
PANM 17

Jiří Khun; Ivan Šimeček
Parallelization of artificial immune systems using a massive parallel approach via modern GPUs

In: Jan Chleboun and Petr Přikryl and Karel Segeth and Jakub Šístek and Tomáš Vejchodský (eds.): Programs and
Algorithms of Numerical Mathematics, Proceedings of Seminar. Dolní Maxov, June 8-13, 2014. Institute of
Mathematics AS CR, Prague, 2015. pp. 106–111.

Persistent URL: http://dml.cz/dmlcz/702670

Terms of use:
© Institute of Mathematics AS CR, 2015

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for
personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://dml.cz

http://dml.cz/dmlcz/702670
http://dml.cz


Programs and Algorithms of Numerical Matematics 17
J. Chleboun, P. Přikryl, K. Segeth, J. Š́ıstek, T. Vejchodský (Eds.)

Institute of Mathematics AS CR, Prague 2015

PARALLELIZATION OF ARTIFICIAL IMMUNE SYSTEMS
USING A MASSIVE PARALLEL APPROACH VIA MODERN GPUS

Jǐŕı Khun, Ivan Šimeček

Department of Computer Systems,
Faculty of Information Technology,

Czech Technical University in Prague,
Thákurova 9, 160 00 Prague 6, Czech Republic
jiri.khun@fit.cvut.cz, ivan.simecek@fit.cvut.cz

Abstract

Parallelization is one of possible approaches for obtaining better results in terms of
algorithm performance and overcome the limits of the sequential computation. In this
paper, we present a study of parallelization of the opt-aiNet algorithm which comes
from Artificial Immune Systems, one part of large family of population based algo-
rithms inspired by nature. The opt-aiNet algorithm is based on an immune network
theory which incorporates knowledge about mammalian immune systems in order to
create a state-of-the-art algorithm suitable for the multimodal function optimization.
The algorithm is known for a combination of local and global search with an emphasis
on maintaining a stable set of distinct local extrema solutions. Moreover, its modi-
fications can be used for many other purposes like data clustering or combinatorial
optimization. The parallel version of the algorithm is designed especially for modern
graphics processing units. The preliminary performance results show very significant
speedup over the computation with traditional central processor units.

1. Introduction

Research behind this paper represents an intersection of several scientific disci-
plines but two of them are playing a key role: artificial immune systems (AIS) and
design of parallel algorithms with an emphasis on general purpose computing via
graphic processing units (GPU).

1.1. Artificial immune systems

Artificial immune systems are a part of a large field of computational intelligence
approaches inspired by nature. Their basic principles are based on the knowledge
obtained by studying real biological immune systems, especially mammalian.

In general, we can imagine any biological immune system as a mechanism which
responses on varied incoming threats represented by pathogens and toxic substances
in order to protect the host organism. Pathogens can be represented by a wide

106



range of different types of micro-organisms like parasites, bacteria, viruses, prions
and others. Every immune system’s main task is to detect such threats and try to
eliminate them.

After ages, the mammalian immune system has developed itself into a very com-
plex part of a host body and the development is still in progress based on everyday life
experiences. This is the main reason why the immune systems became an inspiration
for the computational intelligence area.

Theories behind the biological immune systems have become an inspiration for
many algorithms like Clonal Selection, Negative Selection, Danger Theory, Theory
of Immune Network and others [1]. Our research is focused on the Immune Network
algorithms which enhanced an original theory of the clonal selection.

1.2. General computing using graphics processing unit

Almost every modern GPU is able to provide a general purpose computational
performance at least an order of magnitude bigger than a present-day central pro-
cessing unit (CPU). In the area of high performance computing (HPC) and super-
computers, the use of GPUs is a standard way to achieve a significantly higher per-
formance than delivered by previous generation computers while keeping the same
power consumption.

Great performance hidden in GPUs is achieved by large amount of simple process-
ing elements working in parallel. Every individual element deals only with a small
subset from the running task. Therefore, it is necessary to carefully design an algo-
rithm for this parallel approach. But there are also many tasks that cannot be solved
in parallel at all due to their sequential nature. Parallel approach has to deal with
several aspects like data hazards or synchronization and, consequently, is increasing
algorithm complexity.

2. Opt-aiNet

The opt-aiNet algorithm [2] is based on the theory of Immune Network which
came with an idea that immune cells do not react only to foreign pathogens but
can also react to other immune cells, see Algorithm 1. Thanks to this, the whole
immune environment becomes a dynamic self-regulated network where individual
cells constantly excite and inhibit each other. This behavior also leads to a richly
diverse population of immune cells capable to react to a broad spectrum of possible
threats.

An original version of the aiNet algorithm was intended for data clustering and
was later extended to deal with optimization tasks. In our research, we are focusing
on the version for continuous multi-modal optimization, but results of the research
will be applicable across all modifications of the algorithm.

Figure 1 shows an example of the algorithm’s results: identified local maxima of
Schaffer’s function of two real-valued variables.

107



Algorithm 1 Pseudocode for the opt-aiNet aglorithm [1]

1: procedure Opt-aiNet
Input: PopulationSize, ProblemSize,Nclones,Nrandom,AffinityThreshold
Output: BestCell

2: Population← InsertInitialPopulation(PopulationSize, ProblemSize);
3: while not(TerminationCondition) do
4: EvaluatePopulation(Population);
5: BestCell ← GetBestSolution(Population);
6: Progeny ← (nothing)
7: AvgPopF itness← 0;
8: while CalculateAvgPopF it(Population) > AvgPopF itness do
9: AvgPopF itness← CalculateAvgPopF it(Population);

10: for Cell(i) in Population do
11: Clones← CreateClones(Celli, Nclones);
12: for Clone(i) in Clones do
13: Clone(i)←MutateAccordingF itnessParent(Clone(i), Cell(i));

14: EvaluatePopulation(Clones);
15: Progeny ← GetBestSolution(Clones);

16: SupressLowAffinityCells(Progeny,AffinityThreshold);
17: Progeny ← CreateRandomCells(Nrandom);
18: Population← Progeny;
19: return BestCell;

3. Analysis of parallelization

Design of parallel algorithms for general purpose GPU computations (GPGPU)
is not always a straightforward and simple approach. Especially for tasks that aren’t
completely data parallel. There are several rules that must be met otherwise the
computation performance can be even much lower that on a CPU.

The most important rule is full utilization of GPU resources. It is necessary
to run thousands or more independent computational threads. Only such amount
of threads can hide some problematic architectural areas like relatively big latency
between GPU’s cores and their memory.

Another limitation during the design of the parallel algorithm for GPU is the fact
that individual threads are run in groups containing tens of threads (usually 64). The
threads within a group are using the same instruction buffer and must perform the
same program’s code. Therefore if any of the threads is branching, the computation
must be serialized with a significant negative impact on the performance.

3.1. Parallelization of opt-AiNet

The opt-aiNet algorithm is relatively complex and contains a lot of data depen-
dencies. Therefore it is not reasonable to run it in parallel like a one piece of code.

108



–10

–5

0

5

10

–10

–5

0

5

10
0

0.5

1

x
y

f(x
,y

)

Figure 1: An example of results of multimodal search performed by opt-AiNet on
a testing function of two real-valued variables (Schaffer’s function). Individual marks
represent the found maxima of the function. Redrawn from [2].

During our analysis we discovered 6 individual parallel regions that can be effectively
parallelized in a large-scale satisfying the above-mentioned requirements for the ef-
ficient GPU computation. The parallel regions will be discussed in the following
subsection in detail.

Not all parallel regions are purely data-parallel. Some of them contain inter-
nal data dependencies that require intra-thread communication (e.g., via special so-
called shared memory) and synchronization. Some regions also represent a parallel
reduction pattern that require a lot of intra-kernel synchronization.

The thread synchronization and communication represent the biggest challenge
during the parallelization because GPU threads are sensitive to synchronization
methods and a wrong approach can devastate the overall performance.

3.2. Parallel regions within the opt-AiNet algorithm

As mentioned above, our analysis showed that the algorithm can be divided
into several parts with a potential for the large parallelization targeting GPU. These
parallel regions are covering almost all necessary steps that must be processed during
the algorithm’s execution.

3.2.1. Insertion of an initial or an additional population

The insertion of an initial population, consisting of individual immune cells, is
the first step of the algorithm. Another cells are also inserted during later stages of
the algorithm.

The insertion can be fully done in parallel without any significant obstacle. Every
computational thread will insert one or more immune cells and there is not any
relation between inserted cells.

109



It is important to highlight that every computational thread need to have an own
independent random number generator because, for proper results of the algorithm,
every cell has to be generated with completely random initial configuration values.

3.2.2. Calculation of function values

In this step every cells’ internal configuration is used for the calculation of the
functional value of the optimized function. The calculation of the function values can
be done fully in parallel and in any order because there are not any direct bindings
between individual cells during this step.

3.2.3. Calculation of fitness values

The fitness value represents how close the particular immune cell is to the cur-
rently best found solution (the maxima of the optimized function). It is an important
value that influences another life span of the particular cell (solution).

The calculation of the fitness value is not a data parallel task because at the
beginning it is necessary to found the largest function value across all cells in the
population. The parallel reduction pattern can be used for this approach. A com-
plication within this approach is the out of order execution of the groups of threads
(as mentioned above) on GPUs that requires intergroup synchronization.

3.2.4. Cloning and mutation of the population

In this step, the individual immune cells are cloned and mutated with certain
probability. The probability is based on the fitness value due to the fact that the
cells with better fitness values have higher chance to clone themselves.

This leads to a varying size of the population that represents another problem for
a real implementation of the algorithm on a GPU because current program model
needs to specify memory regions in advance before computation.

On the other hand, the mutation as a subsequent step after the cloning does
not represent a difficult task and can be done fully in parallel assuming independent
random number generator for every computational thread.

3.2.5. Selection of the best cells

During every iteration of the opt-aiNet algorithm, a proportional part of cells is
selected for transfer to the next generation. In general, only the best solutions are
chosen therefore the algorithm needs to be able to search the whole population in
parallel and select them. Logical approach is to sort all cells by the fitness value and
then select the part of the cells with required quality.

This can be done in parallel with the help of a parallel sort pattern. There are
several types of the parallel sort algorithm suitable for GPU implementation. For
example the merge sort.

3.2.6. Suppression of similar cells

This step represents the part of the algorithm where low affinity cells with fitness
lower than the required level are suppressed in order to avoid situations where too

110



many cells within a population are covering the same state space. It is the most
challenging part in the whole parallelization processes of the opt-aiNet algorithm
because every cell in the population must be compared against the rest.

Our current approach is to sort all cells in parallel by their affinity with the help
of the parallel merge pattern. Then we do the suppression on a local level within
individual groups of threads (every computational thread represents one cell). The
last step is to apply the suppression to the individual groups of threads on a global
level.

4. Conclusion

Opt-aiNet represents an important algorithm intended for the multi-modal search.
It comes from the family of AiNet algorithms which are influencing wide area of data
processing tasks like data clustering, data compression or combinatorial optimiza-
tion. As many other nature-inspired heuristics, opt-aiNet is capable to perform very
well in terms of solutions’ quality but it needs a corresponding amount of the compute
power. Therefore any possible improvement in this area is welcome.

Within this paper, we discussed possibilities of parallelization of the opt-aiNet
algorithm as a potential source of a large improvement from the perspective of com-
putational performance. We have focused especially on massive parallel approach
represented by modern GPUs allowing universal non-graphical computations because
these devices start to be a common part of almost every present-day supercomputer,
work-station or a notebook.

Our analysis is showing a large potential of possible parallelization even for the
massive parallel approach represented by GPUs and their thousands of computational
threads. On the other hand, there are also obstacles which make the parallelization
relatively challenging and non-trivial.

Our preliminary testing implementation is showing promising results and we are
expecting a speed-up factor of 5 at least if we compare the original sequential ap-
proach running on a present-day average CPU (Intel Core i5 4200M) and the GPU
implementation running on a low-end GPU (AMD Radeon HD 8750M).

Acknowledgements

This research has been supported by SGS grant No. SGS14/106/OHK3/1T/18.

References

[1] Brownlee, J.: Clever Algorithms: Nature-inspired programming recipes. LuLu,
1st edition, 2011.

[2] de Castro, L. N. and Timmis, J.: An Artificial immune network for multimodal
function optimization. In: Proceedings of the 2002 Congress on Evolutionary
Computation (CEC’02), vol. 1, pp. 699–704, May 2002.

111


