anonymous
referee for valuable comments.

References

[1] Babadzanjanz, L.K., Boyle, J.A., Sarkissian, D.R., Zhu, J.: Parameter identifi-
cation for oscillating chemical reactions modelled by systems of ordinary differ-
ential equations. J. Comp. Methods Sci. Eng. 3 (2003), 223–232.

[2] Kurzweil, J.: Ordinary differential equations: introduction to the theory of or-

dinary differential equations in the real domain. Studies in Applied Mechanics,
vol. 13, Elsevier Science Ltd, Amsterdam, 1986.
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