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Abstract

Optical diffraction for periodical interface belongs to relatively fewer exploited

application of boundary integral equations method. Our contribution presents the

formulation of diffraction problem based on vector tangential fields, for which the

periodical Green function of Helmholtz equation is of key importance. There are dis-

cussed properties of obtained boundary operators with singular kernel and a numerical

implementation is proposed.

1. Introduction

Development of optical micro- and nanostructures with periodical ordering takes
important place in many branches of integrated optics or nano-technology. The geo-
metrical and material optimization of the sensors, switching elements and many other
devices depends on the accurate control of their parameters. Besides less or more
complicated experiments, theoretical studies are carried out including mathematical
models of electromagnetic wave interaction with geometrically or material-wise mo-
dulated media. Generally, these models consist in the solving of Maxwell equations
with appropriate boundary conditions. Diffraction of optical wave on an interface
between two different media is one of frequently solved problem, where the rigorous
choice of theoretical approach plays important role.

In the last two decades, there were published numerous works treating of optical
diffraction in periodical structures - see [1] and references therein. One of rela-
tively new approaches is based on Boundary Integral Equations (BIE), theoretical
background of which is referred e.g. in [2]. In this article, we aim to show the espe-
cial integral formulation of the boundary problem for system of Maxwell equations.
To this purpose, we introduce tangential vector fields and study the properties of
derived integral operators.
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2. Formulation of the problem

Let’s denote X = (x1, x2, x3) ∈ R
3 and further S : x3 = f(x1) a surface which

we consider to be smooth with normal vector ν and periodically modulated in coor-
dinate x1 with period Λ and uniform in the x2 direction, see Fig.1.

The interface S divides the space into two semi-infinite homogeneous regions
Ω(1) = {X ∈ R

3, x3 > f(x1)}, Ω(2) = {X ∈ R
3, x3 < f(x1)} with constant relative

permittivities ε(1) 6= ε(2), ε(1) ∈ R and ε(2) ∈ C, Re (ε(2)) > 0, Im (ε(2)) ≥ 0, and,
relative permeabilities µ(1) = µ(2) = 1 (materials are magnetically neutral).
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Figure 1: Structure of regions with common periodical boundary

We aim to solve optical diffraction problem for monochromatic plane wave with
wavelength λ, i.e. with wave number k0 = 2π/λ that is incoming from Ω(1) under
the angle of incidence θ measured from x3 direction. We seek for space-dependent
amplitudes E(j) = E|Ω(j), H(j) = H|Ω(j) of the electromagnetic field intensity vectors
E(X)e−iωt, H(X)e−iωt, where ω = c/λ and c represents the light velocity in the free
space. Especially, we suppose the TM polarization of the incident wave, for which
E(j) = (E

(j)
1 , 0, E

(j)
3 ), H(j) = (0, H

(j)
2 , 0). Therefore, the Maxwell problem leads to

the Helmholtz equations for the scalar components H
(j)
2 (X),

∆H
(j)
2 + k20ε

(j)H
(j)
2 = 0 on Ω(j) , j = 1, 2. (1)

The tangential components of the fields are continuous on the boundary, i.e.

ν × (E(1) −E(2)) = o , ν × (H(1) −H(2)) = o on S . (2)

For the far fields, the well-known Sommerfeld’s radiation convergence conditions hold
that enable to consider the problem on the common interface S only [3].

The incident field at zero diffraction order is characterized by the relation

H
(1−)
0 = e−iωtei(αx1+β

(1−)
0 x3)e2 , e2 = (0, 1, 0) , (3)

where α = k0
√
ε(1) sin θ and β

(1−)
0 is the propagation constant defined below.
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This optical beam is diffracted into reflected wave in Ω(1) and transmitted one
in Ω(2), which are represented by countable sets of modes with wave vectors

k(j±)
m = (αm, 0, β

(j±)
m ) , αm = α+2πm/Λ, (β(j±)

m )2 = k20ε
(j)−α2

m , m ∈ Z. (4)

The sign in superscript denotes propagation direction with respect to the x3 axis
orientation: “+” means the forward wave (reflected), “–” the backward one (incident,
transmitted). For example β(j−)

m < 0, if β(j−)
m ∈ R, or, Im (β(j−)

m ) < 0 otherwise with
respect to radiation conditions and chosen convention e−iωt – see (3). In what follows
stay 1 for 1+ and 2 for 2−.

Denoting x = (x1, x3), y = (y1, y3), the periodical fundamental solution of the
Helmholtz equation in Ω(j) can be written as [4]

Ψ(j)(x,y) =
1

2iΛ

∞
∑

m=−∞

Ψ(j)
m (x,y) , Ψ(j)

m (x,y) =
1

β
(j)
m

ei(αm(x1−y1)+β
(j)
m |x3−y3|) . (5)

In further considerationswe exploit followingwell-knownproperty of the functionsΨ(j) .

Theorem 1. For both of the function Ψ(j)(x,y) defined by (5) the difference (6) is
continuous in R

2.

Ψ(j)(x,y)− 1

2π
ln

1

‖x− y‖ (6)

3. Boundary integral equations

The aim of this section is to formulate boundary integral equations for tangential
fields

J = ν ×E(1) = ν ×E(2), I = −ν ×H(1) = −ν ×H(2) , (7)

where ν = (f ′, 0,−1)/σ with σ =
√
1 + f ′2 is an unit normal vector of the reduced

boundary S : x3 = f(x1) oriented as shown in Fig.1. Similarly, τ = (1, 0, f ′)/σ
represents an unit tangential vector of S.

Thus, on the boundary we can write J = −J2e2, where J2 = τ ·E(1) = τ ·E(2),
and, I = σI1τ = Iττ , where Iτ = σI1 = −H(1)

2 = −H(2)
2 .

For boundary points ξ = (ξ1, ξ3), η = (η1, η3) on the interface S : η3 = f(η1),
η1 ∈ 〈0,Λ〉 we obtain following system of boundary integral equations [5]

J2(ξ) = −J0(ξ)− ik0τ ξ ·
∫

S

Iττ η(Ψ
(1) −Ψ(2)) dlη

− 1

ik0
τ ξ ·

∫

S

1

σ

dIτ
dη1

∇η

(

1

ε(1)
Ψ(1) − 1

ε(2)
Ψ(2)

)

dlη +νξ ·
∫

S

J2∇η(Ψ
(1)−Ψ(2)) dlη , (8)

Iτ (ξ) = −I0(ξ)−ik0

∫

S

J2(ε
(1)Ψ(1)−ε(2)Ψ(2)) dlη+

∫

S

Iτ νη ·∇η

(

Ψ(1) −Ψ(2)
)

dlη , (9)
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where

J0(ξ) = −e2·(νξ×E
(1−)
0 ) = τ ξ·E(1−)

0 , I0(ξ) = τ ξ·(νξ×H
(1−)
0 ) = −H(1−)

0,2 , (10)

thereby E
(1−)
0 , H

(1−)
0 represent the incident wave in Ω(1).

To derive these equations it is necessary to study properties of integral operators

∫

S

g(η)ψ(x,η) dlη ,
∫

S

g(η)
∂ψ(x,η)

∂ν
dlη ,

∫

S

g(η)∇ηψ(x,η) dlη (11)

with the kernel

ψ(x,η) =
1

2π
ln

1

‖ x− η ‖ (12)

when crossing from the inner point x to the boundary point ξ in the normal direction
(the superscript (j) is omitted for simplicity).

Whereas the first and the second of them are the well-known single and double
layer potentials, the third is worth to mention.

Theorem 2. Let ψ(x,η) is the function (12) and S is smooth boundary of the
domain Ω ⊂ R

2 with unit outward normal ν. If g ∈ C(S), then

lim
x→ξ

∫

S

g(η)∇ηψ(x,η) dlη =
∫

S

g(η)∇ηψ(ξ,η) dlη ±
1

2
g(ξ)ν(ξ) , (13)

where ξ ∈ S, minus holds for x ∈ Ω and plus for x ∈ R
2 \ Ω̄.

4. Operator form

Let π : 〈0, 2π〉 → R
2, π(t) = (p(t), q(t)) be a parametrization of the boundary S.

For the boundary points we have ξ = π(s), η = π(t), s, t ∈ 〈0, 2π〉 with correspond-
ing unit normal vector ν(t) = (ν1(t), ν3(t)) = (q′(t), −p′(t))/ν(t) and unit tangential

vector τ (t) = (p′(t), q′(t))/ν(t), where ν(t) =
√

p′(t)2 + q′(t)2.

In the integral operators kernels the fundamental solution (5) of the Helmoltz
equation takes place, hence the system (8), (9) can be written in operator form

[

V1 + V2 I − V3

I − V4 V5

] [

Iτ
J2

]

=

[

−J2,0
−Iτ,0

]

, (14)

where I is the identity operator,

V1(Iτ ) =
k0

2Λν(s)

2π
∫

0

Iτ (t)g1(s, t)
∑

m∈Z

[

Ψ(1)
m (s, t)−Ψ(2)

m (s, t)
]

dt , (15)

V2(Iτ ) =
i

2k0Λν(s)

2π
∫

0

I ′τ (t)
∑

m∈Z





g
(1)
2,m(s, t)

ε(1)
Ψ(1)

m (s, t)− g
(2)
2,m(s, t)

ε(2)
Ψ(2)

m (s, t)



 dt , (16)
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V3(J2) =
1

2Λν(s)

2π
∫

0

J2(t)
∑

m∈Z

[

g
(1)
3,m(s, t)Ψ

(1)
m (s, t)− g

(2)
3,m(s, t)Ψ

(2)
m (s, t)

]

ν(t) dt , (17)

V4(Iτ ) =
1

2Λ

2π
∫

0

Iτ (t)
∑

m∈Z

[

g
(1)
4,m(s, t)Ψ

(1)
m (s, t)− g

(2)
4,m(s, t)Ψ

(2)
m (s, t)

]

dt , (18)

V5(J2) =
k0
2Λ

2π
∫

0

J2(t)
∑

m∈Z

[

ε(1)Ψ(1)
m (s, t)− ε(2)Ψ(2)

m (s, t)
]

ν(t) dt (19)

with

g1(s, t) = ν(s)ν(t)τ (s) · τ (t) , g
(j)
2,m(s, t) = ν(s)τ (s) · κ(j)

m (s, t) ,

g
(j)
3,m(s, t) = ν(s)ν(s) · κ(j)

m (s, t) , g
(j)
4,m(s, t) = ν(t)ν(t) · κ(j)

m (s, t) ,

κ(j)
m (s, t) =

(

αm, sgn(q(s)− q(t))β(j)
m

)

(20)

The right-hand terms of (14) are obtained by parametrization of incident fields (10).

5. Properties of boundary integral operators

Now we need to discuss properties of integral operators kernels, which are written
as differences c1Ψ

(1)(s, t)− c2Ψ
(2)(s, t), or their gradients, where c1, c2 are generally

complex constants. Because for s 6= t this expression represents a continuous func-
tion, it suffices to analyse the singular case for s = t.

Theorem 3. Let c1, c2 ∈ C. Then for s = t the functions

c1Ψ
(1)(s, t)− c2Ψ

(2)(s, t) , ∇t

(

c1Ψ
(1)(s, t)− c2Ψ

(2)(s, t)
)

(21)

are continuous for c1 = c2 and these have singularity of logarithmic type for c1 6= c2.

The particular manner how to evaluate singular integrals depends on the choice
of numerical method. The following theorems show one of possible methods - see [6],
where also the proofs can be found (Z∗ = Z− {0}).
Theorem 4. Let π : 〈0, 2π〉 → R

2 is a parametrization that satisfies

p(0) = 0, p(2π) = Λ, q(0) = q(2π), p(t+ 2π) = p(t) + Λ, q(t+ 2π) = q(t).

Then

ln ‖π(s)− π(t)‖ = ln |2 sin s− t

2
| = −

∑

m∈Z
∗

e−im(s−t)

2|m| . (22)

Theorem 5. The series (23) is absolutely convergent.

∑

m∈Z
∗

{

Ψ(j)
m (s, t)− 1

2π

e−im(s−t)

2|m|

}

(23)
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These properties together with Theorem 1 allow us to split the fundamental
solution as

Ψ(j)(s, t) = Ψ(j)
r (s, t) + ψ(s, t), (24)

where

Ψ(j)
r (s, t) = Ψ

(j)
0 (s, t) +

∑

m∈Z
∗

{

Ψ(j)
m (s, t)− 1

2π

e−im(s−t)

2|m|

}

, (25)

ψ(s, t) =
1

2π
ln |2 sin s− t

2
| . (26)

In numerical implementations we work separately with regular integral kernels and
with singular integrals which can be evaluated analytically.

6. Conclusion

The presented formulation of diffraction problem represents appropriate back-
ground of numerical solution by the Boundary Elements Method (BEM). Specific
problem to discuss is the choice of basis functions; trigonometric polynomials can be
used [3], for instance. For further work we prefer piecewise linear boundary elements.
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