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Abstract

This paper is devoted to barrier options and the main objective is to develop

a sufficiently robust, accurate and efficient method for computation of their values

driven according to the well-known Black-Scholes equation. The main idea is based

on the discontinuous Galerkin method together with a spatial adaptive approach.

This combination seems to be a promising technique for the solving of such problems

with discontinuous solutions as well as for consequent optimization of the number

of degrees of freedom and computational cost. The appended numerical experiment

illustrates the potency of the proposed numerical scheme.

1. Introduction

During the last decade, financial models have acquired increasing popularity in
option pricing. The valuation of different types of option contracts is very important
in modern financial theory and practice – especially exotic options such as discrete
barrier options. Most of the analytical formulas for these options is limited by strong
assumptions, which led to the application of numerical methods instead.

Therefore, the main goal of this paper is to develop an efficient, robust and
accurate numerical method for the barrier option pricing problem, which arises
from the concept of the discontinuous Galerkin (DG) approach for the space semi-
discretization, for more details see [5], and the backward Euler scheme for the dis-
cretization of the resulting ODE systems. In order to increase the efficiency of the
proposed method additionally, this approach is equipped with an h-adaptivity tech-
nique based on regularity and residual indicators, cf. [1, 2]. The resulting numerical
scheme is applied to a standard problem of discrete double barrier option pricing.

2. Barrier option pricing model

In what follows, we consider the double time-independent discrete barrier knock-
out option, i.e. option that expires worthless if one of the two barriers has been hit
at a monitoring date, see e.g. [1] and [6]. We denote by x the price of an underlying
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asset (e.g. stock) and by t the time to expiry of the option and let M := {0 = tM0 <

tM1 < . . . < tMl−1 < tMl = T} be the set of monitoring dates and B− be the lower
barrier and B+ the upper barrier active only at discrete instances tMl ∈M .

Let Ω≡(0, Smax), 0 < B− < B+ < Smax, be a bounded open interval and T stands
for maturity. The price u : QT = Ω × (0, T ) → IR of the discrete barrier option
satisfies the Black-Scholes partial differential equation with initial and boundary
conditions:

∂

∂t
u(x, t)−

1

2
σ2x2 ∂2

∂x2
u(x, t)− rx

∂

∂x
u(x, t) + ru(x, t) = 0 in QT , (1)

u(0, t) = 0 and u(Smax, t) = 0, (2)

u(x, 0) =

{
max(x−K, 0) · χ[B−,B+], (call)

max(K − x, 0) · χ[B−,B+], (put)
, x ∈ Ω, (3)

where σ > 0 and r > 0 are constant model parameters denoting the volatility of
stock price and the risk-free interest rate, respectively.

From the mathematical point of view the problem (1)–(3) represents a convection-
diffusion-reaction equation equipped with a set of two homogeneous Dirichlet bounda-
ry conditions (2) prescribed at the endpoints of interval (0, Smax) and with the initial
condition (3), where symbol K stands for the strike price and χ[B−,B+] denotes the
characteristic function of the barrier interval.

Moreover the discrete monitoring of the contract introduces an updating of the
solution u(x, t) at the monitoring dates tMl ∈M :

u(x, tMl ) = lim
ε→0+

u(x, tMl − ε) · χ[B−,B+]. (4)

3. Discontinuous Galerkin discretization

Let Th (h > 0) be a family of partitions of the closure Ω = [0, Smax] of the do-
main Ω into N closed mutually disjoint subintervals Ik = [xk−1, xk] with length hk :=
xk − xk−1. Then we set Th = {Ik, 1 ≤ k ≤ N} with spatial step h := max1≤k≤N hk

and call interval Ik an element. We additionally assume that the following conditions
are satisfied:

∃Cq ≥ 1 : hk ≤ Cqhk′ ∀ Ik, Ik′ ∈ Th sharing a node (local quasi-uniformity) (5)

∃ k1, k2 ∈ IN such that xk1 = B− and xk2 = B+ (barrier consistency) (6)

The DG method can handle different polynomial degrees over elements. There-
fore, we assign a positive integer pk as a local polynomial degree to each Ik ∈ Th.
Then we set the vector p = {pk, Ik ∈ Th}. Over the triangulation Th we define the
finite dimensional space of discontinuous piecewise polynomial functions:

Shp ≡ Shp(Ω, Th) = {v; v|Ik ∈ Ppk(Ik) ∀ Ik ∈ Th}, (7)

where Ppk(Ik) denotes the space of all polynomials of degree ≤ pk on Ik, Ik ∈ Th.
Consequently, the approximate solution of the continuous problem (1)–(4) is sought
in the space Shp.
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Let us denote v(x±
k ) = limε→0+ v(xk ± ε). Then we define the jump and average

of v at inner points xk of Ω by [v(xk)]=v(x−
k )−v(x

+
k ) and 〈v(xk)〉=

1
2

(
v(x−

k ) + v(x+
k )

)
,

respectively. We also extend the definition of jump and mean value for endpoints
of Ω, i.e. [v(x0)] = −v(x

+
0 ), 〈v(x0)〉 = v(x+

0 ), [v(xN)] = v(x−
N ) and 〈v(xN)〉 = v(x−

N).
Firstly, we recall the space semi-discrete DG scheme presented in [4] and [5]. To

this end we introduce the following bilinear forms:

aΘh (u, v) =
N−1∑

k=0

∫ xk+1

xk

1

2
σ2x2 ∂u(x, t)

∂x
v′(x) dx−

N∑

k=0

〈
1

2
σ2x2

k

∂u(xk, t)

∂x

〉
[v(xk)]

+Θ
N∑

k=0

〈
1

2
σ2x2

k v
′(xk)

〉
[u(xk, t)], (8)

bh(u, v) =−
N−1∑

k=0

∫ xk+1

xk

(σ2 − r)xu(x, t) v′(x) dx+
N∑

k=0

H
(
u(x−

k , t), u(x
+
k , t)

)
[v(xk)], (9)

Jω
h (u, v) =

N∑

k=0

ωk[u(xk, t)] [v(xk)]. (10)

The crucial item of the DG formulation is the treatment of the linear convection
and diffusion terms. For the convection form bh we treat its terms with the aid of
a numerical flux H , see [3]. The diffusion form aΘh includes stabilization terms which
are added to the formulation of the problem in order to guarantee the stability of the
numerical scheme. According to the value of parameter Θ, we speak of symmetric

(Θ = −1), incomplete (Θ = 0) or nonsymmetric (Θ = 1) variants. Furthermore, in
order to replace the inter-element discontinuities, the semi-discrete scheme is com-
pleted with the penalty Jω

h weighted by the penalty parameter function ωk defined
in the spirit of [4]. Let us note that the right-hand side term vanishes due to the
prescribed homogeneous Dirichlet boundary conditions in (2).

In order to simplify the notation we define the bilinear form:

BΘ
h (u, v) := aΘh (u, v) + bh(u, v) + αJω

h (u, v) + (2r − σ2)(u, v), α > 0, (11)

where (·, ·) denotes inner product and the forms aΘh (·, ·), bh(·, ·) and Jω
h (·, ·) are given

by (8), (9) and (10), respectively. The value of multiplicative constant α before the
penalty form Jω

h depends on the properties of diffusion term, see [4]. Finally, we end
up with the following DG formulation for the semi-discrete solution uh(t) ∈ Shp:

d

dt
(uh(t), vh) + B

Θ
h (uh(t), vh) = 0 ∀ vh ∈ Shp, ∀ t ∈ (0, T ), (12)

which represents an ODE system and due to bilinearity of form (11) we can easily
discretize (12) by the implicit Euler method. Let 0 = t0 < t1 < . . . < tr = T be
a partition of [0, T ] with time steps τl ≡ tl+1 − tl, l = 0, 1, . . . , r − 1. We define
the approximate solution of problem (1)–(4) as functions ul

h ≈ uh(tl), tl ∈ [0, T ],
l = 0, . . . , r − 1, satisfying the following numerical scheme:

(
ul+1
h , vh

)
+ τlB

Θ
h

(
ul+1
h , vh

)
=

(
ul
h, vh

)
∀ vh ∈ Shp, (13)

ul+1
h := ul+1

h · χ[B−,B+] ∀ tl+1 ∈M, (14)
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where u0
h is Shp-approximation of u0. The discrete problem (13) is equivalent to

a system of linear algebraic equations at each time level tl+1 ∈ [0, T ].

4. Mesh adaptation

In this section, we introduce an h-adaptive DG technique for the solution of
problem (1)–(4). Since we deal with nonstationary problems, it is suitable to use
adaptive mesh refinement during the computation in order to improve the numerical
solution and to optimize the number of degrees of freedom and computational cost,
consequently.

We start from a uniform coarse grid T0,h := Th and construct at each time instance
tl ∈ [0, T ] a new mesh Tl,h depending on the previous grid Tl−1,h through the following
h-adaptation operations: cutting (C) one element Ik into Ik1 and Ik2 and gluing (G)
two elements Ik1 and Ik2 together into Ik. The described adaptation process has to
comply with restrictions on a minimal admissible size of mesh step hmin, a maximal
admissible size of mesh step hmax, a maximal number of elements Nmax and keeping
of local quasi-uniformity (5) and barrier consistency (6), respectively.

The main idea of the proposed h-adaptive strategy is based on

• mesh refinement in domains with irregular solution (low regularity) or with
high value of residual estimate,
• mesh coarsening in domains with solution of high regularity and low value of
residual estimate.

The estimation of the regularity of the solution is essential for mesh refinement. The
presented approach is based on a measure of inter-element jumps arising from the
shock capturing techniques in hyperbolic problems, for a survey see [2].

We have employed the following element-wise regularity indicator:

gIk(uh) :=
1

h
2pk+1
k




k∑

i=k−1

[uh(xi)]
2


 , k = 1, . . . N, (15)

which recognizes the subdomains of Ω where the solution is smooth (gIk ≈ 0) from
the areas with discontinuities or with a very steep gradient (gIk ≫ 1).

The second key ingredient of the mesh refinement is the residual estimator which
is chosen proportionally to the strong formulation of the local residue from [1] as

rIk(uh) :=
∂uh

∂t
−

1

2
σ2x2∂

2uh

∂x2
− rx

∂uh

∂x
+ ruh, Ik ∈ Th. (16)

Then the local and global residual estimators of the approximate solution uh are

defined by resIk(uh) := ‖rIk‖L2(Ik) and resG(uh) :=
√∑

Ik∈Th
res2Ik , respectively.

Our interest is to find a solution ũh ∈ Shp such that resG(ũh) ≤ TOL, where
TOL > 0 is a given tolerance. In order to satisfy this condition we prescribe the
following stopping criterion for the h-adaptivity: resIk ≤

TOL
N

, ∀ Ik ∈ Th, which
guarantees the uniform distribution of the global residue.

The whole h-adaptation DG algorithm can be schematically written as
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1. let TOL > 0, 0 < hmin ≤ hmax and Nmax be given,
2. let B−, B+ ←→ T0h and Shp be set up, let u0 ←→ u0

h be given,
3. repeat time loop (until tl > T ) (l = 1, . . . , r)



(a) solve problem (13)–(14) on Tl−1,h =⇒ ul
h,

(b) evaluate indicators gIk(u
l
h), resIk(u

l
h), ∀ Ik ∈ Tl−1,h =⇒ resG(u

l
h),

(c) if resG(u
l
h) > TOL⇒ h-refinement,





(C) h-refine elements with resIk > TOL
N

,

(G) h-derefine elements with resIk < δ TOL
N
∧ gIk(u

l
h) ≈ 0,

(•) construct new mesh T new
h −→ Tl−1,h and space Shp, go to (a),

(d) if resG(u
l
h) ≤

TOL
β
⇒ h-coarsening,

{
(G) h-derefine elements with resIk < δ TOL

N
∧ gIk(u

l
h) ≈ 0,

(•) construct new mesh T new
h −→ Tl−1,h and space Shp, go to (a),

where β > 1 and δ ∈ (0, 1) are user-defined parameters, in our computations they
are typically chosen as β = 3.0 and δ = 0.1.

5. Numerical example

The presented numerical example represents the case of a discrete double barrier
call option with the expiration date T = 8

12
(e.g. 8 months) and the strike price

K = 6.0. The prescribed barriers are B− = 4.0, B+ = 8.0 and computational
domain was set as Ω = [0, 9]. The Black-Scholes model parameters were the risk-free
interest rate r = 1.0y−1 and volatility σ2 = 0.01y−1. The initial uniform mesh with
spatial step h = 0.25 was adaptively refined according to h-adaptation parameters
hmin = 10−3 and hmax = 0.5. The time step is τ = 1

120
and we consider monthly

monitoring. We carried out computations by piecewise quadratic approximations,
set Θ = 0 and used the restarted GMRES for the solving of linear systems (13).

Table 1 illustrates the development of the global residue and the number of ele-
ments during the computation in comparison with an adapted and uniform mesh.
One can easily observe that for approximately the same values of the global residue,
it is sufficient to use less elements in the adapted case than for the uniform one.
Figure 1 shows the corresponding isolines of option price and global residue in space-
time plot with well-resolved monthly monitoring.

6. Conclusion

We have dealt with the numerical solution of the discrete barrier option pricing
models, represented by the linear convection-diffusion-reaction equation. We have
presented DG approach together with simple h-adaptivity technique. Presented nu-
merical example illustrated the potency of the resulting scheme.
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time (bimonthly) resG (adapted) #Tlh
∗ resG (uniform) #Tlh

0.000000 19.960869 36 10.888578 120
0.166667 1.498133 178 1.459563 120
0.333333 0.615153 58 0.476494 120
0.500000 0.572154 44 0.475957 120
0.666667 0.119596 58 0.124287 120

Table 1: Comparison of h-adaptive and uniform approach w.r.t. resG; Tlh
∗ denotes

input meshes after monitoring without the updated h-refinement or h-coarsening.
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Figure 1: The isolines of price u (left) and corresponding global residue resG (right).
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