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COMPLEXITY OF THE METHOD OF AVERAGING∗

Josef Daĺık

Abstract

The general method of averaging for the superapproximation of an arbitrary par-
tial derivative of a smooth function in a vertex a of a simplicial triangulation T of
a bounded polytopic domain in <d for any d ≥ 2 is described and its complexity is
analysed.

1 Introduction

We reserve the symbol P(m)
d for the space of (real) polynomials in d ≥ 1 (real)

variables whose degree is less than or equal tom for anym ≥ 1, Ω for a bounded poly-
topic domain of dimension d ≥ 2 and consider meshes of Ω consisting of d-dimensional
simplices. For any simplex T , we put

hT = diam(T ) and %T = sup{diam(B) |B ⊂ T is a sphere}.

If a is an inner vertex of a mesh T and T1, . . . , Tn are the T -simplices with ver-
tex a then we call Θ(a) = T1 ∪ . . . ∪ Tn a neighbourhood of a and set h(a) =
max{hT1 , . . . , hTn}.

A Lagrange finite element e = e
(m)
d of degree m consists of

a) the simplex T = a1 . . . ad+1,

b) the local space L(m) of restrictions of the polynomials from P(m)
d to T ,

c) the ”set of parameters” relating the values p(ni1...id) to every p ∈ L(m)

in the

(
d+m
m

)
nodes ni1...id =

d+1∑

j=1

ij
m

aj

for the non-negative integers i1, . . . , id and id+1 such that i1 + . . .+ id+1 = m. (The
fractions i1/m, . . . , id+1/m are the barycentric coordinates of the node ni1...id in T .)

If m is a positive integer, T a d-dimensional simplex and u ∈ C(T ) then we

denote by PT,m[u] the L(m)–interpolant of u in the nodes of e
(m)
d .

∗This outcome has been achieved with the financial support of the Ministry of Education, Youth
and Sports, project No. 1M0579, within activities of the CIDEAS research centre.
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For any integerm, multiindex % with length r = |%| such thatm ≥ r ≥ 1, function
u ∈ Cm+2(Ω) and inner vertex a of a mesh T it is well-known that the T -simplices
T1, . . . , Tn with vertex a satisfy

∂r(PTi,m[u]− u)

∂x%
(a) = O

(
(hTi

)m+1−r
)
.

The (general) method of averaging consists in the solution of the problem to construct
a vector f = [f1, . . . , fn]

> such that

∂r (f1PT1,m[u] + . . .+ fnPTn,m[u]− u)

∂x%
(a) = O

(
h(a)m+2−r

)
. (1)

The special method of averaging, related to the special case d = 2,m = 1 = r, is
an old problem formulated already in [9], 1967, with the aim to get an accurate
approximation of the strain tensor in the postprocessing of the elasticity problem.
In many papers including [7], [10], [6], [3], various approaches to the solution of this
special case are presented. They can be applied in the constructions of a posteriori
error estimators of the finite element solutions of the second–order partial differential
problems in the plane, see [3] and [1], in the sensitivity analysis of optimization
problems and in other areas. Of course, the applicability of the solution of the
general problem is essentially more extensive. A solution of an analogously general
problem appeared in [8].

In Section 2, the vector f satisfying (1) is shown to be the minimal 2-norm
solution of a small underdetermined system of linear equations. In Section 3, we
study the way in which the complexity of these linear equations depends on the
given multiindex %. In the last Section 4, the general method of averaging is applied
to a concrete problem and an agreement of the order of error with (1) is illustrated
numerically.

2 The general method of averaging

We describe the system of linear equations for the vector f from (1) and conditions
guaranteeing the order of error required in (1).

Definition 1. If m is an integer, % a multiindex such that m ≥ r = |%| ≥ 1,
a an inner vertex of a mesh T and T1, . . . , Tn are the T -simplices with vertex a then
Fm,%(a) denotes the set of vectors f = [f1, . . . , fn]

> satisfying

f1
∂rPT1,m[p]

∂x%
(a) + . . .+ fn

∂rPTn,m[p]

∂x%
(a) =

∂rp

∂x%
(a) (2)

for all p ∈ P (m+1)
d .

Remark 1. If p ∈ P(m)
d then PTi,m[p] = p for i = 1, . . . , n. In this case the

equation (2) is trivial when ∂rp/∂x%(a) = 0 and it is of the form

f1 + . . .+ fn = 1 (3)

when ∂rp/∂x%(a) 6= 0. Obviously, the latter case appears for p = x%.
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Definition 2. A system T of meshes of our domain Ω ⊂ <d is said to be a regular
family when the following conditions (a), (b) are satisfied.

(a) For every ε > 0 there is a mesh T ∈ T such that hT < ε for all T ∈ T .

(b) There exists a constant σ such that σ ≥ hT/%T for all simplices T in any mesh
from T.

The following hypothesis, related to a regular family T, parameter m and to
a multiindex % with m ≥ r = |%| ≥ 1, has been proved in the special case for the
regular family of triangulations consisting of triangles without obtuse inner angles
in [3].

Hypothesis (H). There exists a constant C0 such that a vector f ∈ Fm,%(a) with
the 2-norm ‖f‖ ≤ C0 can be found for every inner vertex a of every mesh T ∈ T.

The following main statement has been proved in [4], Theorem 4.

Theorem 1. Let us assume that a regular family T, an integerm and a multiindex %
such thatm ≥ r = |%| ≥ 1 satisfy the hypothesis (H). Then there exists a constant C1

such that
∣∣∣∣∣
∂r(f1PT1,m[u] + . . .+ fnPTn,m[u]− u)

∂x%
(a)

∣∣∣∣∣ ≤ C1|u|m+2,∞h(a)m+2−r

for every function u ∈ Cm+2(Ω), all inner vertices a of the meshes T ∈ T, the
T -simplices T1, . . . , Tn with vertex a and for the vectors f ∈ Fm,%(a) with the prop-
erty ‖f‖ ≤ C0.

Let us assume that a regular family T, integer m and a multiindex % such
that m ≥ r = |%| ≥ 1 satisfy the hypothesis (H). Then, for any inner vertex a
of a triangulation T ∈ T, the T -simplices T1, . . . , Tn with vertex a and any func-
tion u ∈ Cm+2(Ω), the minimal 2-norm solution f = [f1, . . . , fn]

> of the system of
equations (2) satisfies ‖f‖ ≤ C0 and the related linear combination

Gm,%[u](a) ≡ f1
∂rPT1,m[u]

∂x%
(a) + . . .+ fn

∂rPTn,m[u]

∂x%
(a) (4)

approximates ∂ru/∂x%(a) with an error O(h(a)m+2−r) due to Theorem 1. As both

sides of (2) are linear, the equations (2) for all p ∈ P (m+1)
d are equivalent to the

dimP(m+1)
d equations (2) for all p from the basis

1, x1 − a1, . . . , xd − ad, (x1 − a1)
2, (x1 − a1)(x2 − a2), . . . , (xd − ad)

2,
. . . , (x1 − a1)

m+1, (x1 − a1)
m(x2 − a2), . . . , (xd − ad)

m+1.
(5)

Due to Remark 1, these equations are equivalent to the reduced system of

1 +

(
m+ d
d− 1

)
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m 1 2 3 4 5
d = 2 4 (6) 5 (10) 6 (15) 7 (21) 8 (28)
d = 3 7 (10) 11 (20) 16 (35) 22 (57) 29 (84)

Tab. 1: The numbers of equations in the reduced systems and the dimensions of P(m+1)
d

(in brackets).

equations consisting of the equation (3) and the equations (2) for the polynomials p of
degreem+1 from (5). In Table 1, the numbers of equations from the reduced systems

are compared with the dimensions of the spaces P(m+1)
d in brackets for m = 1, . . . , 5

and d = 2, 3. The right-hand sides of the equations (2) for the polynomials of degree
m + 1 from (5) are equal to zero. In [3], the reduced systems of four equations in
the special case are analysed completely and efficient procedures for their solution
are suggested.

3 Complexity of the general method of averaging

Theorem 1 says that the order of error of approximation of any partial derivative
of degree r is proportional to the difference m − r and the method of averaging
increases this order from m + 1 − r to m + 2 − r. In the special case there is
m = 1 = r, i.e. the degree of the interpolants used on the triangles surrounding
the given vertex a is the least possible. The cases m = r appear, among others, for
the following reasons: The data necessary for the higher degree interpolants need
not be available and, in the case m = r, the calculations of the method of averaging
are most simple. In what follows, we restrict our analysis to the special case m = r
only. We investigate simplifications of the general method of averaging based on the
following identities:

Problem. For a given simplex T and non-zero multiindex % find non-zero mul-
tiindices σ, τ with lengths s, t such that % = σ + τ and

∂rPT,r[p]

∂x%
=

∂sPT,s [∂
tp/∂xτ ]

∂xσ
∀ p ∈ P (r+1)

d . (6)

These identities give us the following information about the reduced systems of
equations: If the multiindices σ, τ create a solution of the Problem then, as the partial
derivatives ∂tp/∂xτ of all polynomials p of degree r + 1 are just all polynomials of
degree s+1, the system of equations (2) for all polynomials p of degree m = r+1 is
in fact the system of equations (2) for all polynomials ∂tp/∂xτ of the smaller degree

m = s+1. Hence the reduced system of 1+

(
r + d
d− 1

)
equations is in fact a simpler

reduced system of 1 +

(
s+ d
d− 1

)
equations.
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Identity (6) can be equivalently formulated by means of the space

Q(r+1)
T = {q ∈ P (r+1)

d |PT,r[q] = o}
in the following way.

Theorem 2. For all simplices T and non-zero multiindices σ, τ with % = σ + τ ,
(6) is equivalent to the condition

∂sPT,s [∂
tq/∂xτ ]

∂xσ
= 0 ∀ q ∈ Q(r+1)

T . (7)

Proof. Let us assume that the multiindices σ, τ satisfy condition (7) and consider

a polynomial p ∈ P (r+1)
d . If we set q = p−PT,r[p] then q ∈ Q(r+1)

T so that q satisfies (7)
by assumption. But then

∂sPT,s [∂
tp/∂xτ ]

∂xσ
=

∂sPT,s [∂
t (PT,r[p] + q) /∂xτ ]

∂xσ
=

∂rPT,r[p]

∂x%
.

If (6) is true then we obtain (7) by inserting the polynomials q ∈ Q(r+1)
T into (6).

The following solution of an analogy of our Problem in dimension d = 1 appears
to be usefull in what follows.

Theorem 3. Let r > 1, p ∈ P (r+1)
1 and a = x0 < x1 < . . . < xr = b be

equidistant nodes. Then the Lagrange interpolant Pr[p] ∈ P (r)
1 of p in the nodes

a = x0, x1, . . . , xr = b and the Lagrange interpolant P1

[
p(r−1)

]
∈ P (1)

1 of p(r−1) in the
nodes a, b satisfy

drPr[p]

dxr
=

1

b− a

∫ b

a
p(r)(x)dx =

dP1

[
p(r−1)

]

dx
. (8)

Proof. Of course,

dP1

[
p(r−1)

]

dx
=

p(r−1)(b)− p(r−1)(a)

b− a
=

1

b− a

∫ b

a
p(r)(x)dx. (9)

On the other hand, for every x ∈ 〈a, b〉 there is ξ ∈ (a, b) such that

p(x)− Pr[p](x) =
p(r+1)(ξ)

(r + 1)!
(x− x0)(x− x1) . . . (x− xr)

due to [2], Section 2.3. As p ∈ P (r+1)
1 , there exists a constant C such that p(r+1)(ξ)=C

for all ξ ∈ (a, b). This and the comparison of the r-th derivatives of both sides of
the last identity lead to

drPr[p]

dxr
= p(r)(x)− C

(r + 1)!
[(r + 1)! x− r! (x0 + . . .+ xr)]

= p(r)(x)− Cx+
C

r + 1
(x0 + . . .+ xr)
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for all x ∈ 〈a, b〉. Integrating both sides of this identity over 〈a, b〉, dividing by b− a
and using the fact that drPr[p]/dx

r is a constant, we obtain

drPr[p]

dxr
=

1

b− a

∫ b

a
p(r)(x)dx+ C

[
x0 + . . .+ xr

r + 1
− a+ b

2

]
.

As the nodes a = x0, x1, . . . , xr = b are equidistant, this identity means

drPr[p]

dxr
=

1

b− a

∫ b

a
p(r)(x)dx.

Lemma 1. Under the assumptions of Theorem 3,

drPr[p]

dxr
=

1

hr

r∑

i=0

(−1)r−i

(
r
i

)
p (xi) for h =

b− a

r
.

Proof. If we express the Lagrange interpolant Pr[p](x) in the Newton form for equidis-
tant nodes then we obtain

drPr[p]

dxr
=

∆rp(0)

hr
.

The statement can be proved by induction using the recursive definition of the r-th
forward difference ∆rp(0).

In the following Theorem 4 we describe all solutions of our Problem in the special
case of the partial derivatives in the variables ξ1, . . . , ξd given by the directions of the
catheti of the unit simplices T̂ = a1 . . . ad+1 with a1 = [0, 0, . . . , 0], a2 = [1, 0, . . . , 0],

. . ., ad+1 = [0, 0, . . . , 1] of the reference finite elements ê
(r)
d with the discretization

step h = 1/r. For the indices i1 = 0, . . . , r, i2 = 0, . . . , r− i1, . . ., id = 0, . . . , r− i1 −
. . .− id−1,

n̂i1...id = [i1h, i2h, . . . , idh] (10)

are the nodes of ê
(r)
d . In Fig. 1, the black circles illustrate the nodes of the finite

element ê
(r)
2 .

Theorem 4. Let T̂ be a unit simplex and % a non-zero multiindex with length r.
The non-zero multiindices σ, τ of lengths s, t create a solution of the Problem if and
only if σ = τ · s/t.

Proof. Let us consider arbitrary indices

i1 = 0, . . . , r + 1,

ik = 0, . . . , r + 1− i1 − . . .− ik−1 for k = 2, . . . , d− 1 and (11)

id = r + 1− i1 − . . .− id−1
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Fig. 1: The nodes of the finite element ê
(r)
2 .

and set

fik(ξk) =
∏ik−1

ι=0 (ξk − ιh) for k = 1, . . . , d,

qi1...id(ξ1, . . . , ξd) = fi1(ξ1) . . . fid(ξd). (12)

As a matter of fact, fik is a polynomial of degree ik in the variable ξk such that
fik(ιh) = 0 for all indices ι, 0 ≤ ι < ik. Consequently, deg(qi1...id) = r + 1 and qi1...id
is equal to zero in all nodes (10) of the finite element ê

(r)
d as well as in the additional

nodes n̂j1...jd with the indices j1 . . . jd of the form (11) except the node n̂i1...id itself.
The additional nodes are indicated by the white circles in the case d = 2 in Fig. 1.
These facts lead to the conclusion that the polynomials (12) create a basis in the

space Q(r+1)

T̂
. This and the linearity of condition (7) mean that (7) is valid for all

q ∈ Q(r+1)

T̂
if and only if (7) is valid for the polynomials (12) related to all indices

i1 . . . id of the form (11).

Let us now express the partial derivative from (7) for a function q = qi1...id .
Setting σ = (α1, . . . , αd) and τ = (β1, . . . , βd), we obtain

∂tqi1...id
∂ξτ

=
∂tqi1...id

∂ξβ1
1 . . . ∂ξβd

d

= f
(β1)
i1 (ξ1) . . . f

(βd)
id

(ξd). (13)

Observe that this derivative is different form zero if and only if

β1 ≤ i1, . . . , βd ≤ id. (14)

The next step towards the formulation of condition (7) for the functions qi1...id is
to create the interpolant PT̂ ,s [∂

tqi1...id/∂ξ
τ ]. We set H = 1/s and, to every node

Û = N̂u1...ud of the finite element ê
(s)
d , relate the function

L0
Û
(ξ1, . . . , ξd) = Fu1(ξ1) . . . Fud

(ξd)GÛ(ξ1, . . . , ξd)

such that

Fuk
(ξk) =

uk−1∏

ι=0

(ξk − ιH) for k = 1, . . . , d,
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GÛ(ξ1, . . . , ξd) =
s∏

ι=u1+...+ud+1

(ιH − ξ1 − . . .− ξd).

As deg(Fu1) = u1, . . . , deg(Fud
) = ud and deg(GÛ) = s − u1 − . . . − ud, we have

deg(L0
Û
) = s. Moreover, L0

Û
(v1, . . . , vd) = 0 for every node N̂ v1...vd of ê

(s)
d different

from Û . Indeed, if v1 + . . .+ vd ≤ u1 + . . .+ ud then there exists an index vk < uk so
that Fuk

(vk) = 0 and GÛ(v1, . . . , vn) = 0 in the case v1 + . . .+ vd > u1 + . . .+ ud. As

L0
Û
(u1, . . . , ud) = Hsu1! . . . ud!(s− u1 − . . .− ud)!,

we can see that

LÛ(ξ1, . . . , ξd) =
1

Hsu1! . . . ud!(s− u1 − . . .− ud)!
L0
Û
(ξ1, . . . , ξd) (15)

is the Lagrange base function in the local space L̂(s) = P(s)
d of the reference finite

element ê
(s)
d related to the node Û . Then, due to (13),

PT̂ ,s

[
∂tqi1...id
∂ξτ

]
= PT̂ ,s

[
f
(β1)
i1 (ξ1) . . . f

(βd)
id

(ξd)
]

=
s∑

u1=0

s−u1∑

u2=0

. . .
s−u1−...−ud−1∑

ud=0

LÛ(ξ1, . . . , ξd) f
(β1)
i1 (u1H) . . . f

(βd)
id

(udH).

In order to obtain the σ-th partial derivative of this interpolant, let us analyse the
partial derivatives

∂sLÛ

∂ξσ
=

∂sLÛ

∂ξα1
1 . . . ∂ξαd

d

. (16)

As deg(LÛ) = s, (16) is a constant depending on the coefficient C of the maximal-
order monomial Cξα1

1 . . . ξαd
d of LÛ . Necessarily, this monomial is a product of the

maximal-order monomials

ξu1
1 , . . . , ξud

d (17)

from the factors Fu1 ,. . . ,Fud
of LÛ . But then

uk ≤ αk for k = 1, . . . , d. (18)

The nodes [u1H, . . . , udH] of the finite element ê
(s)
2 satisfying (18) are illustrated by

the black circles in the case d = 2 in Fig. 2. A simple consideration tells us that the
product of the monomials (17) with the maximal-order monomial

(−1)s−u1−...−ud(s− u1 − . . .− ud)!

(α1 − u1)! . . . (αd − ud)!
ξα1−u1
1 . . . ξαd−ud

d
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Fig. 2: The nodes [u1H, . . . , udH] of the finite element ê
(s)
2 .

from the factor GÛ appears in L0
Û
and, due to (15),

∂sLÛ

∂ξσ
=

(−1)s−u1−...−ud

Hsu1! . . . ud!(α1 − u1)! . . . (αd − ud)!

∂s

∂ξσ
ξα1
1 . . . ξαd

d

=
(−1)s−u1−...−ud

Hs

(
α1

u1

)
. . .

(
αd

ud

)
.

Hence, by this result, (18) and Lemma 1, ∂sPT̂ ,s [∂
tqi1...id/∂ξ

τ ] /∂ξσ =

=
s∑

u1=0

s−u1∑

u2=0

. . .
s−u1−...−ud−1∑

ud=0

∂sLÛ

∂ξσ
f
(β1)
i1 (u1H) . . . f

(βd)
id

(udH)

=
α1∑

u1=0

α2∑

u2=0

. . .
αd∑

ud=0

(−1)s−u1−...−ud

Hs

(
α1

u1

)
. . .

(
αd

ud

)
f
(β1)
i1 (u1H) . . . f

(βd)
id

(udH)

=
d∏

k=1

1

Hαk

αk∑

uk=0

(−1)αk−uk

(
αk

uk

)
f
(βk)
ik

(ukH)

=
d∏

k=1,αk>0

dαkPαk

[
f
(βk)
ik

]

dξαk
k

d∏

k=1,αk=0

f
(βk)
ik

(0). (19)

Now, we characterize the non-zero multiindices σ, τ satisfying condition (7) for

the polynomials qi1...id related to the indices i1 . . . id of the form (11). If deg(f
(βk)
ik

) =

ik − βk ≤ αk then Pαk

[
f
(βk)
ik

]
= f

(βk)
ik

and

dαkPαk

[
f
(βk)
ik

]

dξαk
k

= f
(αk+βk)
ik

.

Both this value for αk > 0 and f
(βk)
ik

(0) for αk = 0 is zero in the case ik − βk < αk

and non-zero when ik − βk = αk for k = 1, . . . , d. Hence, whenever there exists k
such that ik − βk < αk, the product (19) is zero. Let us analyse the remaining case

ik − βk ≥ αk for k = 1, . . . , d. (20)
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By adding up these inequalities and using (11), we obtain r+1−t ≥ s or, equivalently,
s+1 ≥ s. Hence all inequalities from (20) except one are equalities and the exception
is of the form ik − βk = αk + 1. As the factors in the product (19) related to the
equalities are non-zero, (19) is equal to zero for all sequences of indices from (11) if
and only if

dαkPαk

[
f
(βk)
αk+βk+1

]

dξαk
k

= 0 when αk > 0 and f
(βk)
βk+1(0) = 0 when αk = 0 (21)

for k = 1, . . . , d. In the case αk > 0, condition (21) is equivalent to

dP1

[
f
(αk+βk−1)
αk+βk+1

]

dξk
= 0

due to Theorem 3. As fαk+βk+1(ξk) =
∏αk+βk

ι=0 (ξk − ιh) =

= ξαk+βk+1
k − h

2
(αk + βk + 1)(αk + βk)ξ

αk+βk
k

+
h2

24
(αk + βk + 1)(αk + βk)(αk + βk − 1)(3αk + 3βk + 2)ξαk+βk−1

k + p(ξk)

for some polynomial p with deg(p) ≤ αk + βk − 2, we obtain f
(αk+βk−1)
αk+βk+1 (ξk) =

=
(αk + βk + 1)!

2

[
ξ2k − h(αk + βk)ξk +

h2

12
(αk + βk − 1)(3αk + 3βk + 2)

]
.

Then

dP1

[
f
(αk+βk−1)
αk+βk+1 (ξk)

]

dξk
=

f
(αk+βk−1)
αk+βk+1 (αkH)− f

(αk+βk−1)
αk+βk+1 (0)

αkH

= (αk + βk + 1)!
αkH

2
[αkH − (αk + βk)h] .

By putting h = 1/(s+ t) and H = 1/s, we can see that condition (21) is equivalent
to the condition

(αk + βk + 1)!αk

2s2(s+ t)
(αkt− βks) = 0

and this one is equivalent to αk = βk · s/t. In the case αk = 0, an evaluation of

f
(βk)
βk+1(0) tells us that the condition f

(βk)
βk+1(0) = 0 means βk = 0.

The results obtained in both cases lead to σ = τ · s/t.
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4 Conclusions

We formulate a corollary of Theorem 4 characterizing multiindices % such that
our Problem has a solution on a unit simplex, illustrate the influence of the solutions
of the Problem on the complexity of the method of averaging by an example and
discuss some open problems.

Definition 3. Let % = (γ1, . . . , γd) be a multiindex of length r and l% the largest
common divisor of γ1, . . . , γd. We call the multiindex % reduced when l% = 1. If % is
non-reduced then we set γk = γk/l% for k = 1, . . . , d and say that the multiindex
% = (γ1, . . . , γd) is a reduction of % of length r = r/l%.

Corollary 1. There exists a solution σ, τ of the Problem related to a d-dimensional
unit simplex T̂ and a non-zero multiindex % = (γ1, . . . , γd) if and only if % is non-
reduced.

Proof. According to Theorem 4, non-zero multiindices σ, τ solve the Problem when-
ever σ = τ · s/t. As s/t > 0, we have % = τ · r/t and r/t > 1. Let us write r/t = r/t
so that the integers r, t are relatively prime. Then, as r > t ≥ 1 and

γk = βk · r
t

for k = 1, . . . , d,

the fractions βk/t are integers for k = 1, . . . , d. This and r > 1 tell us that % is
non-reduced. On the other hand, if % is non-reduced and % = l%% then the non-zero
multiindices σ = %, τ = (l% − 1)% create a solution of the Problem.

It is an open question whether Corollary 1 can be generalized to arbitrary sim-
plices. The statement of the following Lemma 2, see [4], Lemma 8, provides a partial
positive answer to this question.

Lemma 2. If r ∈ {2, 3, . . .} and k ∈ {1, 2} then

∂rPT,r(p)

∂xr
k

=
∂PT,1(∂

r−1p/∂xr−1
k )

∂xk

for all 2-dimensional simplices T and polynomials p = p(x1, x2) of degree r + 1.

Example 1. For u(x, y) = ln(x2 + 0.2y4 + 0.5) · exp(xy − sin(x + 2y) − 3) and an
inner vertex a = [0, 0] with the neighbours ha1, . . . , ha7 of certain triangulations Th –
Fig. 3 illustrates the neighbourhood Θ(a) = T1 ∪ . . .∪ T7 of a in Th – find the errors
of the approximations of ∂3u/∂x3(a) by means of the method of averaging with the
parameters m = 3 = r for such values of h that h(a) = 2−1, . . . , 2−8.

In this example, the multiindex % = (3, 0) is non-reduced. Setting σ = % = (1, 0)
and τ = (2, 0), we can see that the reduced systems of 6 equations in 7 unknowns
indicated in Table 1 are in fact reduced systems of 4 equations in 7 unknowns due to
Lemma 2. These systems are exactly the reduced systems for the superapproximation
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Fig. 3: Neighbourhood Θ(a) = T1 ∪ . . . ∪ T7 of a in Th.

i hi ei log ei
ei−1

/ log hi

hi−1

1 5E−1 −1.57729E−1
2 2.5E−1 −4.38036E−2 1.84833
3 1.25E−1 −1.13485E−2 1.94855
4 6.25E−2 −2.86352E−3 1.98664
5 3.125E−2 −7.17266E−4 1.99721
6 1.5625E−2 −1.79366E−4 1.99960
7 7.8125E−3 −4.48941E−5 1.99831
8 3.90625E−3 −1.13726E−5 1.98096

Tab. 2: The errors ei = ∂3u/∂x3(a) − G3,(3,0)[u](a) and the estimates of the order of
accuracy.

of the first derivative ∂u/∂x(a) by the method of averaging with the parameters
m=1=r. We solve these underdetermined systems of 4 equations by the Householder
QR-algorithm described in [5] and use their solutions f1, . . . , f7 in the computation
of the approximation G3,(3,0)[u](a) according to (4).

Table 2 presents the values of errors ei = ∂3u/∂x3(a) − G3,(3,0)[u](a) related to
the parameters h(a) = hi = 2−i for i = 1, . . . , 8. The last column indicates that
ei = O(h2

i ).
The special method of averaging (d = 2,m = 1 = r) has been analysed in [3]

completely. On the contrary, concerning the general method, answers to many open
questions would increase its applicability. Among them, besides the generalization
of Corollary 1, validity of the hypothesis (H) and applicability of the method in the
boundary vertices should be studied.
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