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Abstract

In the contribution we present a problem of shape optimization of the cooling cavity

of a plunger that is used in the forming process in the glass industry. A rotationally

symmetric system of the mould, the glass piece, the plunger and the plunger cavity is

considered. The state problem is given as a stationary heat conduction process. The

system includes a heat source representing the glass piece that is cooled from inside

by water flowing through the plunger cavity and from outside by the environment

surrounding the mould. The design variable is the shape of the inner surface of the

plunger cavity.

The cost functional is defined as the squared L
2

r
norm of the difference between

a prescribed constant and the temperature on the outward boundary of the plunger.

1. Introduction

This work deals with the optimal design of the shape of a plunger cavity that
controls the cooling of a glass piece during the manufacturing process. The aim of
the optimization is to find such a shape of the inner plunger cavity that allows for
cooling in such a way that a constant distribution of the temperature is achieved
across the surface of the moulding device at the moment of separation of the plunger
from the moulded piece.

2. Formulation of the problem

We rotate the system to the horizontal position to be able to describe the opti-
mized plunger cavity surface by a function of one variable.
We define

F e
2 (x) =

{

0 for x ∈ [0, xe2]
f e
2 (x) for x ∈ [xe2, 1]

, (1)

where xe2 ∈ [smin, 1] (smin > 0 is a fixed constant given by the minimal thickness
of the plunger wall), f e

2 ∈ C(0),1([xe2, 1]), f
e
2 (x

e
2) = 0 and 0 ≤ f e

2 (x) ≤ f1(x) − smin,
|f e

2
′(x)| < CD for x ∈]xe2, 1], where f1 is a fixed function. Further we assume that

a ≤ f e
2 (x)−s2 for x ∈ [xe3, 1], where a > 0 represents the radius of a supply tube and
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Figure 1: Scheme of the plunger with the optimized part of the boundary.

s2 > 0 is the minimal admissible split width between the inner wall of the plunger
cavity and the water supply tube, and xe3 ∈]x2, 1] is the deepness of the insertion of
the tube.

Further we define the set of admissible functions as

Ue
ad = { F e

2 (x) ∈ C(0),1([0, 1]) ; F e
2 (x) =

{

0 for x ∈ [0, xe2]
f e
2 (x) for x ∈ [xe2, 1]

,

xe2 ∈ [smin, 1], smin > 0, f e
2 ∈ C(0),1([xe2, 1]), f

e
2 (x

e
2) = 0,

0 ≤ f e
2 (x) ≤ f1(x)− smin, |f

e
2
′(x)| < CD for x ∈]xe2, 1],

f1 given, a ≤ f e
2 (x)− s2 for x ∈ [xe3, 1], a > 0, s2 > 0, xe3 ∈]x2, 1]} ,

where the function F e
2 describes the technological constraint for the inner cavity

surface.

We assume the region Ωe
P l that depends on the design function F e

2 (x), and that
is defined by the formula

Ωe
P l = {(x, r) ∈ R2 ; F e

2 (x) < r < f1(x), for x ∈ [0, 1]} .

Denote by Θ the set of all admissible regions Ωe
P l ⊂ R2, i.e., regions characterized

by F e
2 ∈ Ue

ad. Let us define the convergence on the set Θ. Since each Ωe
P l is uniquely

related to F e
2 , we can say that a sequence Ωn

P l ∈ Θ converges to a region Ωe
P l ∈ Θ

if and only if the sequence of functions F e
2

n (x) converges uniformly in [0, 1] to the
function F e

2 (x) that defines Ωe
P l.

Let us consider the union of four planar regions Ω = ΩMo ∪ΩGl ∪Ωe
P l ∪Ωe

Ca that
represents the planar cross section of the mould, the glass piece, the plunger and the
cooling channel of the plunger (see Figure 2).

Furthermore, we denote by Γ1 the boundary between the plunger Ωe
P l and the

moulded piece ΩGl and Γe
2 the boundary between the plunger Ωe

P l and the plunger
cavity Ωe

Ca. We denote by Γ3 the part of the boundary connecting the mould, the
moulded piece and the plunger with the presser, by Γ4 a part of the axis of symmetry
(see Figure 2), by Γ5 the part of the boundary formed by the tube. Γ6 is the notation
for the part of the boundary between the moulded piece ΩGl and the mould ΩMo
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Figure 2: Scheme of the mould, the glass piece, the plunger, the cavity of plunger
and the supply tube.

and Γ7 is the outward boundary of the mould, which is surrounded by an external
environment. Γin denotes the part of the boundary, where the cooling water comes
into the cooling channel of the plunger, and Γout stands for the part of the boundary,
where the water exits the channel.
In the three dimensional region Ge

Ca, which is created by the rotation of Ωe
Ca around

the x axis, we assume an incompressible potential water flow that is rotationally
symmetric with respect to the x axis. We split the boundary ∂Ge

Ca into the union of
four parts as

∂Ge
Ca = Γ3D

2 ∪ Γ3D
5 ∪ Γ3D

in ∪ Γ3D
out , (2)

where Γ3D
2 , Γ3D

5 , Γ3D
in , and Γ3D

out denote the respective parts of the boundary of ∂Ge
Ca

created by the rotation of Γe
2, Γ5, Γin, and Γout around the x axis.

The potential Φ describing the water flow is given as a solution of the Neumann
problem

∆Φ = 0 in Ge
Ca , (3)

∂Φ

∂n
= g on ∂Ge

Ca , (4)

where g ∈ L2(∂Ge
Ca), representing the normal component of the water flow velocity

at the entrance to and the exit from the plunger cavity, is in the form

g =











0 on Γ3D
2 ∪ Γ3D

5 ,

hinvelo on Γ3D
in ,

houtvelo on Γ3D
out ,

(5)

hinvelo is the normal velocity at the entrance Γ3D
in (hinvelo < 0) and houtvelo is the normal

velocity at the exit Γ3D
out. Further we assume

∫

Γ3D
in

∪Γ3D
out

g dS = 0 . (6)
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The variational formulation for the potential function has the form:
We look for the function Φ ∈ H1(Ge

Ca) such that

∫

Ge
Ca

(

∂Φ

∂x1

∂ϕ

∂x1
+
∂Φ

∂x2

∂ϕ

∂x2
+
∂Φ

∂x3

∂ϕ

∂x3

)

dV =
∫

Γ3D
in

∪Γ3D
out

gϕ dS ∀ϕ ∈ H1(Ge
Ca) . (7)

In the cavity Ge
Ca, the flowing water velocity field u = (u1, u2, u3) is given as

u = gradΦ . (8)

Theorem 1. (existence and uniqueness of the velocity field) Under the assump-
tion (6) there exists a unique velocity field of the form (8) satisfying

|||u|||L2(Ge
Ca

) ≤ c
(

‖hinvelo‖L2(Γ3D
in

) + ‖houtvelo‖L2(Γ3D
out)

)

, (9)

where
|||u|||L2(Ge

Ca
) =

∥

∥

∥

∥

√

u21 + u22 + u23

∥

∥

∥

∥

L2(Ge
Ca

)
. (10)

Proof. See [3].

Let us consider the union of four regions G = GMo ∪ GGl ∪ Ge
P l ∪ Ge

Ca that is
created by the rotation of the union Ω = ΩMo ∪ ΩGl ∪ Ωe

P l ∪ Ωe
Ca around the x axis.

We split ϑ, the searched function representing the distribution of the temperature,
into four functions

ϑ = ϑ0 + ϑ1 + ϑ2 + ϑ3 , (11)

where

ϑi =

{

ϑ|Gi
in Gi

0 in G \Gi
for i = 0, 1, 2, 3 , (12)

(G0 ≡ Ge
P l, G1 ≡ GGl, G2 ≡ Ge

Ca, G3 ≡ GMo).
Further we denote by ϑi|Γ3D

j
the trace of the solution ϑi on the boundary Γ3D

j if
Γ3D
j is a part of the boundary of Gi for i = 0, 1, 2, 3, j = 1, 2, 3, 4, 5, 6, 7, 8, 9

(Γ3D
8 = Γ3D

in , Γ
3D
9 = Γ3D

out).
By virtue of the rotational symmetry of both the state problem and the func-

tion ϑ, the state problem can be formulated variationally in two dimensions. We
define the operators

Energyvelo
Ω (ϑ, w, ψ) = cv̺2

∫

Ωe
Ca

(

∂ϑ2

∂x
w1 +

∂ϑ2

∂r
w2

)

ψr dΩ , (13)

Energycond
Ω (ϑ, ψ) = k0

∫

Ωe
P l

(

∂ϑ0

∂x

∂ψ

∂x
+
∂ϑ0

∂r

∂ψ

∂r

)

r dΩ+ (14)

+ k1

∫

ΩGl

(

∂ϑ1

∂x

∂ψ

∂x
+
∂ϑ1

∂r

∂ψ

∂r

)

r dΩ +
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+ k2

∫

Ωe
Ca

(

∂ϑ2

∂x

∂ψ

∂x
+
∂ϑ2

∂r

∂ψ

∂r

)

r dΩ +

+ k3

∫

ΩMo

(

∂ϑ3

∂x

∂ψ

∂x
+
∂ϑ3

∂r

∂ψ

∂r

)

r dΩ ,

EnvironmentΩ(ϑ, ψ) =
∫

Γ7

αϑ3|Γ7
ψr dΓ , (15)

SourceΩ(ψ) = ̺1

∫

ΩGl

qψr dΩ , (16)

CoeffΩ(ψ) =
∫

Γ1

β1ψr dΓ +
∫

Γ6

β6ψr dΓ +
∫

Γ7

αϑ4ψr dΓ , (17)

where cv is the specific heat capacity per unit volume, ̺1 is the density of glass,
̺2 is the density of water, w1, w2 are the water velocity field components expressed
in cylindrical coordinates, k0, k1, k2, k3 are the coefficients of thermal conductivity,
α is the coefficient of heat-transfer between the mould and the environment, ϑ4 is
the temperature of the environment, β1, β6 are the average power conversion of the
unit volume of the glass body (see [4, page 128]) and q is the density of heat sources.
Further we denote by

AΩ(ϑ, w, ψ) = Energyvelo
Ω (ϑ, w, ψ) + Energycond

Ω (ϑ, ψ) + (18)
+ EnvironmentΩ(ϑ, ψ)

and

FΩ(ψ) = SourceΩ(ψ) + CoeffΩ(ψ) . (19)

We introduce the weighted Sobolev space H1
r (Ωi) (see [2]) provided with the norm

‖v‖1,r,Ωi
=





∫

Ωi





(

∂v

∂x

)2

+

(

∂v

∂r

)2

+ v2



 r dΩ





1

2

i = 0, 1, 2, 3 , (20)

(Ω0 ≡ Ωe
P l, Ω1 ≡ ΩGl, Ω2 ≡ Ωe

Ca, Ω3 ≡ ΩMo).
Further we introduce

H(Ω) = { ϑ; ϑ defined in (12), ϑi ∈ H1
r (Ωi) for any i = 0, 1, 2, 3,

ϑ3|Γ6
= ϑ1|Γ6

, ϑ1|Γ1
= ϑ0|Γ1

, ϑ0|Γe
2
= ϑ2|Γe

2
} ,

where ϑi|Γj
denotes the trace of the function ϑi on the boundary Γj.

We define the norm in H(Ω) as

‖ϑ‖H =
(

‖ϑ0‖
2
1,r,Ω0

+ ‖ϑ1‖
2
1,r,Ω1

+ ‖ϑ2‖
2
1,r,Ω2

+ ‖ϑ3‖
2
1,r,Ω3

) 1

2

. (21)

Theorem 2. The set H(Ω) with the norm (21) is a Hilbert space.
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We denote by H
∗(Ω) the dual space to the space H(Ω) with the norm

‖ψ‖H∗ = sup
ϕ 6=0

AΩ(ϕ, w, ψ)

‖ϕ‖H
.

We define the sets
ΩH = Ω ∪ Γ3 ∪ Γin ∪ Γout

and
He 2D = {v ∈ C∞(ΩH); v|Γ3∪Γin∪Γout

= 0 } .

Let H0(Ω) be the closure of the set He 2D in H(Ω).

We assume the existence of a function ϑeΓ ∈ H(Ω) such that

ϑeΓ|Γin
= 288 on Γin, (22)

ϑeΓ|Γout
= heout on Γout, (23)

ϑeΓ|Γ3
= h3 on Γ3, (24)

where h3 ∈ C(Γ3) is a given function representing the steady temperature on the
boundary Γ3 (see Figure 2) and heout ∈ C(Γout) is a given function representing the
temperature distribution on the cavity output Γout.
We use the variational formulation of the energy equation to formulate

The State Problem:

We look for the function ϑ ≡ ϑ(F e
2 ) ∈ H(Ω) such that

AΩ(ϑ, w
e, ψ) = FΩ(ψ) ∀ψ ∈ H0(Ω) , (25)
ϑ− ϑeΓ ∈ H0(Ω) , (26)

where F e
2 ∈ Ue

ad and w
e is the corresponding flow pattern given as the gradient of

the solution to (7).
Remark. The state problem is solved in two steps. First, the potential Φ of the
water velocity is found as a solution of the problem (7) in the region Ge

Ca. The
components of the velocity field u are computed from (8), transformed to cylindrical
coordinates and substituted into (13). Then the distribution of the temperature ϑ
in the whole system Ω is found as the solution of the state problem (25), (26).

Theorem 3. (the existence and uniqueness of the solution of the state problem)
The state problem (25), (26) has a unique solution ϑ(F e

2 ) for each F e
2 ∈ Ue

ad and
the associated flow pattern w

e obtained as the gradient of the unique solution of (7),
moreover, there exists a constant C > 0 such that

‖ϑ(F e
2 )‖H ≤ C‖FΩ‖H∗ . (27)

Proof. It is sufficient to verify the assumptions of the Lax-Milgram Theorem (see [3]).
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We formulate the problem of the optimal design for the plunger cavity shape:

We define the cost functional as

J S(F e
2 ) = ‖ϑ(F e

2 )|Γ1
−TΓ1

‖20,r,Γ1
, (28)

where ϑ(F e
2 )|Γ1

is the Γ1-trace of the solution ϑ(F e
2 ) of the state problem (25), (26)

in the region Ωe
P l, where TΓ1

is a given constant representing the known optimal
temperature of the plunger surface. We look for the optimal design FOpt ∈ Ue

ad

such that
J S(FOpt) ≤ J S(F e

2 ) ∀ F e
2 ∈ Ue

ad . (29)

Theorem 4. The optimal design problem (29) has at least one solution.

Proof. We refer to Theorem 2.1 [1, page 29], see [3].

Remark. A sensitivity analysis can be performed on the basis of temperature
evaluation along the boundary Γ1. Let us introduce a homeomorphism between the
outward plunger boundary Γ1 and the plunger cavity boundary Γe

2 defined by the
gradient lines of the temperature field in the plunger. In the parts of Γ1 where we
need to decrease the temperature, we narrow “the wall” by moving the points of Γe

2

along the gradient lines to locally achieve more intensive cooling. On the other hand,
in places of Γ1 where we need higher temperature, we increase “the wall thickness”
to locally decrease the intensity of cooling. By the term “the wall thickness” we
understand the length of the temperature gradient line that connects the related
points of Γ1 and Γe

2.
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