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Jǐŕı Krček, Jaroslav Vlček
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Abstract

We present the formulation of optical diffraction problem on periodic interface
based on vector tangential fields, for which the system of boundary integral equations
is established. Obtained mathematical model is numerically solved using boundary
element method and applied to sine interface profile.

1. Introduction

Diffraction of optical wave on periodical interface between two media belongs
to frequently solved problems, especially, when the grating period Λ is comparable
with wavelength λ of incident beam. Among other, this phenomenon is studied and
exploited by nanostructured optical elements design. Naturally, theoretical modelling
is of great importance in such cases. One of possible approaches has been demon-
strated in our previous paper [1], where the boundary integral equations (BIE) for
tangential fields have been introduced. Unlike the usually used rigorous coupled
waves algorithm (RCWA) advantageous in the far fields analysis [2], the BIE models
enable effective modelling of near fields in the spatially modulated region.

2. Formulation of problem

Let S : x3 = f(x1) in R3 be a smooth surface periodically modulated in the
coordinate x1 with period Λ and uniform in the x2 direction. The interface S with
normal vector ν divides the space into two semi-infinite homogeneous regions
Ω(1) = {(x1, x2, x3) ∈ R3, x3 > f(x1)}, Ω(2) = {(x1, x2, x3) ∈ R3, x3 < f(x1)} with
constant relative permittivities ε(1) 6= ε(2), ε(1) ∈ R and ε(2) ∈ C, Re (ε(2)) > 0,
Im (ε(2)) ≥ 0, and, the relative permeabilities µ(1) = µ(2) = 1 (both materials are
magnetically neutral), see Fig.1.

We aim to solve optical diffraction problem for monochromatic plane wave with
wavelength λ, i.e. with wave number k0 = 2π/λ, incoming from Ω(1) under the
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Figure 1: Structure of regions with common periodical boundary

angle of incidence θ measured from x3 direction. We seek for space-dependent am-
plitudes E(j) = E|Ω(j) , H(j) = H|Ω(j) of the electromagnetic field intensity vectors
E(x1, x2, x3)e−iωt, H(x1, x2, x3)e−iωt, where ω = c/λ and c represents the light ve-
locity in the free space. The unknown intensities can be written as

E =

{
E

(1)
0 +E(1) in Ω(1),

E(2) in Ω(2),
H =

{
H

(1)
0 +H(1) in Ω(1),

H(2) in Ω(2),
(1)

where the subscript 0 denotes incident field. In the media without free charges, the
vectors E(j), H(j), j = 1, 2 fullfill Maxwell equations (the free-space wave impedance
is embedded in the vector H) in the form

∇×E(j) = ik0µH
(j) , ∇×H(j) = −ik0ε

(j)E(j) in Ω(j) , (2)

∇ ·E(j) = 0, ∇ ·H(j) = 0 in Ω(j) . (3)

The tangential components of the fields are continuous on the boundary, i.e.

ν × (E(1) −E(2)) = o , ν × (H(1) −H(2)) = o on S . (4)

For the far fields, the well-known Sommerfeld’s radiation convergence conditions hold
that allow to consider the problem on the common interface S only [3].

We solve the problem (2)–(4) for the TM polarization of incident wave, therefore

we set E(j) = (E
(j)
1 , 0, E

(j)
3 ), H(j) = (0, H

(j)
2 , 0). To this purpose, we introduce

tangential fields in the next section that enable to reformulate given problem as
scalar integral equations at common boundary. Theoretical background of used
approach is referred in the article [1]. The boundary element method (BEM) has
been chosen to solve obtained system numerically (Sect. 4). Resulting algorithm is
tested for sine interface profile in the Sect. 5.
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3. Mathematical model

We formulate the problem (2)–(4) as boundary integral equations for tangential
fields

J = ν ×E(1) = ν ×E(2), I = −ν ×H(1) = −ν ×H(2) , (5)

where ν is an unit normal vector of the boundary S oriented as shown in Fig.1.
Similarly, τ represents an unit tangential vector of S. On the boundary we can write
J = −J2e2, where J2 = τ ·E(1) = τ ·E(2); and, I = Iττ , where Iτ = −H(1)

2 = −H(2)
2 .

We introduce a parametrization π : 〈0, 2π〉 → R2, π(t) = (p(t), q(t)) of the curve
x3 = f(x1) having unit normal vector ν(t) and corresponding tangential vector τ (t)

with the norm ν(t) =
√
p′(t)2 + q′(t)2. Resulting system of boundary integral equa-

tions for scalar components Iτ and J2 derived in [1] is of the following form:

J2(s) = −J2,0(s)− ik0µτ (s) ·
2π∫
0

Iτ (t)τ (t)
(
Ψ(1)(s, t)−Ψ(2)(s, t)

)
ν(t) dt

− 1

ik0

τ (s) ·
2π∫
0

I ′τ (t)∇t

[
1

ε(1)
Ψ(1)(s, t)− 1

ε(2)
Ψ(2)(s, t)

]
dt

+ ν(s) ·
2π∫
0

J2(t)∇t

[
Ψ(1)(s, t)−Ψ(2)(s, t)

]
ν(t) dt , (6)

Iτ (s) = −Iτ,0(s)− ik0

2π∫
0

J2(t)
(
ε(1)Ψ(1)(s, t)− ε(2)Ψ(2)(s, t)

]
ν(t) dt

+

2π∫
0

Iτ (t)ν(t) · ∇t

[
Ψ(1)(s, t)−Ψ(2)(s, t)

]
ν(t) dt . (7)

In the kernels of integral operators, the parametrized periodical Green functions
Ψ(j)(s, t), j = 1, 2 of Helmholtz equation play important role. We apply these by the
relations [4]

Ψ(j)(s, t) =
∞∑

m=−∞
Ψ(j)
m (s, t) , Ψ(j)

m (s, t) =
1

2iΛβm
ei(αm(p(s)−p(t))+βm|q(s)−q(t)|) , (8)

where αm, βm are the propagation constants defined as

αm = α + (2πm)/Λ , α = k0

√
ε(1) sin θ , α2

m + β2
m = k2

0ε . (9)

Required properties of obtained operators have been established e.g. in refer-
ences [4, 5]. Note, that the singularity of logarithmic type is of key importance,
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because it enables to split the operators into compact ones with continuous kernel
and the other with logarithmic singularity:

Ψ(j)(s, t) = Ψ
(j)
0 (s, t) +

1

2π
ln
∣∣∣∣2 sin

s− t
2

∣∣∣∣+ Ψ(j)
r (s, t) (10)

with regular part

Ψ(j)
r (s, t) =

∑
m∈Z ,m6=0

{
Ψ(j)
m (s, t)− 1

2π

e−im(s−t)

2|m|

}
. (11)

In the way of existence and uniqueness of presented model we refer to the pa-
per [6], where the properties of boundary operators are discussed in detail.

4. Numerical implementation

To solve the system of boundary integral equations (6),(7) we use collocation
method with 2N + 1 equidistant collocation points sj = 2πj

2N
, j = 0, . . . , 2N .

We seek for discrete solutions

Iτ (s) =
2N∑
k=0

ckφk(s) and J2(s) =
2N∑
k=0

dkφk(s) (12)

with interpolation basis {φk}2N
k=0. Thus, the system of trigonometric polynomials or

linear splines (piecewise linear functions) is the usual choice of basis functions. Here,
we prefer the last ones with nodes identical with collocation points (φk(sj) = δkj).
Note that an using of frequently applied cubic splines did not yield better results in
the example demonstrated in the Sect. 5.

We find advantageous to take the order N of boundary discretization equal to
the order of diffraction modes truncation in the Green function (8), so that

Ψ(j)(s, t) ≈
N∑

m=−N
Ψ(j)
m (s, t) , j = 1, 2 . (13)

Since the integral operators in the solved system are splitted by (10), we evaluate
numerically the compact operators with continuous kernels – the trapezodial rule
with nodes in collocation points (i.e. tj = sj) gives sufficiently accurate results. The
logarithmic-type singular operators can be evaluated analytically.

5. Numerical results

As an example, we consider the smooth sine boundary

S : x3 =
h

2

(
1 + cos

2πx1

Λ

)
, x1 ∈ 〈0,Λ〉 , Λ = 500 nm, h = 50 nm

between two regions with indices of refraction n1 = 1 (air) and n2 = 1.5 (glass),

nj =
√
ε(j). Incident beam of wavelength λ = 632.8 nm propagates under given
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Figure 2: The convergence of used BEM algorithm (incidence angle θ = 40◦)

Figure 3: Reflected field |H(1)
2 | for chosen incidence angle θ (N = 50).
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angle of incidence θ. The Fig. 2 illustrates increasing accuracy of approximation
with growing discretization order. We present here the absolute value of complex
tangential component of the field H at one period of common boundary.

The reflected field |H(1)
2 | is demonstrated at the Fig. 3 near to the boundary

for several incidence angles. As the both materials are lossless, the field is nearly
uniform in vertical direction.

6. Conclusion

The results obtained using presented BEM algorithm show possible applicability
of the approach based on tangential fields to many problems, in which the detailed
analysis of the diffracted optical field at an interface and/or in the near region is
needed. We suppose to exploit this method in future to surface plasmon modelling.
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