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Czech Technical University, Faculty of Mechanical Engineering
Dep. of Technical Mathematics, Karlovo nám. 13, Praha 2, Czech Republic

Petr.Svacek@fs.cvut.cz

Abstract

This paper focuses on the mathematical modelling and the numerical approxima-
tion of the flow of two immiscible incompressible fluids. The surface tension effects are
taken into account and mixed boundary conditions are used. The weak formulation
is introduced, discretized in time, and the finite element method is applied. The free
surface motion is treated with the aid of the level set method. The numerical results
are shown.

1. Introduction

The mathematical modelling of two-phase flows with the consideration of the free
surface motion influenced by the surface tension is addressed in various scientific as
well as technical applications. Such a problem is important both from the mathe-
matical modelling point of view and also from the technical practice. Particularly,
its numerical approximation is very challenging task, see among others [1], [2] or [3].
The approximation of the surface tension naturally can play a key role here.

In this paper, we consider the two-dimensional flow of two immiscible fluids, the
problem is mathematically described and the variational formulation is introduced.
For the discretization the finite element(FE) method is used. The free surface motion
is realized using the level set method, cf. [7] or [5]. In the case of high surface tension,
a modification of the standard FE method is required to avoid the spurious currents,
see [6] or [1]. For the verification of the implemented method a benchmark problem
is solved, cf. [3].

2. Mathematical description

Let us consider the computational domain Ω ⊂ R
2 with the Lipschitz continuous

boundary ∂Ω with its mutually disjoint parts ΓW , ΓS, ΓO. The domain is occupied
at time t by two immiscible fluids, i.e. Ω = ΩA

(t) ∪ΩB
(t), the fluid A occupies ΩA

(t) and

the fluid B occupies ΩB
(t), see Fig. 1. The interface between the two fluids is denoted
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Figure 1: The computational domain Ω, its sub-domains ΩA
(t) and ΩB

(t), the interface Γ̂t

and the normal vector.

by Γ̂t = ∂ΩA
(t) ∩ ∂ΩB

(t). Further, we denote by Γk
W,t = ΓW ∩ ∂Ωk

(t), Γ
k
S,t = ΓS ∩ ∂Ωk

(t)

and Γk
O,t = ΓO ∩ ∂Ωk

(t) for k = A or k = B.

The flow of the fluid A in the domain ΩA
(t) is described by the incompressible

system of Navier-Stokes equations

∂
(

ρAuA
)

∂t
+ ρA(uA · ∇)uA −∇ · σA = ρAf , ∇ · uA = 0, (1)

where ρA denotes the constant fluid A density, uA = uA(x, t) is its flow velocity
defined for x ∈ ΩA

(t) and t ∈ [0, T ), and σA is the Cauchy stress tensor given by

σA = −pAI + µA(∇uA +∇TuA), where pA = pA(x, t) is the pressure and µA is the
viscosity coefficient. Similarly, the flow of the fluid B in the domain ΩB

(t) is governed
by

∂
(

ρBuB
)

∂t
+ ρB(uB · ∇)uB −∇ · σB = ρBf , ∇ · uB = 0, (2)

where ρB denotes the constant fluid B density, uB = uB(x, t) is its flow velocity
defined for x ∈ ΩB

(t) and t ∈ [0, T ), and σB is the Cauchy stress tensor given by

σB = −pBI + µB(∇uB +∇TuB), where pB = pB(x, t) is the pressure and µB is the
viscosity coefficient. In eqs. (1-2) f denotes the gravitational acceleration (acting in
the negative x2 direction).

The motion of both fluids is then driven by the continuity equation

∂ρ

∂t
+ (u · ∇)ρ = 0. (3)
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The domains ΩA
(t) and ΩB

(t) are then implicitly determined by the equations ρ = ρA

and ρ = ρB, respectively.
The initial conditions at time t = 0 are given uA(x, 0) = 0, ρ(x, 0) = ρA for

x ∈ ΩA
(0) and uB(x, 0) = 0, ρ(x, 0) = ρB for x ∈ ΩB

(0). On the interface the following

boundary conditions are specified on Γ̂t

a) uA = uB, b) σA · n− σB · n = γκn, (4)

where γ is the surface tension coefficient, κ denotes the curvature of the interface ΓI

and n here denotes the normal to the ΓI pointing into ΩB
(t). On the boundary ∂Ω

the following boundary conditions are prescribed

a) uA = 0 on ΓA
W,t, uB = 0 on ΓB

W,t,

b) uA · n = 0, ∂(uA·t)
∂n

= 0 on ΓA
S,t, uB · n = 0, ∂(u

B ·t)
∂n

= 0 on ΓB
S,t,

c) σA · n = 0 on ΓA
O,t, σB · n = 0 on ΓB

O,t,

(5)

where n denotes the unit outward normal to the boundary of Ω, and t is the unit
tangent vector to the boundary of Ω.

3. Variational formulation

In order to introduce the weak formulation, we start with the definition of the
function space Q = L2(Ω) for the pressure and V the function space for the velocity,
where V = {v ∈ H1(Ω) : v = 0 on ΓW , v · n = 0 on ΓS}. Now, let us take the
test function v ∈ V and multiply the first equations in (1-2) by v, integrate over Ω,
use Green’s theorem, apply the boundary conditions (5b-c) and use the interface
condition (4b). We get
∫

ΩA

(t)

ρA
(

∂uA

∂t
+ (uA · ∇)uA

)

· v + σA · (∇v) dx−

∫

ΩA

(t)

ρAf · v dx + (6)

∫

ΩB

(t)

ρB
(

∂uB

∂t
+ (uB · ∇)uB

)

· v + σB · (∇v) dx−

∫

ΩB

(t)

ρBf · v dx =

∫

Γ̂t

γκn · v dS.

Formulation (6) can be written in a more compact form using the Heaviside function
H(x, t) defined as H(x, t) = 1 for x ∈ ΩA

(t), H(x, t) = 0 for x ∈ ΩB
(t) ∪ Γ̂t. The density

and the viscosity functions then are defined by ρ(x, t) = ρAH(x, t) + (1−H(x, t))ρB

and µ(x, t) = µAH(x, t) + (1 − H(x, t))µB, respectively. Further, the functions
u = u(x, t) and p = p(x, t) can be defined by

u(x, t) =

{

uA(x, t) for x ∈ ΩA
(t),

uB(x, t) for x ∈ ΩB
(t),

p(x, t) =

{

pA(x, t) for x ∈ ΩA
(t) \ Γ̂t,

pB(x, t) for x ∈ ΩB
(t) \ Γ̂t.

Using this notation, the equation (6) then can be written as
∫

Ω

ρ

(

∂u

∂t
+ (u · ∇)u

)

· v + σ · (∇v) dx =

∫

Γ̂t

γκn · v dS +

∫

Ω

ρf · v dx, (7)

209



where σ is the Cauchy stress tensor given by σ = −pI + µ(∇u +∇Tu). Using the
Dirac delta function δΓ̂t

of the interface Γ̂t the equation (7) can be written in the
form

ρ
∂u

∂t
+ ρ(u · ∇)u−∇ · σ = ρf + γκnδΓ̂t

. (8)

Surface tension. In order to treat the surface tension term, we start with its weak
reformulation. Let us define the tangent derivative ∇Γ as ∇Γg = ∇g−(n ·∇g)n and
the Laplace-Beltrami operator △Γ = ∇Γ · ∇Γ. Now, using the relation κn = △Γx

and applying the integration by parts on Γ̂t we get
∫

Γ̂t

γκn · v dS = −

∫

Γ̂t

γ(∇Γx) · (∇Γv) dS, (9)

where for the sake of simplicity it was assumed that Γ̂t is a closed curve.

Level set equation. Furthermore, to treat the motion of the free surface Γ̂t the level
set method is applied. First, the initial condition for the level set function φ = φ(x, t)
is prescribed by φ(x, 0) = dist(x, Γ̂0) > 0 for x ∈ ΩA

(0), φ(x, 0) = −dist(x, Γ̂0) < 0 for

x ∈ ΩB
(0), and φ(x, 0) = 0 for x ∈ Γ̂0. The motion of the interface Γ̂t is then realized

by forcing the function φ to solve the equation

∂φ

∂t
+ u · ∇φ = 0, (10)

which guarantees that the interface is moving with the velocity u. Now, the Heaviside
function H(x, t) is defined using the sign of the level set function φ(x, t). Taking into
account the level set equation (10) and the definition of the function ρ(x, t), the
continuity equation (3) is formally satisfied.

4. Numerical approximation

Flow step. For simplicity, let us consider the equidistant partition of the time
interval [0, T ) given by tn = n∆t, where n = 0, 1, . . . , N and ∆t = T/N . Let us
denote by u(n), p(n), φ(n), ρn and µn approximations of the velocity, the pressure the
level set function, the density and the viscosity at the time instant tn, respectively.
Let us approximate the time derivative by the backward Euler formula, i.e.

∂u

∂t
|t=tn+1 ≈

u(n+1) − u(n)

∆t
,

∂φ

∂t
|t=tn+1 ≈

φ(n+1) − φ(n)

∆t
.

Let us assume that u(n), p(n), φ(n+1), µn+1 and ρ(n+1) are already known. Then
the time discretized weak formulation of (8) reads: Find u = un+1 ∈ V and
p = pn+1 ∈ Q such that

∫

Ω

ρn+1(x)

(

u− un

∆t
+ (u · ∇)u

)

· v − p(∇ · v) + µn+1(x)∇u · ∇v dx

(11)
+

∫

Ω

(∇ · u)q dx = −

∫

Γ̂n+1

γ(∇Γx) · (∇Γv) dS +

∫

Ω

ρn+1(x)f · v dx
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holds for all v ∈ V and q ∈ Q. In the practical computations we assume that
the domain Ω is a polygonal and the spaces V and Q are approximated by the FE
subspaces V h and Qh defined over an admissible triangulation Th, respectively. For
the approximation the well-known Taylor-Hood FE are used, i.e. the velocity is
sought in the space V h = [Hh]

2 ⊂ V , where

Hh = {φ ∈ C(Ω);φ|K ∈ P2(K) for each K ∈ Th}, (12)

where Pk(K) denotes the space of all polynomials on K of degree less or equal to k.
Next, the pressure (as well as the level set function) is approximated in the space

Qh =
{

φ ∈ C(Ω) : φ|K ∈ P1(K) for each K ∈ Th

}

. (13)

The discrete flow problem then reads: Find uh = un+1
h ∈ V h and ph = pn+1

h such
that equation (11) holds for any test function v := vh ∈ V h and q := qh ∈ Qh. In
order to treat the discontinuity of the pressure due to the presence of the surface
tension the extended finite element method (XFEM) is applied, see e.g. [6].

Extended finite element method. The XFEM enlarges the original FE space Qh

using the localization of an enrichment function. For the localization the original base
functions of Qh are used, i.e. we denote the index set J = {1, . . . , n}, n = dimQh

and the mesh nodes by xj , j ∈ J . The nodal base functions are then denoted by
qi ∈ Qh, i ∈ J and satisfy qi(xj) = δij . The J ′ is the subset of all the neighbours of

the interface Γ̂t, i.e. J ′ = {j ∈ J : supp qj ∩ Γ̂t 6= ∅}. We shall use the discontinu-
ous enrichment function HΓ(x) given as the Heaviside function HΓ(x) = H(x, tn+1).
Now, the enrichment of the space Qh is made using the discontinuous base func-
tions qxfej defined by qxfej (x) = qj(x) (HΓ(x)−HΓ(xj)). Here, HΓ(xj) can be left
out from the right hand side as this only adds a constant multiple of the continuous
base function qj(x). On the other hand, this term makes the function qxfej (x) being

zero at every node xi, i ∈ J and also makes the support of qxfej (x) localized only

to the elements containing the interface Γ̂t, which simplifies the practical discretiza-
tion of the problem. The FE space Qh is then replaced by the extended FE space
Qxfe

h = Qh ⊕ span{qxfej : j ∈ J ′}.

Level set step and coupled problem. Eq. (10) is time discretized, weakly
formulated and the standard Galerkin FE method is employed, leading to the discrete
system

M(Φ(n+1) − Φ(n)) + ∆tKΦ(n+1) = 0, (14)

where M is the consistent mass matrix, the matrix K represents the convection and
Φ(k) =

(

φ(k)(xi)
)

i∈J
denotes the nodal values of the level set function. In order

to obtain a stable scheme, the algebraic flux corrections can be applied, see [4].
Nevertheless, in the considered case of a continuous level set function ϕ, this is
mostly equivalent to the Galerkin method (at least for a limited time period). It
is also known, that for the level set method a re-initialization step is needed to
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Figure 2: The result of the rising bubble case: The shape of the interface at time
instant t ∈ {0, 0.5, 1, 1.5, 2, 3} (on the left), the velocity magnitude isolines (middle),
and the pressure isolines (on the right).

maintain the distance like property, see also [3]. Thus we simply use the Galerkin
FE approximations and perform the re-initialization step every 5-40 iterations.

The solution of the coupled problem is then performed by the de-coupled algo-
rithm: Assume that the approximations of un, pn, φn, ρn, µn and Γ̂(n) are already
known.

I. Solve (14) using the flow velocity un to determine φn+1. Perform the re-
initialization if needed.

II. Using the approximation φn+1 determine ρn+1, µn+1 and Γ̂n+1.

III. Solve (11) for approximation of flow velocity un+1 and pn+1.

IV. Set n:= n + 1 and go to I.

5. Numerical results

The numerical results are shown for the case of a rising bubble considered in [3],
where the following values were used ρA = 1000 kgm−3, ρB = 100 kgm−3, µA =
10Pa s, µB = 1Pa s, f = (0,−0.98)m s−2 and γ = 24.5N/m. The height of the
computational domain is H = 2m and width is W = 1m. The fluid B is originally
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Figure 3: The quantitative results for the rising bubble case: The graphs of the
center of mass Ty, the circularity C and the rise velocity V from the left to the right,
respectively.

located in the circle of the diameter 0.5m, whose center is displaced by 0.5m up
from the bottom of the domain. The boundary ΓW contains the bottom and top of
the domain, whereas ΓS includes the rest of the boundary (i.e. ΓO = ∅). Due to the
gravity force, the fluid B with the lower density starts to rise, which also leads to
a shape deformation. However, after some time the fluid B - due to the high value of
the surface tension - develops a more stable shape, which keeps rising undeformed, see
Fig. 2. The computations were performed on a triangular mesh with an equidistant
partition and the spatial step h = 1/40 (the coarsest mesh used in [3]). The time
step used in the computation was ∆t = 0.002. The motion of the domain ΩB

(t)

with the area A(t) was tracked in terms of the y−coordinate of the center of mass
Ty(t) =

∫

ΩB

(t)
x2 dx/A(t), the circularity defined by C(t) = 2

√

πA(t)/
∫

∂ΩB

(t)
1 dS and

the rise velocity V =
∫

ΩB

(t)
u2 dx/A(t). In order to verify the presented numerical

method the values of Ty, C and V were computed at every time instant. The graphs
of Ty, C and V in dependence on time shown in Figure 3 agrees well with the results
in [3]. The quantitative comparison of the referenced values presented in [3] is shown
in Table 1, where Ty(3) is the mass center location at time t = 3 s, Cmin denotes
the minimal circularity, Vmax denotes the maximal rise velocity, t(C = Cmin) and
t(V = Vmax) are the time instants of their occurrence, respectively.

6. Conclusion

The detailed mathematical description of the motion of two immiscible fluids flow
was presented, where the surface tension was approximated using its weak reformu-
lation. The first order time discretization was used and the finite element method
was used for the space discretization. The XFEM was employed to capture correctly
the discontinuity of the pressure along the surface caused by the surface tension. The
solution of the flow problem was coupled with the FEM applied for solution of the
transport equation for the level set function. The decoupled strategy was used for
the solution of the coupled problem. The presented numerical method was applied
for approximation of the benchmark [3]. The data from the numerical simulations
shows very good agreement with the reference values even though here only the first
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Ty(3) Cmin t(C = Cmin) Vmax t(V = Vmax)
ref. [3] 1.0813 0.9013 1.9041 0.2417 0.9213
present study 1.0801 0.9025 1.898 0.2421 0.92

Table 1: The quantitative results for the rising bubble case: the comparison of the
computed and the reference quantities.

order in time discretization was used. The obtained numerical results verify the
applied numerical method and its usability for approximation of flows influenced by
the surface tension.
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