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Abstract

We introduce a new way of the analysis of iterative aggregation-disaggregation

methods for computing stationary probability distribution vectors of stochastic ma-

trices. This new approach is based on the Fourier transform of the error propagation

matrix. Exact formula for its spectrum can be obtained if the stochastic matrix is

circulant. Some examples are presented.

1. Introduction

Iterative aggregation-disaggregation (IAD) methods are a popular tool for nu-
merical solution of stationary probability distribution vectors of stochastic matrices:
they search for a sufficiently good approximation of x fulfilling

Bx = x, eTx = 1, (1)

where B is an irreducible column stochastic matrix and e is a vector of all ones. B is
column stochastic if B ≥ 0 and eTB = eT . It is well known that the solution x
exists, is unique and positive [12].

The IAD methods work in a multilevel fashion. A set of aggregation groups
of unknowns is chosen. Each group represents one unknown on the coarse level.
A solution of the coarse problem is used for improving the approximate solution of
the original problem on the fine level. The idea is similar to the classical algebraic
multigrid (AMG) used for the solution of symmetric positive definite (SPD) prob-
lems [1, 2, 3, 4, 5, 7, 13]. The main difference is caused by the nonsymmetry of
stochastic matrices. While for the AMG methods the estimates in a corresponding
energy norm are utilized, the theoretical justifying the convergence of the IAD meth-
ods exploit completely different approaches. Unfortunately, there are no convergence
conditions for general IAD methods and for general stochastic matrices. In spite of
this, there are many numerical experiments confirming good efficiency of various
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IAD methods. The aim of this paper is to provide a theoretical background for some
observations made e.g. in [1, 3, 4, 5].

Let [B]rs denote the element of B in the row r and column s, similarly [x]r
is the rth element of vector x. If B is nonsymmetric, the preferable algorithm
of aggregation of unknowns into aggregation groups is according to their strong
connection [1, 3, 4, 5]: the unknowns [x]r and [x]s are strongly connected if [B]rs +
[B]sr ≫ 0. Then the IAD methods are reported to converge fast. But there is no
theoretical background given in the literature. In this paper we consider a special
N ×N stochastic matrix B, where

[B]rs = 1 if (r − s− 1)modN = 0, and [B]rs = 0 otherwise. (2)

Adding small perturbations to B gives rise to typical examples of slowly mixing
stochastic matrices for which the stationary iterative methods converge slowly. Such
matrices appear for example in queuing network applications. At the same time B
is a circulant matrix. While the stationary probability distribution of B is x = e/N ,
the solution for perturbations of B are not known a priori. But from the continuity,
similar quality is achieved for perturbations of B. Motivated by the Fourier transform
of AMG operators for circulant and Toeplitz SPD matrices [2], we use the Fourier
transform for the IAD methods and for circulant matrices. A scope of this paper
allows us to consider only two-level IAD methods. Our particular goal is to find the
optimal parameters in the IAD methods for B defined by (2).

The paper is organized as follows. In the next section the IAD methods and the
error propagation formula are recalled. In Section 3 the Fourier transform is used
for the error propagation matrix and its spectrum is computed. The optimal IAD
parameters are computed in Section 4. A short discussion concludes the paper.

2. Two-level IAD methods

Let us assume an irreducible N × N stochastic matrix B. Let pairwise disjoint
aggregation groups G1, . . . , Gn be chosen, ∪n

k=1Gk = {1, . . . , N}. Then a reduction
matrix R ∈ Rn×N is given by

[R]ij = 1 if j ∈ Gi,

= 0 otherwise.

A prolongation matrix S(y) ∈ RN×n is defined for any positive vector y ∈ RN by

[S(y)]ij =
yi

∑

k∈Gj
yk

if i ∈ Gj,

= 0 otherwise.

Matrix B1 = RBS(y) is an aggregated matrix corresponding to B and y. Of course,
P (y) = S(y)R is a projection.
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On the fine level, µ steps of some stationary iteration (we call it a basic iteration)
with matrix T are performed. We use Richardson iteration with T = αB+(1−α)I,
where I is the identity matrix and α ∈ (0, 1〉. A solution of the coarse problem with
matrix B1 is carried out exactly. One cycle of the IAD method is as follows.

One cycle of the IAD method: input xm > 0; output xm+1.

1. set B1 := RBS(xm) and solve B1z = z, eT z = 1 (coarse step)

2. y := S(xm)z (prolongation)

3. xm+1 := T µy (basic iterations)

It can be easily shown that the exact solution x is a fixed point of this computing
process. Moreover, the error of the approximation xm+1 is

xm+1 − x = J(xm)(xm − x)

[6], where

J(xm) = T µ(I − P (xm)(B − xeT ))−1(I − P (xm)). (3)

Since spectral radii ρ(J(xm)) are greater than one in general, we can study the
asymptotic (local) convergence properties by substituting the exact solution into (3)
instead of xm and computing the spectral radii of J(x). We say that the IAD method
is locally convergent if there exists a neighborhood U of x such that for any x0 ∈ U ,
the IAD method yields a convergent sequence with a limit x. A sufficient condition
for the local convergence is of course ρ(J(x)) < 1.

3. Fourier transform of the error propagation formula

The spectral analysis of the AMG methods for circulant and Toeplitz matrices
is based on the Fourier transform of the error propagation operator [2]. We apply
this idea to the IAD methods and compute spectra of matrices J(x) given by (3) if
the stochastic matrix B is circulant. As the first type we consider B defined by (2).
According to Theorem 1 a spectrum of J(x) can be expressed exactly which helps
us to see what are the values of µ and α resulting in the smallest ρ(J(x)). Adding
small perturbations to B does not change the convergence rates of the IAD method
significantly. Such matrices represent a kind of slowly mixing Markov chains [12]. For
the sake of simplicity we consider n = N/2 andGk = {2k−1, 2k}, k = 1, . . . , n, which
corresponds to the aggregation of unknowns according to their strong connections.

Let us denote the N ×N Fourier matrix by FN , where

[FN ]rs =
1√
N
e−2π(r−1)(s−1)i/N .

The superscript H indicates the adjoint matrix.
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Theorem 1. Let B be defined by (2). Assume the IAD method with the basic iter-
ation matrix T = αB + (1 − α)I, α ∈ (0, 1〉, and with µ steps of basic iterations in
each cycle. Let the aggregation groups be Gk = {2k − 1, 2k}, k = 1, . . . , n, n = N/2.
Then the spectrum of the error propagation matrix J(x) is

σ(J(x)) = {0, v0, v1, . . . , vn−1},
where

vk =
1

2

((

1− e2πki/N
) (

1− α+ αe−2πki/N
)µ

+
(

1 + e2πki/N
) (

1− α− αe−2πki/N
)µ)

.

(4)

Proof. The proof aims to compute the spectra of FH
N J(x)FN . We show only two

crucial points of the proof. The first one is the well known formula

B = FNDFH
N ,

where D is diagonal and [D]rr = e2π(r−1)i/N . The second one is that for the exact
solution x = e/N

P (x) =
1

2
RTR =

1

4
Fn

(

D̃1 0

0 D̃2

)(

I I
I I

)(

D̃H
1 0

0 D̃H
2

)

FH
n , (5)

where the matrices D̃1 and D̃2 are diagonal and [D̃1]rr = 1+e2π(r−1)i/N and [D̃2]rr =
1− e2π(r−1)i/N , r = 1, . . . , n. Find more about this technique in [2].

Though the spectrum of J(x) is computable for B defined by (2), it is not straight-
forward to simplify the term (4) for an arbitrary µ.

4. Optimal parameters µ and α

Under the assumptions of Theorem 1 let µ ∈ {1, 2, 3}. Let the spectra of the
corresponding matrices J(x) be σ1, σ2, σ3 and the spectral radii ρ1, ρ2, ρ3. Then

σ1 = {0, 1− 2α},
σ2 = {0} ∪

(

α2M + (1− α)(1− 3α)
)

,

σ3 = {0} ∪
(

(3α2 − 4α3)M + (1− α)2(1− 4α)
)

,

where M = {e−4πki/N}n−1
k=0.

For α ≈ 1 we have ρ3 < ρ1 < ρ2, see also Figure 1. Thus in case of B nearly of
the type (2) and of the aggregation groups with two elements strongly connected,
and for T = αB+(1−α)I, α ≈ 1, the most advantageous number of basic iterations
(among 1, 2, 3) in every IAD cycle is µ = 3.

Theorem 1 also allows to find the best parameter α if µ is given. Note that it
does not depend on N . For example, for µ = 1 the best is α = 1/2 which leads to
ρ1 = 0. For µ = 2 the best spectral radius is ρ2 = 1/9 for

α = arg min
α∈(0,1〉

max (|(1− α)(1− 3α) + α2|, |(1− α)(1− 3α)− α2|) = 1/3.
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Figure 1: Eigenvalues of J(x) for B defined by (2), x = e/N , N = 100, aggregation
groups Gk = {2k − 1, 2k}, k = 1, . . . , N/2, parameters α = 0.8 and µ ∈ {1, 2, 3, 4}.
The solid line is a reference unit cycle.

5. Discussion

We contribute to the theory of the IAD methods. Our results are applicable to
the theory of the AMG for nonsymmetric problems as well. The introduced approach
is based on the Fourier transform.

The introduced analysis can be generalized in several directions. More than
two elements in each aggregation group can be considered. Then instead of the
2× 2 block form in (5) we get an m×m block form if m elements are contained in
every aggregation group. Also block-circulant matrices can be studied [2].

We would like to emphasize that the local convergence of the IAD methods is not
necessarily obtained in general [8]. There are several examples where the spectral
radius of J(x) can be arbitrarily large [10]. It was shown that even B in the form (2)
can yield the spectral radius of J(x) arbitrarily close to two [9]. These examples
should be understood and avoided in the real life computation.

A promising utilization of our approach is in the theory of multi-level IAD meth-
ods. Presently we are not able to find any exact criteria for the local convergence of
the IAD methods with more than two levels. Our new approach could simplify the
involved formulae [11] and help us to find the optimal IAD parameters for at least
some special stochastic matrices.
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